振动案例第三篇:不对中振动

合集下载

电动机振动的原因、典型案例及维修

电动机振动的原因、典型案例及维修

电动机振动的原因、典型案例及维修电机振动的原因很多,也很复杂。

8极以上大极数电机不会因为电机制造质量问题引起振动。

振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。

一、电动机振动的危害电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。

另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。

二、电动机振动的十个原因1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。

2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。

3.联动部分轴系不对中,中心线不重合,定心不正确。

这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。

4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。

5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。

6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。

7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。

8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。

9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。

轴系角度不对中径向振动特征分析

轴系角度不对中径向振动特征分析

轴系角度不对中径向振动特征分析杨国林,朱琳琳,赵立超,王望(沈阳鼓风机集团股份有限公司,辽宁沈阳110869)来稿日期:2017-12-08作者简介:杨国林,(1984-),男,辽宁沈阳人,硕士研究生,工程师,主要研究方向:故障诊断1引言机组轴系各转子之间是通过联轴器连接构成一个整体的,以传递相应的转矩和旋转运动,但当轴系通过联轴器连接,在安装出现偏差时,就会发生轴系对中不良的问题,从而导致机组产生严重的振动,甚至引发严重事故。

轴系不对中主要包括平行不对中、角度不对中和平行角度混合不对中三种形式。

很多文献资料上,都只介绍了当机组轴系存在角度不对中时,会由于附加在转轴上的弯矩而产生轴向工频振动,并未对径向振动有过介绍。

而很多用户现场的设备上都没有安装轴向振动监测仪表,这给问题的判断带来很多不便[1]。

所以文章结合实际遇到的这一类问题,分析了它是如何对机组产生径向振动。

2不对中的形式轴系不对中主要包括平行不对中、角度不对中和平行角度混合不对中三种形式。

(1)平行不对中,主要表现为两个相接的转子轴心线在径向方向存在一定平行偏移量。

单纯的轴系平行不对中主要表现为两倍的工频振动,和一些高次谐波振动。

(2)角度不对中,主要表现为两个相连接的转子轴心线存在一定的角度值。

单纯的轴系角度不对中会产生轴向工频振动和径向工频振动。

(3)平行角度混合不对中,主要表现为两个相连接的转子轴心线即存在一定角度值,也存在一定平行偏移量。

很多实际遇到的不对中问题,并不是单纯平行不对中或是单纯角度不对中,而是平行角度混合不对中的综合作用。

故平行角度混合不对中发生时,轴系轴向工频振动、径向工频振动、径向两倍频振动和一些高次谐波会同时存在。

认识了轴系不对中的三种型式,理解了三种不对中形式下的振动机理,对于分析和解决对中不良的问题时会有很大的帮助,下面主要针对角度不对中发生时,分析它对轴系径向振动是如何影响的。

3振动机理当轴系的角度不对中发生时,联轴器端面法兰上的把合螺栓会产生相应的拉力,该拉力会使联轴器端面法兰产生相互靠拢的趋势,此时轴系上每个半联轴器都会受到弯矩的作用[2]。

不对中故障机理与诊断

不对中故障机理与诊断

不对中故障机理与诊断大型机组通常由多个转子组成,各转子之间用联轴器联接构成轴系,传递运动和转矩。

由于机器的安装误差、工作状态下热膨胀、承载后的变形以及机器基础的不均匀沉降等,有可能会造成机器工作时各转子轴线之间产生不对中。

具有不对中故障的转子系统在其运转过程中将产生一系列有害于设备的动态效应,如引起机器联轴器偏转、轴承早期损坏、油膜失稳、轴弯曲变形等,导致机器发生异常振动,危害极大。

一、转子不对中的类型如图1-1所示,转子不对中包括轴承不对中和轴系不对中两种情况。

轴颈在轴承中偏斜称为轴承不对中。

轴承不对中本身不会产生振动,它主要影响到油膜性能和阻尼。

在转子不平衡情况下,由于轴承不对中对不平衡力的反作用,会出现工频振动。

机组各转子之间用联轴节连接时,如不处在同一直线上,就称为轴系不对中。

通常所讲的不对中多指轴系不对中。

造成轴系不对中的原因有安装误差、管道应变影响、温度变化热变形、基础沉降不均等。

由于不对中,将导致轴向、径向交变力,引起轴向振动和径向振动。

由于不对中引起的振动会随不对中严重程度的增加而增大。

不对中是非常普遍的故障,即使采用自动调位轴承和可调节联轴器也难以使轴系及轴承绝对对中。

当对中超差过大时,会对设备造成一系列有害的影响,如联轴节咬死、轴承碰磨、油膜失稳、轴挠曲变形增大等,严重时将造成灾难性事故。

J.—_…L一如图1-2所示,轴系不对中一般可分为以下三种情况:(1)轴线平行位移,称为平行不对中;(2)轴线交叉成一角度,称为角度不对中;(3)轴线位移且交叉,称为综合不对中。

图1-2齿式联轴器转子不对中形式二、不对中振动的机理大型高速旋转机械常用齿式联轴器,中小设备多用固定式刚性联轴器,不同类型联轴器及不同类型的不对中情况,振动特征不尽相同,在此分别加以说明。

1.齿式联轴器连接不对中的振动机理齿式联轴器由两个具有外齿环的半联轴器和具有内齿环的中间齿套组成。

两个半联轴器分别与主动轴和被动轴连接。

十五种常见的设备振动故障及其特征频谱

十五种常见的设备振动故障及其特征频谱

十五种常见的设备振动故障及其特征频谱2020.2.3∙以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。

一、不平衡不平衡故障症状特征:∙振动主频率等于转子转速;∙径向振动占优势;∙振动相位稳定;∙振动随转速平方变化;∙振动相位偏移方向与测量方向成正比。

1、力偶不平衡力偶不平衡症状特征:∙同一轴上相位差180°;∙存在1X转速频率而且占优势;∙振动幅值随提高的转速的平方变化;∙可能引起很大的轴向及径向振动幅值;∙动平衡需要在两个修正面内修正。

2、悬臂转子不平衡悬臂转子不平衡症状特征:∙径向和轴向方向存在1X转速频率;∙轴向方向读数同相位,但是径向方向读数可能不稳定;∙悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。

二、不对中1、角向不对中角向不对中症状特征:∙特征是轴向振动大;∙联轴器两侧振动相位差180°;∙典型地为1X和2X转速大的轴向振动;∙通常不是1X,2X或3X转速频率占优势;∙症状可指示联轴器故障。

2、平行不对中平行不对中症状特征:∙大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;∙2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;∙联轴器的设计可能影响振动频谱形状和幅值。

3、装斜的滚动轴承装斜的滚动轴承症状特征:∙振动症状类似于角向不对中;∙试图重新对中联轴器或动平衡转子不能解决问题;∙产生相位偏移约180°的侧面;∙对侧面或顶部对底部的扭动运动。

三、偏心转子偏心转子症状特征:∙在转子中心连线方向上最大的1X转速频率振动;∙相对相位差为0°或180°;∙试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。

四、弯曲轴弯曲轴症状特征∙弯曲的轴产生大的轴向振动;∙如果弯曲接近轴的跨度中心,则1X转速频率占优势;∙如果弯曲接近轴的跨度两端,则2X转速频率占优势;∙轴向方向的相位差趋向180°。

2024年振动的危害及预防(3篇)

2024年振动的危害及预防(3篇)

2024年振动的危害及预防引言:随着科技的不断发展,我们的生活方式也在不断改变。

然而,新兴科技所带来的便利和进步也伴随着一些潜在的危害。

其中之一就是振动,它在我们生活中的应用越来越广泛。

然而,振动不当使用或者长期暴露于振动环境中,都会对人体和环境造成危害。

因此,了解振动的危害以及如何预防成为迫在眉睫的重要课题。

本文将探讨2024年振动的危害及预防措施。

第一部分:振动的危害1. 对人体的危害振动是一种机械波,可以通过物体的传递和传播。

当人体暴露在较大振动环境中时,会引发一系列不良健康反应。

首先,长期暴露于强烈振动环境中会导致骨骼、肌肉和关节的疲劳和损伤,从而引发振动病。

其次,振动还可能影响人的冠心病发生率,并与慢性呼吸系统疾病的发展有关。

此外,振动还会影响人的消化系统,导致胃肠功能紊乱。

长期的振动暴露还会引发心理上的压力和焦虑。

2. 对环境的危害振动不仅对人体有害,还会对环境造成不良影响。

例如,巨大的振动力量可能导致地震,给地球造成破坏。

振动还可能引起建筑物的损坏,特别是对于那些未经充分考虑震动环境的建筑。

此外,振动还会对水体、土壤、植物和动物等自然环境造成负面影响。

因此,我们应该认识到振动对环境的危害,采取相应的措施来减少振动对环境的负面影响。

第二部分:振动的预防1. 对人体的预防为了减少振动对人体的危害,我们可以从以下几个方面进行预防:(1)工程措施:在设计机械设备、交通工具等时,要考虑减振装置的设计。

例如,在汽车中安装悬挂系统,减少汽车行驶中产生的振动。

此外,对于机械工作场所,可以采取隔振吸震等措施减少振动的传递。

(2)人身防护:对于长时间暴露在振动环境中的工作人员,应该佩戴振动防护装备,如耳塞、手套、靴子等。

这些装备可以有效减轻振动对人体的影响。

(3)工时和休息:合理安排工作时间和休息时间,避免长时间连续暴露在振动环境中。

工作时长一般不宜超过每天8小时,并定期进行体检。

2. 对环境的预防为了减少振动对环境的危害,我们可以从以下几个方面进行预防:(1)环境评估:在选择振动源的位置时,应该对周围环境进行评估,避免振动对周围环境产生负面影响。

不对中-诊断要点

不对中-诊断要点

一、不对中情况的谱图特征。

1 角不对中故障角度不对中特征谱的特点:( 1) 会产生较大的轴向振动, 频谱为基频和2 倍频为主, 还常见基频和2 倍、3 倍频都占优势的情况。

(2) 如果3 倍频超过30% ~ 50%, 则可认为是存在角度不对中。

( 3) 联轴节两侧轴向振动相位相差180°。

2 平行不对中故障平行不对中特征谱的特点:( 1) 振动特性类似于角度不对中, 但径向振动较大。

( 2) 频谱中2 倍频较大, 常常超过基频。

( 3) 角度不对中和平行不对中严重时, 会产生较多谐波的高谐次( 4~ 8 倍频) 振动。

( 4) 联轴节两侧相位相差也是180°。

3 轴承不对中故障轴承不对中实际上反映的是轴承坐标高和左右位置的偏差。

由于结构上的原因。

轴承在水平方向和垂直方向具有不同的刚度和阻尼,不对中的存在加大了这种差别。

虽然油膜既有弹性又有阻尼,能够在一定程度上弥补不对中的影响,但当不对中过大时,会使轴承的工作条件改变,使转子产生附加的力和力矩,甚至使转子失稳和产生碰摩。

轴承不对中会产生基频、2 倍频, 振动以轴向为主;找对中无法消除振动, 只有卸下轴承重新安装。

轴承不对中使轴颈中心的平衡位置发生变化,使轴系的载荷重新分布。

负荷大的轴承油膜呈现非线型,在一定条件下出现高次谐波振动,负荷较轻的轴承易引起油膜涡动进而导致油膜振荡,支承负荷的变化还使轴系的临界转速和振型发生改变。

二、不对中诊断要点1.频域:① 确认轴向和径向在1、2、3倍频处有稳定的高峰,特别注意2倍频分量。

②径向振动信号以1倍频和2倍频分量为主,轴系不对中越严重,其2倍频分量就越大,多数情况下会超过1倍频。

③轴向振动以1倍频分量幅值较大,幅值和相位稳定。

④联轴节两侧相临轴承的油膜压力反方向变化,一个油膜压力变大,另一个则变小。

相位基本上成180度。

⑤4-10倍频分量较小。

2) 时域:确认以稳定的周期波形为主,每转出现1个、2个或3个峰,没有大的加速度冲击现象。

汽轮发电机组振动故障诊断及案例

汽轮发电机组振动故障诊断及案例

汽轮发电机组振动故障诊断及案例汽轮发电机组是一种常见的发电设备,其工作过程中可能出现振动故障。

振动故障会对设备的正常运行产生严重影响,因此进行振动故障的诊断和处理具有重要意义。

下面将列举一些关于汽轮发电机组振动故障诊断的案例。

1. 振动频率突然增大:在汽轮发电机组运行过程中,突然出现振动频率增大的情况。

经过检查发现,发电机组的轴承出现损坏,导致轴承摩擦不均匀,进而引起振动频率的增大。

解决方法是更换轴承并进行润滑。

2. 振动频率突然减小:在汽轮发电机组工作中,振动频率突然减小。

经过检查发现,发电机组的风扇叶片出现松动,导致不稳定振动。

解决方法是重新固定风扇叶片。

3. 振动幅值异常增大:在汽轮发电机组运行过程中,振动幅值突然增大。

经过检查发现,发电机组的基础螺栓松动,导致机组整体不稳定,振动幅值增大。

解决方法是重新紧固基础螺栓。

4. 振动频率出现谐振:在汽轮发电机组运行中,出现振动频率与机组自身固有频率相同的谐振现象。

经过检查发现,机组的结构刚度不足,导致谐振频率与机组自身频率相同。

解决方法是增加机组的结构刚度。

5. 振动频率与转速相关:在汽轮发电机组运行中,振动频率与转速呈线性关系,振动频率随转速增加而增加。

经过检查发现,机组的动平衡出现问题,导致振动频率与转速相关。

解决方法是进行机组的动平衡调整。

6. 振动频率与电流相关:在汽轮发电机组运行中,振动频率与电流呈线性关系,振动频率随电流增大而增大。

经过检查发现,机组的电机绝缘出现问题,导致电流异常,并引起振动频率的变化。

解决方法是更换电机绝缘材料。

7. 振动频率与负载相关:在汽轮发电机组运行中,振动频率与负载呈线性关系,振动频率随负载增加而增加。

经过检查发现,机组的轴向间隙不合适,导致振动频率与负载相关。

解决方法是调整轴向间隙。

8. 振动频率与温度相关:在汽轮发电机组运行中,振动频率与温度呈线性关系,振动频率随温度升高而增加。

经过检查发现,机组的冷却系统出现故障,导致温度升高并引起振动频率的变化。

常见的15种振动故障与特征频谱

常见的15种振动故障与特征频谱

常见的15种振动故障及其特征频谱以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。

一、不平衡不平衡故障症状特征:●振动主频率等于转子转速;●径向振动占优势;●振动相位稳定;●振动随转速平方变化;●振动相位偏移方向与测量方向成正比。

1、力偶不平衡●力偶不平衡症状特征:●同一轴上相位差180°;●存在1X转速频率而且占优势;●振动幅值随提高的转速的平方变化;●可能引起很大的轴向及径向振动幅值;●动平衡需要在两个修正面内修正。

2、悬臂转子不平衡●悬臂转子不平衡症状特征:●径向和轴向方向存在1X转速频率;●轴向方向读数同相位,但是径向方向读数可能不稳定;●悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。

二、不对中1、角向不对中角向不对中症状特征:特征是轴向振动大;联轴器两侧振动相位差180°;典型地为1X和2X转速大的轴向振动;通常不是1X,2X或3X转速频率占优势;症状可指示联轴器故障。

2、平行不对中●平行不对中症状特征:●大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;●2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;●联轴器的设计可能影响振动频谱形状和幅值。

3、装斜的滚动轴承装斜的滚动轴承症状特征:振动症状类似于角向不对中;试图重新对中联轴器或动平衡转子不能解决问题;产生相位偏移约180°的侧面;对侧面或顶部对底部的扭动运动。

三、偏心转子●偏心转子症状特征:●在转子中心连线方向上最大的1X转速频率振动;●相对相位差为0°或180°;●试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。

四、弯曲轴●弯曲轴症状特征:●弯曲的轴产生大的轴向振动;●如果弯曲接近轴的跨度中心,则1X转速频率占优势;●如果弯曲接近轴的跨度两端,则2X转速频率占优势;●轴向方向的相位差趋向180°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不对中三种类型
轴瓦中心标高偏差
联轴器不对中
转子与静子不同心
案例1:波型联轴器不对中振动
现象:XF电厂2号机组,300MW,东方生产。

2001年10月大修启动,运行出现一系列振动瓦温问题。

分析:2002年1月5日,对机组临时检修后检测振动数据。

获得#6、#7轴振动的升速过程、轴心轨迹和轴中心平均位置,发现振动特征及故障如下:
(1)升速过程振动和3000r/min空载振动的2倍频分量十分显著。

如图1、图2中,本次临检更换了上瓦碎裂的#7号轴承后,#6、#7轴振动性质相比机组大修后初次启动基本没改变。

(2)通频振动的轴心轨迹均为正向进动,但形状比较复杂。

图3指出,轴颈上预载荷较为严重。

(3)轴中心平均位置随转速的变化均在间隙圆内,但#6轴中心位置有异常。

如图4,转子顺时针旋转时,#6轴颈中心应从间隙圆低部向左上方浮起,而不是向右上方浮起。

#6轴颈浮起量也偏小。

故#6轴颈与轴承安装偏移及载荷偏大问题值得怀疑。

由于发电机转子重量大大超过励磁机,此种偏移可能再度导致#7瓦损坏。

证实:后来检修检查发现,励发对轮严重不对中,一个螺栓剪断,引起#6、#7瓦振动及损坏。

案例2:齿型联轴器不对中振动
概述:某大型舰船内的主发电机组系耦合式高速旋转机械。

该机组振动频谱中,包含三个振动幅值均较突出的故障频率,即主激励频率、主激励频率的精确2倍频及滞后性半频。

最后诊断及检修证实,主激励频率的精确2倍频所代表的是活动式联轴器连接的汽轮机转子和高速齿轮轴的严重“不对中”故障,是机组振动随负荷急剧爬升、轴承油膜失稳及轴瓦损伤的根本原因。

分析:选取某时段机组从空负荷到带负荷50%N的振动数据。

机组空负荷时振动良好,频谱成分也较单纯,而带负荷后主要频谱成分相对幅值变化异常,图1还给出机组中等负荷工况、部分最有代表性测点的振动频谱,能观察到1000Hz范围内各种频谱的分布。

f1=25.0 Hz 发电机转子主激振频率
f2=50.0-55.0 Hz,接近汽轮机转子主激振频率之半频或发电机转子主激振频率之2倍频f3=107.50-110.0 Hz,为汽轮机转子主激振频率
f4=161.25-180.0 Hz
f5=215.0-217.5 Hz,汽轮机转子主激振频率之2倍频
f6=325.0 Hz
f7=375.0 、432.0 Hz
f8=537.0 Hz
f4 、f6认为是上述频率的交叉调制频率,如振动中的160.0Hz、267.5 Hz、375.0 Hz频率,分别由(f2+ f3)、(f2+ f5)和(f2+ f3+ f5)得来;f7、f8为精确倍数高频,即3f3 和4f3。

从振动的频域分析获得的振动特征如下:
(1)振动具有三个幅值不相上下的故障频率,即汽轮机主激励频率f3及其精确的2倍频f5和滞后性半频f2。

(2)振动最显著的特点是振幅随负荷变化。

带负荷后除f3成分大幅度增长外,f2和f5成分幅值的增长尤为显著:对汽轮机轴承,其水平方向振动以f2成分较大,垂直方向振动则以f5成分较大;对减速机轴承,水平和垂直方向均以f5成分突出。

(3)减速机轴承的轴向振动十分突出,振动频率为汽轮机主激励频率。

(4)振动还具有良好重现性及随负荷变化的非时滞性。

(5)空负荷下发电机振动对汽轮机轴承水平方向振动有较强的传递影响,但带负荷过程中发电机振动保持稳定。

诊断:经反复分析,f5是主导故障频率,f2、f3为伴随频率。

根据主导故障频率并结合伴随频率,采用候选故障集匹配法诊断振动原因。

最后确认振动故障为:轴系不对中,即由齿型联轴器连接的汽轮机转子与高速齿轮轴的不对中。

实际上,按一般工程经验,当轴承振动具有显著的2倍频、轴向振动超过水平振动一半时,即可对转子不对中故障进行重点判断。

机理:由于汽轮机转子原来的中心安装超低,机组升负荷后,齿轮传递扭矩加大,齿轮切向力加大。

这个切向力简化到小齿轮轴中心,使小齿轮轴受到向上的作用力且不断加大(从机组前向后看小齿轮轴为逆时针旋转),小齿轮轴上浮,通过齿型联轴器迫使#2轴颈抬起。

负荷愈大,抬起量愈大,#2轴承载荷大幅减小后首先发生油膜涡动。

这也可以解释在此之后检修检查发现的汽轮机轴瓦的损伤情况:#2轴颈运行中过大的抬起量,使其与#2上瓦发生摩擦。

复测发现汽轮机转子与高速齿轮轴的连接有很大偏差:错位值为汽轮机转子中心低0.055mm,平面值为下张口0.14mm ;而标准要求汽轮机转子中心高0.18-0.22mm,平面留上张口0-0.03mm。

检修:最终,将汽轮机轴承返制造厂重新浇注;通过刮瓦找准中心。

低速齿轮轴与发电机转子的联轴器基本没进行调整。

检修后,空负荷下汽轮机轴承振动最大不超过2.5 mm/s。

带负荷后汽轮机、减速机轴承振动只有小幅增长,其垂直、水平方向振动均低于3.6 mm/s,最大轴向振动也只有4.8mm/s。

汽轮机主激励频率2倍频和半频振动分量基本消失。

结语:
(1)无论哪一种不对中形式,转子径向振动的主频率(系统的特征激励频率)为转子
回转频率的两倍;
(2)转子的轴向位移较大,从动转子的轴向振动的频率与转子的回转频率相同;
(3)由不对中故障产生的对转子的激励力幅随转速的升高而加大,其敏感因子为4Ω2,是不平衡激励力随转速加大的4倍。

因此,高速旋转机械应更加注重转子的对中要求;
(4)齿式联轴器处于工作状态时,无论是哪一种不对中形式,系统的响应在转速达到临界转速的一半时发生共振,振幅具有最大值;
(5)齿式联轴器的严重“不对中”,可引起振动随负荷急剧爬升、轴承油膜失稳及轴瓦损伤;
(6)带齿轮箱耦合轴系,振动频率存在交叉调制现象,应仔细区分;
案例3:(大机组)刚性联轴器不对中振动
现象:大机组大转子一般采用刚性联轴器,很多机组振动似乎对中心错位值的变化不十分敏感,而且不对中振动频谱以基频为主。

例1:如对YL电厂1号机组低发对轮安装数据变化的11年跟踪观察,发现低发对轮的错位值变动0.30mm,振动和瓦温状况均良好,而且尽可能地安修前复测值恢复,开机效果比较好。

相关文档
最新文档