热电偶使用方法

合集下载

热电偶使用说明书

热电偶使用说明书

热电偶使用说明书使用说明书一、产品概述热电偶(下文简称“本产品”)是一种温度测量仪器,广泛应用于工业领域中的温度检测和控制。

本产品采用热电效应原理,通过测量电压来确定被测物体的温度。

本使用说明书旨在帮助用户正确、安全地使用本产品。

二、产品特点1. 高精度:本产品采用精密的传感器和先进的技术,能够提供高度准确的温度测量结果。

2. 快速响应:本产品响应速度快,可迅速准确地测量温度变化,满足工业生产对实时温度监控的需求。

3. 耐高温:本产品采用耐高温材料制作,能够在高温环境下长时间稳定运行。

4. 易于安装:本产品采用标准接口设计,方便用户进行安装和更换。

三、使用方法1. 安装本产品时,需先确保被测物体的表面干净、平整,并清除表面积聚的杂质,以免影响测量准确性。

2. 将本产品的接头与温度测量仪器的连接器插口对准,并插紧,确保连接稳固可靠。

3. 连接完成后,使用前请确保连接处无短路或断路现象,防止测量结果出现误差。

4. 使用过程中,应注意避免本产品与湿气、水和腐蚀性物质直接接触,以免影响使用寿命和测量准确性。

5. 在使用期间,如发现本产品表面有异物附着或损坏现象,请及时清理或更换,确保使用效果和安全。

6. 为了确保测量结果的准确性和稳定性,建议定期对本产品进行校准,具体校准方法可参考附带的校准手册。

四、安全注意事项1. 使用本产品时,请勿触碰本产品的金属部分,以免发生触电或烫伤等事故。

2. 请勿将本产品暴露在高温、潮湿或有腐蚀性气体的环境中,以免损坏产品和影响使用效果。

3. 在更换或清洁本产品时,请务必切断电源,并等待本产品冷却后再操作。

4. 若本产品出现故障或异常情况,请立即停止使用,并联系售后服务部门进行检修或更换。

5. 请勿私自拆卸或改装本产品,以免引发故障或安全事故。

五、维护保养1. 使用本产品后,请拔掉电源线,存放在干燥、通风良好的地方,防止产品受潮或受损。

2. 定期检查本产品的接线是否松动,如有松动请及时进行固定。

热电偶的使用方法

热电偶的使用方法

热电偶的使用方法
热电偶是一种测量温度的设备,结构由两种不同金属通过焊接等方式制成,一端称为测温点,另一端连接到温度计或其他测量设备。

使用热电偶的方法如下:
1. 准备工作:选择合适的热电偶,通常根据所需测量温度的范围、环境条件等来选择适合的型号。

同时,确保热电偶的接线正确,以免影响测量精度。

2. 连接热电偶:将热电偶的连接端与温度计或其他测量设备的对应接口连接,注意保持良好的接触。

3. 定位测温点:将热电偶的测温点放置于待测物体或环境中,确保测温点与待测物体或环境接触良好,以获取准确的温度测量值。

4. 读取温度值:通过温度计或其他测量设备读取热电偶产生的电压信号,并将其转化为相应的温度值。

根据需要,可以选择实时监测或记录温度变化。

5. 维护保养:使用完毕后,及时清洁热电偶,保持其良好状态,以确保下次使用时的测量准确性。

需要注意的是,热电偶的测量精度受到环境条件、连接质量、测温点位置等多个因素的影响,使用时应尽量保证这些条件的稳定性,以获得高质量的温度测量结
果。

热电偶怎样使用才是正确的

热电偶怎样使用才是正确的

热电偶怎样使用才是正确的热电偶用于测量钢水及高温熔融金属的温度,是一次性消耗式产品。

它的工作原理是根据金属的热电效应,利用热电偶两端所产生的温差电热测量钢水及高熔融金属温度1.如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8〜10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙三维混合机应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2、绝缘变差而引入的误差如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶三元素分析仪极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上。

3、热惰性引入的误差由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在开展快速测量时这种影响尤为突出。

所以应尽可能采用热电极较细、保护管直径较小的热电偶。

测温环境许可时,甚至可将保护管取去。

由于存在测量滞后,用热电偶检测出的温度对开门烘箱波动的振幅较炉温波动的振幅小。

测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差异也就越大。

当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。

为了准确的测量温度,应当选择时间常数小的热电偶。

时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要化学分析仪器减小时间常数,除增加传热系数以外,最有效的方法是尽量减小热端的尺寸。

使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。

k型热电偶使用技巧

k型热电偶使用技巧

k型热电偶使用技巧
K型热电偶在使用时需要注意以下技巧:
- 选择测量位置:根据实际需求,在被测对象表面选择一个合适的位置进行测量。

- 正确连接热电偶:将热电偶的正负极分别连接到温度测量设备的对应接口上,确保连接牢固。

- 采取防护措施:若测量环境对热电偶有损坏的风险,可以加装耐压外套,以保护热电偶的安全。

- 选择适当的温度计:目前市场上有各种类型的温度计,可选择一种适当的设备进行温度测量。

- 读取测量结果:待温度计读数稳定后,记录和读取所测量的温度值。

- 维护与储存:使用完毕后,及时将热电偶进行清洁,并注意妥善存放,以便下次使用。

在使用热电偶时,还需要注意避免接线错误、测量前对测量对象进行清洁处理、测量时预热热电偶、检验测量结果的极端值、在高温环境下对热电偶进行有效的冷却等。

热电偶的使用方法及校准步骤

热电偶的使用方法及校准步骤

热电偶的使用方法及校准步骤热电偶作为一种常用的温度测量仪器,广泛应用于工业生产、科研实验、医疗设备等领域。

它通过测量两个不同金属导线的温差来确定温度,具有测量范围广、响应速度快、稳定性高等优点。

下面将介绍热电偶的使用方法及校准步骤。

首先,我们需要了解热电偶的构成和工作原理。

热电偶由两个不同金属导线(通常为铂-铑导线)组成,两个导线的接点形成了一个测量点,该测量点可以暴露在需要测温的环境中。

当温度发生变化时,两个导线之间产生的温差会引起热电势的变化,根据热电势的变化可以确定温度值。

在使用热电偶之前,我们需要将其连接到测温设备上。

连接时要确保导线接触紧密,并避免出现接触不良或短路等情况,这样可以保证温度测量的准确性。

同时,要将热电偶的冷端(即导线的另一端)与冷源连接,以确保冷端温度的稳定。

在实际应用中,我们需要注意保护热电偶的接触点,以免受到撞击或腐蚀等影响。

此外,应尽量避免在高温或强电磁场等环境中使用热电偶,以免损坏或影响测温的准确性。

热电偶的校准是保证测温准确性的重要步骤。

校准过程中,我们通常需要使用标准温度源,通过比较热电偶测得的温度值和标准温度源给出的温度值,确定热电偶的测量误差。

校准步骤如下:1. 准备标准温度源和测温设备。

标准温度源可以是精确的温度计或已知温度的环境,测温设备可以是多功能温度计或专用仪表。

2. 将热电偶和温度计连接在一起,保证连接牢固,并确认设备处于正常工作状态。

3. 将标准温度源的温度值设置为目标校准温度。

待温度稳定后,记录标准温度源给出的温度值。

4. 同时记录热电偶给出的温度值,注意确保测量过程中的稳定性。

可以多次测量并取平均值,以提高准确性。

5. 比较热电偶测量值和标准温度源的给出值,计算出测量误差。

6. 如果测量误差较大,可以进行校准调整。

校准调整的方法有两种:一种是调整温度计的零点偏差,即将测得的温度值与标准温度源的值进行对比,修正零点误差;另一种是调整温度计的灵敏度,即通过控制热电偶输入电压或电流大小来修正温度计的灵敏度。

热电偶使用方法

热电偶使用方法

热电偶使用方法热电偶是一种常用的温度测量传感器,在工业生产、科学研究等领域发挥着重要作用。

它基于热电效应,能够将温度转化为电信号,为温度的监测和控制提供了有效的手段。

下面我们来详细了解一下热电偶的使用方法。

一、热电偶的工作原理热电偶的工作原理基于塞贝克效应,即由两种不同的金属或合金组成闭合回路,当两个接触点处于不同温度时,回路中就会产生电动势。

这个电动势的大小与两个接触点的温度差成正比。

通过测量电动势的大小,就可以推算出温度的高低。

二、热电偶的类型常见的热电偶类型有 K 型、J 型、T 型、E 型等。

不同类型的热电偶具有不同的测温范围、精度和适用环境。

K 型热电偶(镍铬镍硅)是一种应用广泛的热电偶,测温范围在-200℃至 1300℃之间,具有较好的稳定性和抗氧化性。

J 型热电偶(铁康铜)适用于低温测量,测温范围在-210℃至760℃之间。

T 型热电偶(铜康铜)在-200℃至 350℃范围内有较高的精度。

E 型热电偶(镍铬康铜)在 0℃至 800℃范围内测量精度较高。

在选择热电偶类型时,需要根据测量温度范围、精度要求、环境条件等因素综合考虑。

三、热电偶的安装1、选择合适的安装位置应将热电偶安装在能够准确反映被测物体温度的位置。

避免安装在温度梯度大、热交换强烈或容易受到外界干扰的地方。

2、安装方式热电偶可以通过螺纹连接、法兰连接、焊接等方式安装。

安装时要确保热电偶与被测物体之间有良好的热接触,同时要注意密封,防止介质泄漏。

3、插入深度热电偶的插入深度应足够,一般要求插入被测物体的深度为直径的10 至 15 倍,以确保测量的准确性。

四、热电偶的接线热电偶的输出信号是微弱的电动势,需要通过补偿导线连接到测量仪表。

在接线时,要注意正负极的连接,确保连接正确。

同时,要避免接线松动、接触不良等问题,以免影响测量结果。

五、热电偶的冷端补偿由于热电偶的输出电动势只与热端和冷端的温度差有关,而测量仪表通常处于室温环境,因此需要对冷端温度进行补偿。

热电偶操作说明书

热电偶操作说明书

热电偶操作说明书一、简介热电偶是一种用于测量温度的设备,基于热电效应原理工作。

本操作说明书将详细介绍热电偶的组成部分、使用方法、注意事项以及维护保养等内容,以确保您正确、安全地操作热电偶。

二、组成部分热电偶由以下部分组成:1. 保护管:用于保护热电偶元件,通常由不锈钢、钨铼合金等材料制成。

2. 热电偶元件:由两种不同金属(如铜和铜镍合金)焊接而成,产生热电效应。

3. 连接头:连接热电偶和仪表,通常采用标准连接头,如K型、J 型等。

三、使用方法1. 确认热电偶类型:根据实际应用需求,选择适合的热电偶类型,如K型热电偶适用于-200°C 至 1250°C 温度范围。

2. 安装热电偶:将保护管固定在待测介质中,注意保护管应完全暴露在待测介质中,保证准确测量。

3. 连接仪表:将热电偶的连接头与仪表进行连接,保证连接牢固可靠。

4. 校准:在测量之前,根据具体设备的要求进行校准。

注意校准应在常温环境下进行,并根据仪表的指示调整。

四、注意事项1. 安全操作:使用热电偶时请注意防止热电偶过热,避免烫伤。

同时,注意避免与化学物质接触,以防腐蚀热电偶或影响测量准确性。

2. 温度限制:请确保热电偶工作温度在规定的范围内,超出范围可能会损坏热电偶或导致不准确的测量结果。

3. 避光干扰:热电偶遇到强光时可能产生干扰,请避免热电偶暴露在强光中,以保证测量准确性。

4. 清洁与维护:定期清洁热电偶以去除附着物,避免堵塞保护管;注意保持连接良好,以免影响测量信号。

五、故障与处理1. 信号异常:如果热电偶信号异常或不稳定,请检查连接部分是否松动,确认连接良好。

2. 测量不准确:如果测量结果偏离实际值,请检查热电偶是否受损或保护管是否被污染。

如需要更高精度测量,请进行校正或更换适合的热电偶。

3. 其他故障:如遇其他故障,请联系专业人员进行检修或更换。

六、免责声明在正常使用过程中,若因不正当操作或其他原因导致热电偶损坏或测量结果不准确,本产品概不负责。

热电偶的正确使用

热电偶的正确使用

TCB 铂铑30 铂铑60 0~14mV to 0~1820度
TCE 镍铬-铜镍 -10~77mv to -270~1000度
TCJ 铁-铜镍 -8.1~69.536mv to -210~1200度
TCK 镍铬-镍硅 -6.5~55mv to -2-270~1300度
4.仅有一个文件,绿色小巧免安装,并且免费使用。您可以装在移动存储设备里(比如优盘),在任何有PC的工程现场均可以方便使用。
5.支持热工知识库和实用精彩热工软件推荐,及热线问答绿色通道(须能连通Internet)。
6.完美支持任意热电偶、热电阻分度表自定义导出功能,你可以直接打印出来(支持编辑),拿到没有PC的现场,解决问题方便多了!此软件绝对是热表工程师的贴心助手。
3.双向可逆换算。目前几乎所有的热点偶分度表都能实现双向运算,因为its-90中的正函数和逆函数的拟和系数均已经明确且公开。但是将大部分热电阻在全部范围内实现双向运算的分度表还看不到,即使偶尔出现也是误差大的不能容忍。本软件采用尹跃宾工作小组研究参数和独创的人工智能算法(不查分度表),同时实现了热电偶和热电阻可逆不发散换算。即你用a通过软件求出b,用b做输入,软件将计算出a。这样的循环进行无数次,软件也不会离开a、b这两个值,实现了迭代收敛。
TCE 镍铬-铜镍 -10~77mv to -270~1000度
TCJ 铁-铜镍 -8.1~69.536mv to -210~1200度
TCK 镍铬-镍硅 -6.5~55mv to -270~1372度
TCK 镍铬硅-镍硅 -4.4~48mv to -270~1300度
TCS 铂铑10 -0.3~19mV to -50~1770度
2.全量程高精度。所有的传感器(包括热点偶和热电阻)均可以在其全部范围内换算,不留任何死角。温度精确0.01℃(热电偶精确到0.1℃),阻值精确到0.001Ω。不是单纯的讲换算出来的数据以两位(或三位)小数的格式显示,而是换算结果的确精确到我所声明的位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档说明:MAXIM6675是MAXIM公司推出的具有冷端补偿的单片K型热电偶数字转换器。

本文主要介绍了MAX6675的特性和工作原理,详细阐述了该芯片在铝水平温度测量仪中的应用,给出了与89C51单片机的接口电路和程序设计。

K型热电偶是工业生产中最常用的温度传感器,具有结构简单、制造容易、使用方便、测温范围宽等特点。

目前,在以K型热电偶为测温元件的工业测温系统中,热电偶输出的热电势信号必须经过中间转换环节,才能输入基于单片机的嵌入式系统。

中间转换环节包括信号放大、冷端补偿、线性化及数字化等几个部分,实际应用中,由于中间环节较多,调试较为困难,系统的抗干扰性能往往也不理想。

在铝水平温度测量仪的研制中,我们采用了MAXIM公司新近推出的MAX6675,它是一个集成了热电偶放大器、冷端补偿、A/D转换器及SPI串口的热电偶放大器与数字转换器,可以直接与单片机接口,大大简化系统的设计,保证了温度测量的快速、准确。

1 MAX6675特性1.1 特性MAX6675是具有冷端补偿和A/D转换功能的单片集成K型热电偶变换器,测温范围0℃~1024℃,主要功能特点如下:·直接将热电偶信号转换为数字信号·具有冷端补偿功能·简单的SPI串行接口与单片机通讯·12位A/D转换器、0.25℃分辨率·单一+5V的电源电压·热电偶断线检测·工作温度范围-20℃~+85℃1.2 引脚功能MAX6675采用SO-8封装形式,有8个引脚,脚1(GND)接地,脚2(T-)接热电偶负极,脚3(T+)接热电偶正极,脚4(VCC)电源端,脚5(SCK)串行时钟输入端,脚6(CS)片选端,使能启动串行数据通讯,脚7(SO)串行数据输出端,脚8(NC)未用。

在VCC和GND之间接0.1μF电容。

MAX6675的引脚如图1所示。

1.3 工作原理MAX6675是一复杂的单片热电偶数字转换器,其内部结构如图2所示。

主要包括:低噪声电压放大器A1、电压跟随器A2、冷端温度补偿二极管、基准电压源、12位AD 转换器、SPI串行接口、模拟开关及数字控制器。

其工作原理如下:K型热电偶产生的热电势,经过低噪声电压放大器A1和电压跟随器A2放大、缓冲后,得到热电势信号U1,再经过S4送至ADC。

对于K型热电偶,电压变化率为(41μV/℃),电压可由如下公式来近似热电偶的特性。

U1=(41μV/℃)×(T-T0)上式中,U1为热电偶输出电压(mV),T是测量点温度;T0是周围温度。

在将温度电压值转换为相应的温度值之前,对热电偶的冷端温度进行补偿,冷端温度即是MAX6675周围温度与0℃实际参考值之间的差值。

通过冷端温度补偿二极管,产生补偿电压U2经S4输入ADC转换器。

U2=(41μV/℃)×T0在数字控制器的控制下,ADC首先将U1、U2转换成数字量,即获得输出电压U0的数据,该数据就代表测量点的实际温度值T。

这就是MAX6675进行冷端温度补偿和测量温度的原理。

1.4 与单片机的通讯MAX6675采用标准的SPI串行外设总线与单片机接口。

MAX6675从SPI串行接口输出数据的过程如下:单片机使CS置为低电平,并提供时钟信号给SCK,由SO读取测量结果。

CS变低将停止任何转换过程,CS变高将启动一个新的转换过程。

将CS变低在SO端输出第一个数据,一个完整串行接口读操作需16个时钟周期,在时钟的下降沿读16个输出位,第1个输出位是D15,是一伪标志位,并总为0;D14位到D3位为以MSB到LSB顺序排列的转换温度值;D2位平时为低,当热电偶输入开放时为高,开放热电偶检测电路完全由MAX6675实现,为开放热电偶检测器操作,T-必须接地,并使接地点尽可能接近GND脚;D1位为低以提供MAX6675器件身份码,D0位为三态标志位。

MAX6675 SO端输出温度数据的格式如图3所示。

2 在铝水平温度测量仪中的应用本文所述铝水平温度测量仪是一工作于铝电解现场的测量装置,其控制部分采用单片机控制,对温度部分的要求是:在得到测量要求信号后,实时测量出当前热电偶探头的温度并保存,可检测K型热电偶探头断线状况并报警。

2.1 硬件实现该铝水平温度测量仪的K型热电偶温度采集电路如图所示。

其微控制器采用ATMEL公司的FLASH单片机AT89C51,该微控制器具有4K内部可擦写程序存储器和32个输入/输出端口,满足本系统中液位测量、数据显示、温度测量、数据通讯、看门狗电路的需要。

作为一款廉价的通用型单片机,AT89C51没有SPI接口。

因此采用I/O口线模拟SPI串行口来对MAX6675读取数据。

MAX6675的CS端接单片机的P1.0脚,CS低电平停止转换,MAX6675准备将数据输出;SCK引脚接单片机的P1.1脚,为传输数据提供时钟。

无数据传输时,SCK应置为低电平;SO引脚接单片机的P1.2脚,用于传输数据。

单片机的P1.3脚作为K型热电偶探头断线报警口,报警时输出低电平,驱动故障指示LED显示。

在单片机的上述4个引脚各接一个10K的上拉电阻,保证数据的可靠传送。

由于MAX6675的测量精度对电源耦合噪声较敏感,为降低电源噪声影响,在MAX6675的电源引脚附近接入1只0.1μF陶瓷旁路电容。

在印刷电路板的设计中,采用大面积接地技术来降低芯片自热引起的测量误差,提高温度测量精度。

本系统主要测量铝电解槽中的温度,其正常工作温度范围为920℃—1000℃,为了准确的测量这一区段的温度值,系统利用X25045芯片内部的4096位串行E2PROM(非易失存储器),保存温度补偿参数,掉电不丢失,保证系统可应用于各种环境条件。

2.2 软件实现温度测量是铝水平温度测量过程的最后一个环节,在系统测量完铝水平后,开始进行温度测量,这一部分程序作为一个独立的程序段,定时调用,主要包括MAX6675数据读取、开路判断、数据处理和码制转换等几个部分。

程序流程如下:下面给出MAX6675温度值读取程序设计:;温度值读取程序;位定义CS BIT P1.0 ;数据输入SCK BIT P1.1 ;片选SO BIT P1.2 ;时钟;数据字节定义DATAH DATA 40H ;读取数据高位DATAL DATA 41H ;读取数据低位TDATAH DATA 42H ;温度高位TDATAL DATA 43H ;温度低位CLR CS ;CS低电平,停止数据转换,输出数据D15CLR CLK ;时钟置为低电平MOV R7, #08HRD_DATAH: ;读数据高位字节D15-D8MOV C,SO ;读SO端数据RLC A ;累加器左移一位SETB SCKNOPCLR SCKDJNZ R7,RD_DATAMOV DATAH,A ;将数据高位移入缓冲区MOV R7,#08HRD_DATAL: ;读数据低位字节D7-D0MOV C,SO ;读SO端数据RLC A ;累加器左移一位SETB SCKNOPCLR SCKDJNZ R7,RD_DATALMOV DATAL,A ;将数据低位移入缓冲区SETB CS ;CS高电平,停止数据输出,启动新的数据转换;数据转换子程序,将读得的16位数据转换为12位温度值,去掉无用的位MOV A,DATALRLC AMOV DATAL,AMOV A,DATAHRLC A ;整个数据位左移一位,去掉D15位SWAP A ;将DATAH中的高低4位数据互换MOV B,A ;数据暂存于B中ANL A,#0FH ;得到温度数据高位字节部分D14 ~D11MOV TDATAH,A ;将温度值高位字节保存MOV A,BANL A,#0F0H ;得到温度数据低位字节部分D10 ~D7MOV B,AMOV A,DATAL ;ANL A,#0FH ;得到温度数据低位字节部分D6 ~D3ORL A,B ;合并的温度低位字节MOV TDATAL,A ;将温度值低位字节保存3 应用中注意的几个问题在铝水平温度测量仪的设计和调试过程中遇到诸多问题,现将与MAX6675相关的几个问题和使用心得摘录如下,以供参考。

1.MAX6675芯片对电源噪声较为敏感,尽量将MAX6675布置在远离其他I/O芯片的地方。

2.MAX6675芯片T-必须接地,并使接地点尽可能接近GND脚,否则读出数据为无规律的乱码。

3.MAX6675是通过冷端补偿来校正周围温度变化的。

该器件将周围温度通过内部的温度检测二极管转换为温度补偿电压,该器件内部电路将二极管电压和热电偶电压送到ADC中转换,以计算热电偶的热端温度。

当热电偶的冷端与芯片温度相等时,MAX6675可获得最佳的测量精度。

因此在实际测温应用时,应尽量避免在MAX6675附近放置发热器件或元件,例如7805等带散热片的稳压器件。

4.尽量采用大截面积的热电偶导线,长距离传输时,可采用双绞线作为信号传输线。

5.根据应用场合的不同,可通过相应的数字滤波器进行数据处理,以提高所需要某一段测量数据的准确性。

4 结束语MAX6675将热电偶测温应用时复杂的线性化、冷端补偿及数字化输出等集中在一个芯片上解决,简化了铝水平温度测量仪中热电偶测温电路的设计,实际运行结果表明,该测温系统抗干扰能力强、结构简单、可靠性高,测量精度满足要求。

因此,在基于微处理器的单片机嵌入式工业测温系统中,由MAX6675构成的单片热电偶测温解决方案,具有良好的实用价值。

参考文献1.李华. MCS51系列单片机实用接口技术. 北京: 北京航空航天大学出版社 19932.詹树仁等译. XICOR 非易失性器件使用手册. 武汉:武汉力源电子股份有限公司 19963.MAX6675 Data Sheet . Maxim公司。

相关文档
最新文档