持久性有机污染物多环芳烃对地下水污染分析
地下水污染及治理技术研究

地下水污染及治理技术研究地下水是地球重要的自然资源之一。
近年来,由于水资源的严重短缺及人类活动的广泛影响,全球地下水污染问题日益严重,成为一个亟待解决的环境问题。
地下水是水循环的重要组成部分,其所独有的物理、化学、生物等特性对它的研究与治理具有很高的复杂性和技术挑战性。
本文将探讨地下水污染问题及其治理技术的研究现状、存在的问题和未来的发展趋势。
一、地下水污染的来源和类型地下水污染源可以分为点源和非点源两种。
其中,点源污染主要指容易定位的污染源,例如工业废水、生活污水、化学品的漏洞、垃圾填埋场渗滤液等。
非点源污染则泛指更难以准确定位的污染源,例如农业化学品、氮磷化肥、工业废气等。
地下水污染按照污染物的性质可分为以下几种类型:1. 有机污染:地下水中丙烯、乙烯、对二甲苯、三氯乙烯、苯、多环芳烃等化学物质。
2. 无机污染:地下水中痕量铁、锰、铜、锌、镉、铅等金属离子制成的污染物。
3. 微生物污染:地下水中包括细菌、病毒、真菌和寄生虫等微生物。
4. 其他污染:地下水中常常出现非常规污染,如放射性物质、工业废水中的重金属等。
二、地下水污染治理技术的现状地下水污染治理技术一直是世界环保领域的研究热点之一。
目前常用的地下水污染治理技术主要分为以下几种:1. 物理治理:主要包括吸附、离子交换、气泡技术、膜技术、超滤技术等,通过物理手段对地下水进行去除杂质和污染物。
2. 化学治理:主要是利用化学方法将污染物与清水或其他化学试剂反应发生化学反应,产生的产物可以过滤掉,对地下水进行净化。
3. 生物治理:生物治理又分为生物吸附和生物降解两种技术,通过微生物的活动对污染物进行吸附与分解,达到净化地下水的目的。
以上治理技术均可单独应用或联合使用,针对不同的地下水污染类型和程度,选择不同的方法和技术进行治理。
三、地下水污染治理技术存在问题虽然目前有多种先进的地下水污染治理技术,但是实际应用中还存在诸多问题。
主要问题包括:1. 技术成本太高:大部分地下水污染治理技术的成本较高,对于少数污染源难以负担。
浅谈中国持久性有机污染物(POPs)污染现状及其防治

中国持久性有机污染物(POPs)污染现状及其防治研究进展摘要:介绍了持久性有机污染物的定义、特性、种类和危害,分析了典型持久性有机污染物在中国水体、大气、土壤等介质中的污染状况,阐述了对被持久性有机污染物污染的介质进行生物修复、焚烧、物理和化学处理技术及进展,并对中国在此领域发展方向进行了展望。
关键词:持久性有机污染物;污染现状;防治1 引言早在1962年,美国的Rachel Carson[1]在《寂静的春天》(silent spring)一书中描述了由于农药的使用使得鸟类和其他动物种群数量大量减少的事实后,人们逐渐意识到并承认持久性有机污染物(POPs)对环境可能造成的严重污染及对生物体造成的极大危害。
1966年,斯德哥尔摩大学确认PCB(多氯联苯Poly chlorinated Biphenyls,简称PCBs)在白尾海雕体内的富集现象。
随后,1968年日本发生米糠油事件而导致上千人中毒;荷兰在1963~1989年期间多次发生二噁英污染事故;1972年,美国密苏里小镇发生二噁英扩散事件,造成大量鸟和动物死亡,致使十几年后该镇2万多居民被迫迁移;1976年7月,意大利伊克摩萨化工公司发生爆炸而泄露出2kg二噁英,导致附近城镇家禽大量死亡,许多孩子面颊上出现水泡,700多人被迫搬迁;1979年,中国台湾发生因食用受多氯联苯污染的米糠油而导致上千人中毒的事件;1999年,德国、法国、比利时、荷兰相继发生因动物饲料被二噁英污染,导致畜禽类产品及乳制品含高浓度二噁英,致使欧洲食品行业的大崩溃[2]。
1996年,西奥科尔伯恩在《失去的未来》(Our Stolen Future)再次提到农药污染对生物激素和人类健康的影响[3-4]。
鉴于POPs对环境和人类的严重危害,从1998年以来,世界各国政府举办了一系列的谈判和协商,并于2001年5月23日达成共识,包括中国在内的90个国家的环境部长或高级官员在瑞典斯德哥尔摩代表各自政府签署了《关于持久性有机污染物(POPs)的斯德哥尔摩公约》(简称《斯德哥尔摩公约》)。
地下水中半挥发性有机污染物痕量分析的5个问题探讨

2012年12月December2012岩 矿 测 试ROCKANDMINERALANALYSISVol.31,No.61043~1049收稿日期:2012-01-21;接受日期:2012-06-29基金项目:淮河流域平原地区地下水污染调查评价综合研究与专题研究项目(1212010634505)作者简介:魏峰,博士,高级工程师,从事环境地球化学相关研究。
E mail:nnwind@163.com。
文章编号:02545357(2012)06104307地下水中半挥发性有机污染物痕量分析的5个问题探讨魏 峰,陈海英,沈小明,吕爱娟(中国地质调查局南京地质调查中心,江苏南京 210016)摘要:针对地下水中有机氯农药、多氯联苯和多环芳烃等半挥发性有机污染物的痕量分析,从实验室分析测试人员的角度,探讨了提高定量分析准确度的三个问题:分级绘制标准曲线、注重标准溶液配制细节、避免假阳性与假阴性。
从实验室管理人员的角度探讨了提高实验室竞争力的两个问题:提高服务质量和降低分析成本。
本文对这几个重要但往往易被忽视的问题进行逐一分析,并探讨了分级绘制标准曲线的方法、配制标准溶液应考虑的要点、避免假阳性与假阴性的措施,以及提高服务质量和降低成本的因素。
关键词:地下水;有机氯农药;多氯联苯;多环芳烃;质量控制;质量保证中图分类号:X523;S482.32;O625.21;O625.1文献标识码:BDiscussionofFiveProblemsinTrace LevelAnalysisforSemi VolatileOrganicPollutantsinGroundwaterWEIFeng,CHENHai ying,SHENXiao ming,L Ai juan(NanjingCenterofGeologicalSurvey,ChinaGeologicalSurvey,Nanjing 210016,China)Abstract:Thisarticlediscussesthreeproblemslinkedtohowtobemoreaccurateforquantitativeanalysisfromtheperspectiveoftheanalystinordertoperformtrace levelanalysisofsemi volatileorganicpollutants,suchasorganochlorinepesticides(OCPs),ploychlorinatedbiphenyls(PCBs)andpolycyclicaromatichydrocarbons(PAHs)ingroundwater.Thesearenamely,(1)drawingacalibrationcurveinoneorderofmagnitude,(2)thoroughlypreparingreferencematerials,and(3)avoidingfalsepositivesandfalsenegatives.Moreover,twoproblemsonhowtoimprovethecompetitivenessofthelaboratoryfromtheperspectiveofthemanagementarediscussedsuchasimprovingthequalityofserviceandsavingcost.Thispaperanalyzedonebyoneforthesourcesoftheseimportantproblems,whichwereoftenoverlooked,anddiscussedhowtodrawcalibrationcurves,outlinesforreferencematerialspreparation,howtofindandavoidfalsepositiveandfalsenegative,andhowtoimproveservicequalityandsavecost.Keywords:groundwater;organochlorinepesticides;ploychlorinatedbiphenyls;polycyclicaromatichydrocarbons;qualitycontrol;qualityassurance近年来随着地质大调查项目特别是全国地下水水质调查和污染评价专项的开展,地质行业各实验室对半挥发性有机污染物的分析测试能力迅速提高[1],配合先进仪器设备的各种分析测试方法不断得到更新优化[2-6]。
有机化合物的环境污染与治理方法

有机化合物的环境污染与治理方法随着人类经济社会的发展,有机化合物的使用量不断增加,同时也带来了环境污染的问题。
有机化合物的排放直接影响到大气、水体和土壤的质量,进而对生态系统和人类健康造成潜在的威胁。
本文将探讨有机化合物的环境污染问题,并介绍一些治理方法。
一、有机化合物的环境污染1. 大气污染有机化合物是大气中的重要污染物之一,主要来自工业生产、交通尾气和农业活动。
常见的有机化合物污染物包括挥发性有机化合物(VOCs)、多环芳烃(PAHs)和卤代有机化合物等。
这些物质在大气中长时间滞留,会通过光化学反应形成臭氧和其他有害空气污染物,对人体健康和植被生长造成危害。
2. 水体污染工业废水、城市污水和农业农药等都是有机化合物进入水体的重要源头。
这些有机物在水体中很难降解,积累后可导致水质恶化。
一些有机污染物具有潜在的毒性和致癌性,对水生生物和人类健康造成威胁。
3. 土壤污染农药、工业废弃物和生活垃圾等也会导致土壤的有机化合物污染。
这些有机物通过土壤颗粒的吸附和迁移,进而影响土壤质量和生态系统。
长期的土壤有机污染可导致农作物生长受限和地下水污染。
二、治理方法1. 制定严格的法规和标准在治理有机化合物的环境污染问题上,制定严格的法规和标准是必不可少的措施。
政府应加强对有机化合物排放的监管,限制排放浓度和总量,同时提高企业和个人的环保意识,加强环境管理。
2. 推广清洁生产技术清洁生产技术是降低有机化合物排放的有效手段之一。
通过改进生产工艺,减少或避免有机物的使用和产生,通过回收和再利用等方式减少污染物的排放,达到减少有机物排放的目的。
3. 加强大气污染治理针对大气中的有机化合物污染物,应采取综合治理措施,包括加强工业源和交通源的排放控制,推广清洁能源替代传统能源,合理规划城市交通,减少交通尾气排放等。
4. 加强水体和土壤污染治理对于水体和土壤的有机化合物污染,应加强废水处理和污水处理站的建设与管理,推广生态修复技术,建立健全的水资源和土壤环境保护机制。
松花江水体中多环芳烃类污染物的污染研究

为带有 4~ 7个苯环 的高分子量芳烃。如芘 、 荧葸 、 苯并
( ) 等 , 些化 合物沸 点 高 , 易挥 发 , 然 不显示 出急 a芘 这 不 虽 性毒 害 , 但具有 致癌 突变作 用 。
12 多环 芳烃 的来源 多 环 芳烃 的来 源 主 要 包 括 城 市 生 活 污水 、 业 废 弃 工
V1 1N. n 3 o9 .
De 2 o o6
表 2 松花江江水 中有机污染物类别 汇总表 (0 3年 1 20 O月)
表 4 井水 中有机污染物 分类汇 总表
日 烃
日 烃 类 一 酞酸 酶炎 口酚 燮 口 醇 醚 斐
。
类
■ 酞酸 酯类
口 酚 类 口 醇 醚 类 一 醛 酮 类 固 有机 酸酯类
类 污 染物 , 暂 不会 对 水 生 物和 人 体 健 康 构 成危 胁 。 但 关键词: 花江 ; 松 多环 芳 烃 ; 染 污 中 图 分 类号 :5 2 X 2 文 献标 识 码 : A
松花江水中有机物种类繁多 , 已筛选出的优先控制污
染物有 2 8种 , 些有机 污 染 物在 生 态 环境 中 的污 染行 为 这
低 、 静扰 动少 , 日光 照射 、 平 无 基本 无 挥 发 , 水 中多 环 芳 井 烃可 以较 长 时 间存 在 ,03年对 松 花 江 肇 源江 段沿 江浅 20
物、 大气沉 降 、 表面径 流 等 , 生活 污水 和城 市径流往 往 比工 业废 弃物 含有更高 的多环 芳烃 残 留物 , 主要是路 面 上残 这 留的汽车燃烧 产物 含有 高浓度 的多环 芳烃 , 被雨水 冲 刷后 带入 水体 中所致 , 芳烃 类污 染物 具 有“ 多环 三致 ” 效应 , 对
小型炼油厂对浅层地下水有机污染特征分析--以山东临淄为例

小型炼油厂对浅层地下水有机污染特征分析--以山东临淄为例刘治政;朱恒华;徐建国;徐华;张卓;尚浩【摘要】研究区主要污染源为分布众多的小型炼油厂,产生的工业废水中含较多的单环芳烃类、卤代烃类、多环芳烃类等有机污染物。
据调查,该区浅层地下水已受到有机污染,所采取的27组水质分析样品中均有有机物检出,以卤代烃类和有机氯农药类检出率最高,氯代苯类均未检出。
其中有3组样品1,1,2三氯乙烷超过地下水质量标准Ⅲ类标准限值,最高超标27.4倍。
采用综合评价法,得出该区地下水质量级别为较差的主要分布于排污河渠两岸,个别位于小型炼油厂附近,地下水污染较为严重的区域主要分布于淄河排污河渠两岸及杨家店周边地区。
该区小型炼油厂对浅层地下水的有机污染主要体现为卤代烃类污染,卤代烃总量大于5μg/L 的区段位于皇城敬仲梧台一带和杨家店附近地区。
小型炼油厂向淄河偷排污水以及少数小型炼油厂将污水通过渗井注入地下,是造成研究区域浅层地下水污染的重要原因。
%Major pollution sources in study area are many small type oil refineries.These oil refineries have produced lots of industrial wastewater which contain more monocyclic aromatic hydrocarbons,halogenated hydrocarbons,polycyclic aromatic hydrocarbons organicpollutants.According to the survey,shallow groundwater in this area has been anic compounds have been detected in 27 groups of water samples collected in this area.The detection rate of chlorinated hydrocarbons and organochlorine pesticides are the highest,while the chlorine has not been detected.1,1,2 - trichloroethane in three samples excee-ded the standard limit of Ⅲ type,and the maxim um rate is over 27.4 times.By using comprehensive evalu-ation method,it is regarded thatunderground water with poor quality mainly distributed in the both sides of the pollution discharge river,and individuals located near the small refineries.Serious groundwater pol-luted areas mainly distributed in both sides of Zihe pollution discharge river and surrounding areas of Yangjiadian area.Pollution of small refineries to shallow groundwater are mainly halogenated hydrocar-bons,and halogenated hydrocarbonsamo unt is over than 5μg/L.It mainly located in Huangcheng-Jing-zhong-Wutai and Yangjiadian areas.Small oil refineries discharge sewage intoZihe river and a few small refineries inject sewage into underground water through the pits.It has caused shallow groundwater pollu-tion in the study area.【期刊名称】《山东国土资源》【年(卷),期】2015(000)009【总页数】5页(P44-48)【关键词】小型炼油厂;浅层地下水;有机污染;山东临淄【作者】刘治政;朱恒华;徐建国;徐华;张卓;尚浩【作者单位】山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013;山东省地质调查院,山东济南 250013;山东省地质调查院,山东济南250013【正文语种】中文【中图分类】X523引文格式:刘治政,朱恒华,徐建国,等.小型炼油厂对浅层地下水有机污染特征分析——以山东临淄为例[J].山东国土资源,2015,31(9):44-48.LIU Zhizheng, ZHU Henghua, XU Jianguo, etc.Analysis on Organic Pollution Characteristics of Small Oil Refineries to Shallow Groundwater——Setting Linzi in Shandong Province as an Example[J].Shandong Land and Resources,2015,31(9):44-48.浅层地下水有机污染是全球性问题[1],随着人类活动,特别是工业活动的加剧,很多有机污染物已经进入地下水,并发生了累积,有的地区水质已经超过了《地下水质量标准》中Ⅲ类指标限值。
土壤和地下水中多环芳烃生物降解研究进展

2 能 够 降 解 多环 芳 烃 的微 生 物
进 入 自然 界 中的 多 环 芳 烃 有 很 多 种 可 能 的 归 宿 ,例 如挥 发 、光氧 化 、化学 氧 化 、生物 积 累 、土
或簇 状排 列 的稠 环化 合 物 【,是 有机 物 不完 全燃 烧 】 J 或 高 温裂 解 的副产 物 。广泛 存 在于 石油 、煤 炭 中 , 具有 潜在 的致 畸 l 生、致 瘤 l 生和基 因毒 性 ,且其 毒性 随着 P AHs苯 环 的增 加 而增 加 【,其 中 的苯并 芘是 2 J 已知 的具有 极 强致 癌性 的有 机 化合 物 【。由于 这类 3 J 化合 物具 有极 低 的水溶 性 ,在 环境 中很 难消 除 ,因 此 ,P s被美 国环 保 局和 欧共 体 同 时确定 为 必须 AH 要 首先控 制 的污染 物 ,并 把其 中的 1 6种 化合 物作
Tecn 等人 在 15 rcai J 4年从 土壤 中分离 并鉴 定 9 出一 株能 降 解萘 的细 菌 ,在 此 后 的半个 世 纪里 ,陆 续 有 数 以百 计 的属 于不 同菌属 的 P Hs降解 菌从 不 A 同 的环境 中被分 离和 鉴定 【 ( 1 。虽 然人 们从 环 9 表 ) 】 境 中发现 的 P AHs 降解 菌几 乎在 各个 菌 属 中都有 分 布 ,但 是 目前 的 研 究 表 明 ,不 同 的 细 菌 对 不 同 的 P AHs的降 解能 力存 在 着很 大 的 差别 ,假 单 胞菌 是 目前 发 现 的降 解 菌 种 类 最 多 、降 解 范 围 最 广 的 菌 属 ,已发现 的假 单胞 菌 可 以降 解几乎 所 有 的 四环 以
下 的 P s AH 。
然 界 中这 类 化合 物 存在 着 生 物 降解 、 解 、 作用 水 光 裂 解 等 消除 方式 , 得环 境 中的 P 使 AHs 量 始 终有 含 个 动态 的平衡 , 而保 持 在一 个 较 低 的浓 度 水平 从
地下水中多环芳烃化合物的生物降解机制研究

地下水中多环芳烃化合物的生物降解机制研究地下水是重要的自然资源之一,但是它的质量却面临着很大的挑战,其中之一就是多环芳烃化合物(PAHs)的污染。
PAHs是一类有机化合物,它们通常是由石油、煤炭等自然物质燃烧或加工过程中产生的,是一种环境污染物,严重影响地下水的质量。
许多研究尝试研究地下水中PAHs的生物降解机理,以便有效解决PAHs的污染问题。
多环芳烃化合物的生物降解机制地下水中PAHs的降解主要是依靠微生物,这是一种非常有效的降解方式。
PAHs降解的微生物通常分为两类:氧化菌和邻苯二酚酸菌。
氧化菌氧化菌从PAHs中提取电子和能量,并将其氧化成为更易于分解的物质。
这种氧化作用需要大量的氧气参与。
在氧气供应充足的情况下,氧化菌可以将PAHs迅速分解为更简单的物质,例如二氧化碳和水。
氧化菌包括许多不同种的细菌和真菌,其中一些是普遍存在于自然环境中的。
邻苯二酚酸菌邻苯二酚酸菌是另一种PAHs 分解的微生物,它们通过酸化PAHs并将其转化为应激物质,如邻苯二酚酸(PCA),以获得能量。
邻苯二酚酸可被其他微生物进一步代谢为糖或脂肪酸,最后生成ATP和CO2等分解产物。
相比之下,邻苯二酚酸菌的生长不需要氧气,因此它们可以生存在缺氧的地下水环境中,在这种环境下,氧化菌无法生存。
手段分离PAHs生物降解菌为了研究地下水中PAHs的生物降解机制,研究人员需要从环境样品中分离出PAHs降解菌。
传统的分离方法十分耗时,且通常不能充分地分离出潜在的降解菌。
因此,现代技术,如 PCR-DGGE、TRFLP 和基于高通量测序的分析方法,能够提供更为便捷且准确的分离手段。
例如,基于高通量18S rRNA基因定序方法,可以将地下水中的PAHs降解微生物分离鉴定,并分析其群落结构。
这些先进的分离方法能够更准确地检测到细菌之间的微妙区别,帮助分离出高效的PAHs 降解菌。
总结PAHs的生物降解机制是当前研究的热点之一,PAHs降解菌也成为了降解PAHs的重要研究对象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
持久性有机污染物多环芳烃对地下水污染分析1 引言多环芳烃(PAHs)是一类持久性有机污染物,具有较强的致癌、致畸、致突变性,普遍存在于大气、土壤、水体、沉积物等环境介质中.多环芳烃具有半挥发性,它们以“全球蒸馏”和“蚱蜢跳效应”的模式,通过长距离迁移和大气干湿沉降在全球或区域范围内进行大气远距离传输,到达地球的绝大多数地区,导致全球范围的污染.水体是PAHs迁移传输的重要介质,PAHs一般通过大气干湿沉降、地表径流、水-土、水-气界面交换或石油泄漏直接输入等方式进入到水中,在迁移过程中水体中的悬浮颗粒物对PAHs具有强烈的表面吸附作用,而且PAHs能够在沉积物中不断富集,造成对水体多相介质的污染.PAHs最终可通过食物链在动物和人体中发生生物蓄积,对生态系统和人类健康造成潜在的威胁.岩溶地下水是一种重要的生活饮用水源,在有的地区甚至是唯一的生产生活水源,然而研究发现岩溶区地下水正遭受到PAHs的污染.在岩溶区,土层浅薄,土被不连续,土层对污染物的缓冲、净化作用降低,岩溶天坑、漏斗、落水洞、裂隙等形态为污染物提供了天然通道,地表污染物可直接迁移到地下.毛海红(2012)在重庆雪玉洞上覆土壤、洞穴滴水和地下河中检测到有机氯农药(OCPs),发现在土壤中迁移能力较强的化合物,在地下河水和滴水中含量也较高,证明了岩溶管道或裂隙对污染物的运输成为地下河水遭受有机污染的潜在威胁.基于此,本文以重庆青木关地下河流域水体为研究对象,探讨PAHs在不同类型水中的含量、组成、来源和迁移特征,并对污染水平进行评价,以期为该区地下水资源的保护提供科学依据.2 研究区概况青木关地下河流域位于重庆境内川东平行岭谷区华蓥山帚状褶皱束温塘峡背斜中段,构造上,下三叠统嘉陵江组(T1j)碳酸盐岩出露于背斜轴部,在裂隙发育和溶蚀作用下形成典型槽谷(图 1).两翼为中三叠统雷口坡组(T2l)碳酸盐岩和上三叠统须家河组(T3xj)长石石英砂岩、泥质粉砂岩、泥岩并夹有煤系,受轴冀转折处挤压应力作用,形成两侧的岭脊,表现为“一山二岭一槽”的典型岩溶槽谷地貌,背斜轴部经过强烈的挤压还形成了两条近似平行的复式次一级背斜.槽谷呈狭长带状,NNE向展布,南北长约12 km,青木关地下河在区内发育,流向与槽谷走向基本一致,长约7.4 km,为单一岩溶管道型地下河.地下河流域边界和地表分水岭一致,流域面积约13.4 km2,地下河最北端的入口为岩口落水洞,出口为位于流域最南端的姜家泉,出露后流入青木溪并最终汇入嘉陵江.研究区气候为亚热带季风性湿润气候,多年平均降水量为1250 mm,多年平均气温16.5 ℃,降雨主要集中在5—9月.降水为流域的主要补给来源,大部分降水沿坡面汇集到槽谷底部的洼地,通过表层裂隙以面状分散入渗和经落水洞集中注入等方式补给地下河.图1 采样点示意图3 材料与方法3.1 样品采集于2014年6—12月对流域上游的表层岩溶泉(石坝子泉)、地下河入口(岩口落水洞)地表水、下游天窗(姜家龙洞)地下河和地下河出口(姜家泉)(图 1)按月取样,共采集28个样品.取样时,用1 L带聚四氟乙烯衬垫的螺旋盖棕色玻璃瓶置于水下采集,采样过程中不能引入气泡.水样置于便携式冰箱中避光冷藏运输,尽快送达实验室,放入冰箱于4 ℃冷藏保存,并于7 d内完成样品前处理.3.2 样品前处理水样中多环芳烃的提取采用美国EPA525.2的方法进行.水样经0.45 μm玻璃纤维膜过滤1 L,装入棕色瓶中,加入回收率指示物(氘代萘(Nap-D8)、氘代二氢苊(Ace-D10)、氘代菲(Phe-D10)、氘代(Chry-D12)、氘代苝(Per-D12),购自美国Supelco公司)和甲醇(农残级,购自美国Fisher 公司)5 mL,摇匀,用铝箔封口,使用全自动固相萃取仪(美国Horizon公司,SPE-DEX 4790)萃取,提取液用50 mL鸡心瓶收集.萃取后的液体用旋转蒸发仪(德国Heidolph公司)浓缩至5 mL,过无水硫酸钠柱脱水,脱水后的液体浓缩到5 mL过硅胶氧化铝(比例为2 ∶ 1)层析柱,洗脱液浓缩至2 mL后,加入5 mL正己烷置换溶剂,再浓缩至0.8 mL,转移至细胞瓶中,用氮气吹至0.2 mL后加入内标物(六甲基苯,购自美国Supelco公司),放入-26 ℃冰箱中冷冻待测.3.3 仪器分析采用气相色谱-质谱联用仪(GC-MS,美国Agilent公司,7890A/5975C)对PAHs进行测定.色谱柱为HP-5MS毛细管柱(30.0 m×0.32 mm×0.25 μm),载气为高纯氦气,流速为1 mL · min-1,进样口温度为280 ℃,升温程序为初始温度50 ℃,保持1 min后以20 ℃· min-1升温至200 ℃,然后再以10 ℃· min-1的速度升温至290 ℃,保持15 min.采用无分流方式进样,进样量1 μL.EI电离源70 eV,离子源温度300 ℃,同时采集全扫描数据和选择离子扫描数据,以全扫描数据定性,选择离子扫描数据定量.使用内标法和多点校正曲线对多环芳烃进行定量分析.3.4 质量控制与质量保证参照文献(林峥等,1999),每分析10个样品同时做空白样品、加标样品、加标平行样品和样品平行样.每个样品在萃取前加入回收率指示物,用于检测实验过程中的损失情况,平行样用于确认实验结果的再现性.该方法除Nap回收率较低外(平均值为53%),其他PAHs的回收率介于78%~110% 之间,且平行样品的相对标准偏差均小于12%.以1 L水样计算的方法检出下限范围为0.2~1.5 ng · L-1.4 结果与讨论4.1 PAHs含量变化特征青木关地下河水体中PAHs含量和组成见表 1,水体中PAHs含量的动态变化见图 2.由表 1和图 2可知,石坝子泉水中PAHs含量变化范围为76.2~212 ng · L-1,平均值为138 ng · L-1,总体上表现出先下降后升高然后再下降的变化趋势;PAHs含量最高值出现在6月,最低值出现在9月.岩口水样中PAHs含量分别在6、8、11月出现高值,含量分别为264、272、241 ng · L-1,最低值出现在9月为81.9 ng · L-1,月动态变化较大.地下河中,姜家龙洞水表1 水中多环芳烃组分及含量图2 水中多环芳烃含量月动态变化(2014年)样中PAHs的含量变化范围为73.9~154 ng · L-1,平均值为110 ng · L-1,最高值出现在8月,最低值出现在12月.姜家泉水样中PAHs的含量范围为97.5~339 ng · L-1,平均值为159 ng · L-1,最高值出现在11月,其余月份含量变化较为平稳. 总体来看,流域上游的石坝子泉和岩口及下游的姜家龙洞水样中PAHs含量的月变化趋势基本上一致,流域内水中∑PAHs平均含量对比结果为岩口>姜家泉>石坝子泉>姜家龙洞,4环及以上PAHs含量之和也表现出同样的大小特征,为进口大于出口,表层泉大于地下河.大气干湿沉降和土壤淋滤作用对岩溶地下水中PAHs含量变化有重要影响.研究区6、8月降水量分别为175、106 mm,无雨天数少,降雨集中连续,而且8月的天气午后多短时强降雨,伴随降雨过程带来的多环芳烃湿沉降会增加岩溶区地表和地下河中PAHs的含量,雨水对地表和土壤的冲刷作用还会将大量的土壤和其他地表物质带入水中,富集在这些土壤和地表物质上的不易溶解和迁移的高环PAHs也随径流进入到地表水中,增加高环PAHs的含量;而且降雨条件下土壤水达到饱和,渗透量增大,沿裂隙不断补给表层泉和地下河,造成地下水中PAHs含量升高.研究区为农业活动区,岩口取样点位于距公路大约50 m处的水塘出口,所处环境较为开放,容易受到降雨冲刷、水土流失的影响,降雨时岩口地表水较为浑浊,悬浮颗粒物较多,也表明该区域水土流失比较严重.在月降水量也超过100 mm的7、9月流域内水中PAHs含量却基本上都降低,这可能与降雨比较分散有关,而且7月高温天气多,PAHs因高温挥发的量也较多.11月除姜家龙洞外,其余样点水样中PAHs含量均出现较大升高,与雨后一天采样有很大关系.4.2 PAHs组成特征青木关地下河流域水中PAHs主要以2~3环的低环PAHs为主,平均占到82%,4环PAHs检出率为42.8%~85.7%,5~6环PAHs仅在岩口和姜家泉中检出,水体中PAHs组成变化见图 3.低环PAHs中Nap、Flu、Phe基本上每月都能检出,总含量占低环PAHs的比重为89.0%~97.4%,占∑PAHs的比重为69.3%~87.4%;水样中Nap的平均含量最高,为59.9 ng · L-1.从组成比例来看,石坝子泉水中3环PAHs的比重稍高于2环PAHs,最高出现在2014年9月的水样中,占到54.6%;4环PAHs除在6月未检出外,其余月份均有检出,比重在8.98%~15.0%之间;5~6环PAHs在泉水中均未检出.岩口水样中PAHs的组成变化特征较为复杂,2环PAHs比重为6.24%~79.8%,3环PAHs 比重为13.0%~45.9%,在8月水样中,4环PAHs含量最高,为158 ng · L-1,其比重占到58.1%;5~6环PAHs在11月检出,含量为138 ng · L-1,比重达到57.2%,这可能与采样时间在雨后有关.姜家龙洞水样在6月只有3环PAHs检出,其余月份2环PAHs比重为25.1%~61.9%,3环PAHs比重为38.0%~63.9%,8—10月均检出4环PAHs,比重为7.89%~11.5%,在整个监测期间,5~6环PAHs均未检出,在降雨较多的6—9月其组成变化幅度大于降雨较少的10—12月.姜家泉中2环PAHs的比重为16.3%~68.7%,3环PAHs比重为25.3%~42.1%,有4个月检出4环PAHs,比重为6.01%~23.1%,在11月,16种PAHs均检出,5~6环PAHs比重达到45.4%.姜家泉位于高速路旁的农村居民区,易受到汽车尾气排放和生活能源燃烧的影响,姜家泉所处位置基岩裸露,PAHs 易随降雨快速下渗,并且在降雨较大的时候易随地表径流直接汇入地下河中,岩口落水洞与姜家泉一样,也易受地表环境影响,所以姜家泉和岩口水样中PAHs组成特征较为相似.图3 水中多环芳烃组成动态变化(2014年)4.3 地下河流域水中PAHs的迁移在岩溶区,地表水可通过岩溶裂隙、漏斗、落水洞等进入地下形成地下水,而污染物也随之从地表迁移到地下(图 4).石坝子泉水的PAHs组成以2~3环为主,且变化不大,主要是因为相对于4~6环PAHs,2~3环PAHs相对易溶于水,较易随土壤水迁移,而4~6环PAHs亲脂憎水性更强,在表层土壤中迁移较难.石坝子泉域植被覆盖良好,生态环境的调蓄能力较强,降水在泉域内保留时间较长,土壤水渗透稳定,因此,PAHs组成变化也较小,石坝子泉域内PAHs迁移主要受到降水经土壤层的淋滤和土壤水扩散迁移影响.地下河水中的PAHs能被强烈地吸附在沉积物、碳酸盐岩等地下河环境介质中,而且4~6环PAHs因辛醇-水分配系数(logKOW)较大,被沉积物等固相介质优先吸附,在地下河中表现为近距离迁移;而2~3环PAHs的logKOW较小,则主要存在于水相中,在迁移中表现为远距离迁移.岩口落水洞是青木关地下河的进口,地表水可以通过落水洞补给地下河,姜家龙洞和岩口水样的PAHs含量月变化趋势基本一致,也表明地表水对地下河存在补给关系,地表水是地下河中PAHs的主要来源.岩口地表水样2~3环PAHs比重为71.1%,而在姜家龙洞地下河水样中其比重却升高到94.6%;岩口水样中4环PAHs比重为17.5%,姜家龙洞水样中4环PAHs比重为5.40%.这说明4环PAHs在地下河迁移过程中被沉积物或悬浮颗粒物吸附,或被吸附在管道和裂隙中,而2~3环PAHs因logKOW较小,较易溶解于水中,易随水迁移,因此,呈现出地下河入口水中高环PAHs比重大于天窗内地下水中,低环PAHs比例则是天窗内大于地下河入口的现象.地下河相对于地表环境是一个低温环境,有研究认为低温有利于沉积物对PAHs的吸附作用,因此,地下河水中的PAHs在长距离的地下河道内迁移时很容易被沉积物和碳酸盐岩等介质所吸附.在地下河系统中PAHs除了由上游往下游迁移外,还有自表土沿裂隙的垂向迁移过程.姜家龙洞内水中PAHs组成变化雨季(6—9月)要大于旱季(10—12月),在旱季地下河主要靠土壤渗透水补给,含水层中裂隙水补给管道水,因此,在旱季姜家龙洞水中PAHs组成变化较小;在雨季,在降雨作用下,土壤渗透性增强,PAHs易随土壤中的溶解性有机质(DOM)迁移,而且地表水的补给也会影响到姜家龙洞地下水的PAHs组成,因此,姜家龙洞水中PAHs组成在雨季变化较大.为示踪DOM在地下河中的来源及迁移,在早期于2013年7—11月对青木关地下河流域进行了水样采集,用以测试分析另一种生物标志物甾醇.结果表明,岩口、姜家龙洞、姜家泉中溶解态甾醇的平均含量分别为724、412、374 ng · L-1,表现为溶解态甾醇含量随地下河运移距离的增加而减少,表明溶解态甾醇在地下河运移的过程中容易和水中颗粒有机质结合在一起,而且地下河内的沉积物、碳酸盐岩和黏土矿物等对水中溶解态甾醇有一定的吸附.豆甾醇和β-谷甾醇在水体溶解态甾醇中占有较高比重,表明高等植物源等陆源有机质输入对水环境中DOM有较大贡献,而且这种贡献值随着地下河运移距离的增加显现出降低的趋势,这也说明了地下河上游地表环境对地下河中有机物含量的重要影响和地下环境介质对有机物的吸附作用.图4 地下河流域多环芳烃迁移示意图4.4 PAHs来源解析一般来说,环境中PAHs主要来自于燃烧源和石油源.PAHs在迁移、传输过程中存在着分馏作用,而PAHs的同分异构体具有相似的分子结构和理化性质,在传输过程中不会发生分馏作用,因此,一般可用PAHs的同分异构体比值来识别PAHs来源.泉水、地表水、地下河中Phe都是主要的PAHs,而Ant则基本上未检测到,根据Yunker等的同分异构体比值法,Ant/(Ant+Phe)<0.1,指示PAHs主要来自石油源,Ant/(Ant+Phe)>0.1,指示PAHs来自于燃烧源,但Ant相对于Phe 更易光解,导致指示来源不准确.同分异构体Fla和Pyr在环境中具有相似的降解速率,因此,Fla/(Fla+Pyr)比值能更准确地反映PAHs的来源信息,各采样点Fla、Pyr均有检出的月份都不超过4个月,石坝子泉水中Fla/(Fla+Pyr)值范围在0.506~0.525之间,岩口水样中Fla/(Fla+Pyr)值范围为0.512~0.517,姜家龙洞水样中Fla/(Fla+Pyr)值为0.54,姜家泉为0.504~0.531,Fla/(Fla+Pyr)比值表明PAHs来源主要是木材、煤等生物质的燃烧源.整个采样期间只有11月在岩口和姜家泉中检出BaA、Chry、InP、BgP,岩口水样BaA/(BaA+Chry)值为0.48,InP/(InP+BaP)值为0.45,姜家泉水样BaA/(BaA+Chry)值为0.39,InP/(InP+BaP)值为0.43,均指示为石油燃烧源,这与岩口和姜家泉附近有较多的汽车尾气排放是相符合的,因是雨后采样所以这些高环PAHs通过沉降、径流搬运、土壤渗透等方式进入地表水和地下水,未完全被沉积物等吸附,导致水中检出较多高环PAHs.根据以上判断,研究区水体中的PAHs主要来自于燃烧源.4.5 流域内水中PAHs污染水平表 2列出了我国生活饮用水卫生标准、荷兰地下水水质标准和加拿大水质标准中规定的PAHs含量限值.结合表 1可知,石坝子泉和姜家龙洞水样中均未检出BaP,岩口和姜家泉水样中只有在11月检测出BaP,含量分别为17.1、20.8 ng · L-1,超过我国生活饮用水卫生标准规定的BaP含量限值;流域内水中∑PAHs含量范围为73.8~339.0 ng · L-1,均低于国家饮用水标准.表2 多环芳烃水质标准根据荷兰地下水水质标准,2014年6、8、10—11月姜家龙洞水样中Phe含量和8—10月水样中Fla含量超过荷兰地下水标准中规定的限值,其余月份水样中检出的PAHs均低于荷兰地下水标准;在6月石坝子泉水样中Nap含量超过荷兰地下水标准规定的限值,6—8月、11—12月Phe含量和7—12月Fla含量也超标;6月岩口和姜家泉水样中Nap含量超标,6—9月、12月岩口水样和6—11月姜家泉水样中Phe含量超标,岩口水样中Fla含量在8月、10—11月超标,其中,8月岩口样品中的Fla含量超过荷兰标准限值16倍多,姜家泉水样中Fla含量在6、8、10—11月也超过荷兰标准;11月岩口和姜家泉水样中均检出Chry、BaA、BaP、BkF、BgP、InP且含量均出现超标情况.根据加拿大水质标准可知,只有11月岩口和姜家泉水样中BaA、BaP、BbF、DaA、InP含量超过规定限值.总体上,青木关地下河流域水中有少数低环PAHs含量超标,表层泉和天窗地下水中无高环PAHs超标;地表水和地下河出口水中在2014年11月检出高环PAHs,且含量均超过中国、荷兰和加拿大标准限值.有研究者将水中溶解态PAHs污染水平分为4类:微污染(10~50 ng · L-1)、轻污染(50~250 ng · L-1)、中等污染(250~1000 ng · L-1)、重污染(>1000 ng · L-1).由表 1和图 2可知,青木关地下河流域水中PAHs污染基本上为轻污染水平.从表 3可以看出,青木关地下河流域水中PAHs污染水平与其他地表河流相比,与西江、密西西比河相当,略高于漳卫南运河,与欧洲PAHs含量很低的多瑙河、塞纳河相比,研究区水中PAHs含量要高出很多倍,但与流经区域经济较为发达的长江、海河、大辽河、通惠河相比,研究区水中PAHs污染水平要远低于这些水体;相比于其他地区地下水,青木关表层泉水中PAHs污染水平低于南川岩溶泉、南山岩溶泉,与江汉平原地下水相当,地下河污染水平与白朗地下河相当,低于老龙洞地下河.总体上,青木关地下河流域水中PAHs污染处在较低的水平,以个别低环PAHs超标为主,基本上不存在高环PAHs超标,因此,生态风险评价中基本上不存在致癌性高环PAHs带来的负生态效应.但岩溶区代表的是一个富钙的环境,岩溶地下河显示的是富钙条件下的地球化学特征,因溶蚀作用的发生,地下表3 不同地区水中多环芳烃含量比较河管道发育,空间结构复杂,环境相对封闭黑暗,PAHs易于沉降进入地下系统而且不易被光降解;地下河沉积物和碳酸盐岩对PAHs具有吸附作用,这将造成PAHs在地下空间环境中不断富集,长期的积累会成为潜在的污染源使污染物向下游扩散,必然会影响整个地下生态系统.具体参见污水宝商城资料或更多相关技术文档。