初二数学实数与二次根式
(中考数学)实数与二次根式(知识点梳理)(记诵版)

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。
2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。
3.平方根的性质:若a x =2,那么a x =-2)(,则x -也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。
二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。
2.算术平方根的表示方法:正数a 的算术平方根可记作a ,读作:根号a 。
3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。
一个正数a 的正的平方根就是它的算术平方根。
三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。
开平方运算是已知指数和幂求底数。
2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。
3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。
考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a的立方根(或三次方根)。
2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。
3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。
5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。
北师大版八年级数学上册第2章 实数 二次根式的混合运算

解:(1) 原式 6 33 3 3 6 3 3 .
(2) 原式 1+2 3 3 3 3 2 .
归纳 有绝对值符号的,同括号一样,先去绝对值,注 意去掉绝对值后,得到的数应该为正数.
例2 计算:
(1) 3 2 ; (2) 18 8 1 ; (3)( 24 1 ) 3.
(2)已知 x 5 1,y 5 1,求 x2 xy y2的值.
2
2
解: x y 5 1 5 1 5,xy 5 1 5 1 1,
2
2
2
2
x2 xy y2 x y2 xy
2
5 1 4.
能力提升: 6. 阅读下列材料,然后回答问题:
在进行类似于二次根式 2 的运算时,通常有如下
a2 b2 2 (a b)2 2ab 2
(2 5)2 2 2 20 2 5.
练一练 已知 10 的整数部分是 a,小数部分是 b,求 a2 - b2 的值.
解: 3 10 4,
a 3,b 10 3. a2 b2 32 ( 10 3)2
3 10 3 3 10 3 10 6 10
如图所示.
S梯形ABCD 1 (CD AB) DE
2
E
16 23 2
2
1 ( 2 5 2)3 2 18.
2
归纳:利用二次根式可以简单便捷的求出结果.
例4 教师节就要到了,小欣同学准备做两张大小不同 的正方形贺卡送给老师以表示祝贺,其中一张面积为 288 平方厘米,另一张面积为 338 平方厘米. 如果用彩 带把贺卡镶边会更漂亮,她现在有 1.5 米的彩带,请你 帮忙算一算她的彩带够不够用.
1. 下列计算中正确的是( B )
二次根式与实数之间的关系

二次根式与实数之间的关系根据数学的定义,二次根式是指一个数的平方根,表示为√a,其中a为非负实数。
实数是对现实生活中的数量进行抽象的数学概念,包括有理数和无理数。
二次根式与实数之间存在着密切的关系,本文将探讨这种关系。
1. 二次根式的定义二次根式是指一个实数的平方根。
对于非负实数a,√a表示a的正平方根,即满足b² = a的实数b。
例如,√4 = 2,因为2² = 4。
二次根式可以表示为分数形式或小数形式,如√9 = 3,或√2 ≈ 1.414。
2. 二次根式的性质二次根式具有一些重要的性质,这些性质与实数之间的关系密切相关:- 非负实数的二次根式均为实数。
例如,√9 = 3是一个实数。
- 负实数没有实数的二次根式。
例如,对于-9来说,不存在一个实数b,使得b² = -9。
- 实数的二次根式满足乘法性质。
即若a和b都是非负实数,则√(ab) = √a × √b。
3. 二次根式与有理数的关系有理数是可以表示为两个整数的比值的数,包括整数、分数和小数(有限小数和循环小数)。
二次根式与有理数之间的关系如下:- 若一个非负实数的平方是一个有理数,那么它的二次根式就是一个有理数。
例如,√4 = 2,4是一个有理数,因此2也是一个有理数。
- 若一个非负实数的平方不是一个有理数,那么它的二次根式就是一个无理数。
例如,√2是一个无理数,因为2的平方不是一个有理数。
4. 二次根式与无理数的关系无理数是不能表示为两个整数的比值的数,包括无理代数数和无理超越数。
二次根式与无理数之间的关系如下:- 像√2、√3这样的二次根式是无理数。
它们无法用有限小数或循环小数形式表示。
- 无理数的二次根式仍然是无理数。
例如,√(√2) = (√2)^(1/2) =2^(1/4) 是一个无理数。
综上所述,二次根式与实数之间存在着重要的关系。
实数的二次根式可以是有理数或无理数,具体取决于实数的平方是否是一个有理数。
北师版八年级上册数学第2章 实数 二次根式的混合运算

2.(2019·滨州)计算:-12-2-| 3-2|+ 32÷ 118=_2_+__4__3__.
3.(2018·泰州)下列运算正确的是( D )
A. 2+ 3= 5 B. 18=2 3
C. 2· 3= 5
D. 2÷ 12=2
4.(2019·重庆)估计 5+ 2× 10的值应在( B ) A.5 和 6 之间 B.6 和 7 之间 C.7 和 8 之间 D.8 和 9 之间
【点拨】 5+ 2× 10= 5+2 5=3 5. 因为 3 5= 45,36<45<49,所以 6< 45<7.
5.(中考·聊城)计算5
15-2
45÷(-
5)的结果为(
A
)
A.5 B.-5 C.7 D.-7
【点拨】原式=( 5-6 5)÷(- 5)=(-5 5)÷(- 5)=5.
6.计算:
(1)(2019·泰州) 8-
8.(2019·孝感)下列计算正确的是( A )
A.x7÷x5=x2
B.(xy2)2=xy4
C.x2·x5=x10
D.( a+ b)( a- b)=b-a
9.已知 a=2 2+3,b=2 2-3 则:(1)a+b=4 2; (2)a-b=___6_____;(3)ab=___-__1___; (4)a2+b2=___3_4____;(5)a2-2ab+b2=___3_6____.
解:原式=9-7+2 2-2+(2- 3)[(2+ 3)(2- 3)]2 021 =2 2+2- 3.
12.已知 a= 51-2,b= 51+2,求 a2+b2+7的值.
解:由已知得 a= 5+2,b= 5-2,所以 a+b=2 5,ab=1. 所以原式= (a+b)2-2ab+7= (2 5)2-2+7=5.
八年级数学上册第2章实数7二次根式第1课时二次根式的概念及其性质新版北师大版

知识点4 最简二次根式
9. [2024北京东城区阶段练习]下列各式中,是最简二次根式
的是(
A
)
A.
B.
C.
D.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10. 下列各组二次根式中,化成最简二次根式后,被开方数
相同的一组是(
C
)
A. 与
B. 与
C. 与
−
5
6
7
8
9
10
11
12
13
14
15
16
17
(3)验证你找到的规律.
−+
=
−
+ =
−
解:
=n
−
( n ≥2).
−
(4)请你再写出一个具有“穿墙”性质的数.
答案不唯一,如 6
1
2
3
4
5
.
6
7
8
9
10
11
12
13
14
15
16
17
15
16
17
2. [2024榆林月考]要使二次根式 − 有意义,则 x 的值不
可以取(
C
)
A. 4
B. 3
1
2
3
4
5
6
C. 2
7
8
9
10
11
12
D. 6
13
北师版数学八年级上册《2.7 二次根式》第1课时 二次根式及其化简 教学课件(精编)

问题1 这些式子分别表示什么意义? 分别表示 2,S,3,h 的算术平方根. 5
问题2 这些式子有什么共同特征?
① 都含有开方运算;
② 被开方数为非负数.
归纳总结
一般地,我们把形如 a (a≥0) 的式子叫做二次 根式. “ a ”叫做被开方数.
注意:a 可以是数,也可以是式子.
① 外形特征:含有“ ” 两个必备特征
一定是二次根式的有 A. 3 个 B. 4 个
C. 5 个
( B) D. 6 个
2.(1)若式子
x
2
1
在实数范围内有意义,则
x
的取值
范围是__x_≥__1__;
(2)若式子 1 x 在实数范围内有意义,则 x 的
x2
取值范围是_x_≥__0_且___x_≠__2_.
二 二次根式的双重非负性 问题1 当 x 是怎样的实数时, x2 在实数范围内有意 义? x3 呢?
前者 x 为全体实数,后者 x 为非负数.
问题2 二次根式 a 的被开方数 a 的取值范围是什么? 它本身的取值范围又是什么?
当 a>0 时, a 表示 a 的算术平方根,因此 a >0; 当 a = 0时, a 表示 0 的算术平方根,因此 a = 0. 这就是说,当 a≥0 时, a ≥0.
归纳总结
归纳总结
(1)单个二次根式如 A 有意义的条件:A≥0; (2)多个二次根式相加如 A B ... N 有意义的
A≥0,
条件:
B≥0, ...
N≥0.
(3)二次根式作为分母如
B
有意义的条件:A>0;
A
(4)形如 A 1 的式子有意义的条件:A≥0 且 B ≠ 0.
B
2024八年级数学上册第二章实数7二次根式第1课时二次根式及其性质习题课件新版北师大版

5. [2024永州一中期末]化简| a -3|+( − )2的结果是
(
D
)
A. 0
B. 6
C. 2 a -6
D. 6-2 a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
知识点2二次根式的性质
·
6. (1) =
(2)
=
1
2
3
( a ≥0, b ≥0);
( a ≥0, b >0).
4
5
6
7
8
9
10
11
12
13
14
15
16
7. 下列各式的化简正确的是(
C
)
A. (−) × (−) = − × − =(-2)×(-7)=14
B. = + = × =5
C.
=
=
=
D. . =
1
2
=
3
4
5
6
7
8
9
10
嘉嘉在学习二次根式时,发现一些含根号的式子可以化
成另一个式子的平方,如:
5+2 =(2+3)+2 × =( )2+( )2+2× ×
=( + )2;
8+2 =(1+7)+2 × =12+( )2+2×1× =
(1+ )2.
1
2
3
4
5
6
7
初中数学二次根式知识点整理

初中数学二次根式知识点整理二次根式是初中数学中的重要知识点之一,也是数学学习中的基础。
它包含了平方根、分数指数和有理化的相关内容。
掌握了二次根式的知识,对于解决问题和提高数学能力具有重要的作用。
下面将对二次根式的相关知识点进行整理和总结。
一、二次根式的定义与性质二次根式是指具有形如√a(其中a≥0)的表达式。
其中,a被称为被开方数,√a被称为二次根式的根号部分。
除此之外,我们还需要了解以下性质:1. 二次根式的值是非负的实数或零:√a≥0;2. 二次根式的值大于零的情况下,可以化简:√a=0,a=0;二、二次根式的运算1. 二次根式的加减运算当被开方数相同时,二次根式的加减可以合并为一个根号内的运算,即√a±√a=2√a。
当被开方数不同但可以合并时,可以通过有理化的方法进行化简,具体操作如下:例如:√3+√12=√3+√(4×3)=√3+2√3=3√3;再例如:√8-√32=√(4×2)-√(16×2)=2√2-4√2=-2√2;2. 二次根式的乘除运算二次根式的乘法运算可以通过根式的合并和简化进行:例如:√2×√3=√(2×3)=√6;类似地,二次根式的除法运算可以通过根式的合并和简化进行:例如:√20÷√4=√(20÷4)=√5;需要注意的是,对于根号内含有非完全平方数的情况,需要通过化简为最简根式。
例外:对于根号内含有互质数的情况,乘法运算可以直接合并;例如:√7×√5=√(7×5)=√35;而除法运算同样可以进行简化:例如:√28÷√7=√(28÷7)=√4=2;三、二次根式的有理化有理化是将含有根号的式子转化成不含根号的式子,常用的方法有以下两种:1. 乘以去根号因式:当分母含有根号时,可以乘以分母的共轭形式,即乘以√a-√b;例如:1/(√2+√5)×(√2-√5)=√2-√5;2. 利用平方的性质进行有理化:当分母是二次根式时,可以通过平方的性质进行有理化;例如:1/√3=√3/(√3×√3)=√3/3;需要注意的是,有理化后的结果通常会更便于计算和使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数中考要求重难点1.平方根、立方根的有关概念以及其区别和联系;2.会求一个数的平方根和立方根并了解其限定条件3.能进行实数的运算4.课前预习无理数的发现──第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论.当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性.他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此.这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机.到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了.他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中.欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致.今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处.第一次数学危机对古希腊的数学观点有极大冲击.这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了.危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!例题精讲模块一平方根、算术平方根平方根:如果一个数的平方等于a,那么这个数叫做a的平方根.也就是说,若2x a=,则x就叫做a的平方根.一个非负数a的平方根可用符号表示为“”.算术平方根:一个正数a有两个互为相反数的平方根,其中正的平方根叫做a的算术平方根,可用符号表示为;0有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.(负数的平方根在实数域内不存在,具体内容高中将进学习研究)一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0≥.a≥0平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.对定义和性质的考察【例1】判断题:(1( )(2)2a的算术平方根是a.( )(36=,则6a=-.( )(4)若264x=,则8x==±.( )(58±.( ) (6)若两个数平方后相等,则这两个数也一定相等.( )(7)如果一个数的平方根存在,那么必有两个,且互为相反数.( )(8)2a-没有平方根.( ) (9)如果两个非负数相等,那么他们各自的算术平方根也相等.( ) 【难度】1星【解析】略【答案】(1)×;(2)×;(3)×;(4)√;(5)×;(6)×;(7)×;(8)×;(9)√.【巩固】若A=A的算术平方根是_________.【难度】2星【解析】A22a+,故A的算术平方根为216(16)a+.【答案】216a+【巩固】设a a的值是________.【难度】2星【解析】a48a必须是完全平方数,因为2=⨯4843整数的整数a为3.【答案】3【例2】x为何值时,下列各式有意义?(1(2(3(4); (5); (6; 【难度】1星 【解析】略【答案】(1)0x ≥;(2)x =0;(3)2x ≤;(4)x 为任意数;(5)x >1;(6)112x -≤≤.对计算的考察【例3】 求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;(3)若294x =,则x =______; (4)若x 2=2(2)-,则x =______.【难度】1星【解析】一个正数的平方根有两个,且互为相反数.【答案】(1) 1.1x =±;(2)x =±13;(3)32x =±;(4)x 2=±.【例4】 求下列各式的值(1) (2(3 (4(5 (6【难度】1星(1)2612⨯=; (27512+=;(30.30.80.5-=-; (4290.91365⨯=;(520===; (6110.8250.25 5.245=⨯+⨯=+=;【答案】(1)12; (2)12; (3)0.5-; (4)965; (5)20; (6)5.2.【巩固】求下列各式中x 的值.(1)29x =; (2)22500x -=(3)21(51)303x --= (4)2(100.2)0.64x -=【难度】1星【解析】本题考察的是平方根,正数的平方根有两个,且互为相反数.(1)3x =±; (2)225,5x x ==±;(3)221(51)3,(51)9,513,5133x x x x -=-=-=±=+;或513x =-,解得45x =或25x =-.(4)100.20.8,0.2100.8,0.210.8x x x -=±=±=或0.29.2x =解得54x =或x =46.【答案】(1)3x =±; (2)5x =±;(3)45x =或25x =-; (4)54x =或x =46.对非负性的考察【例5】 如果3a b -+【难度】2星【解析】由绝对值和算术平方根的非负性及相反数的定义解题.有题可知30220a b a b -+=⎧⎨+-=⎩解得4353a b ⎧=-⎪⎪⎨⎪=⎪⎩3.【答案】3【例6】已知2b =,求11a b+的平方根.【难度】2星【解析】由题可知940490a a -≥⎧⎨-≥⎩,49a ∴=,b =2,【答案】【巩固】已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 【难度】2星 【解析】由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.【答案】116总结: (1)当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).(2)平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2a =;②不管a(0)||(0)a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.(3)若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<时,它的算术平方根也之间,即:0≤<的算术平方根的大致范围.模块二 立方根如果一个数的立方等于a,那么这个数叫做a的立方根,也就是说,若3,x a=则x就叫做a的立方根,一个数a的立方根可用符号表,其中“3”叫做根指数,不能省略.前面学习的其实省略了根指数“2”“三次根号a”“二次根号a”“根号a”.任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.对立方根定义和性质的考察【例7】(1)下列说法中,不正确的是()A.8的立方根是2 B.8-的立方根是2-C.0的立方根是0 D.a(2)61164-的立方根是()A.-B.114±C.114D.114-(3)某数的立方根是它本身,这样的数有()A.1个B.2个C.3个D.4个(4)下列说法正确的是()①正数都有平方根;②负数都有平方根,③正数都有立方根;④负数都有立方根;A.1个B.2个C.3个D.4个(5)若a立方比a大,则a满足()A.a<0 B.0< a <1 C.a >1 D.以上都不对(6)下列运算中不正确的是()A.=B.3C1-D.4=【难度】1星【解析】略【答案】(1)D;(2)D;(3)C;(4)C;(5)D;(6)B.【巩固】(1)若x的立方根是4,则x的平方根是______.(2)3311-+-x x 中的x 的取值范围是______,11-+-x x 中的x 的取值范围是______.(3)-27______.(40=则x 与y 的关系是______.(54那么(66)2a -⋅的值是______.(6=则x =______.(7)若m <0,则m .(8)若59x +的立方根是4,则34x +的平方根是______.【难度】2星 【解析】略【答案】 (1)8±;(2)任意数; x =1;(3)1-或5-;(4)互为相反数;(5)-12;(6)x =1; (7)0; (8)对计算的考察【例8】 求下列等式中的x :(1)若x 3=0.729,则x =______; (2)x 3=6427-,则x =______;(3)若52,则x =______; (4)若x 3=3(2)--,则x =______. 【难度】1星 【解析】略【答案】(1)0.9;(2)43-;(3)1258;(4)2.【例9】 求下列各式的值(1 (2(3) (4)3(5 (6(7【难度】1星 【解析】略【答案】(1)0.4;(2)2-;(3)25-;(4)64;(5)43;(6)9;(7)6.【巩固】(1)填表:(2(3) 根据你发现的规律填空:① 1.442== ,= ;② 7.696=,= .【难度】2星【解析】略 【答案】(1)0.01; 0.1; 1; 10; 100.(2)当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍 (3) ①14.42; 0.01442; ②0.7696.总结 :(1) 当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍.(2)a ,3a =(3) 若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<<<综合应用【例10】 2(27)b +的立方根. 【难度】2星【解析】由题可知80270a b +=⎧⎨+=⎩,解得827a b =-⎧⎨=-⎩,235,=+=.【答案】1【例11】 已知2x -的平方根是±2,27x y ++的立方根是3,求22x y +的平方根. 【难度】2星【解析】2(2)=±,6x ∴=;3=,8y ∴=,10==±.【答案】10±总结:平方根与立方根的区别与联系: 区别:(1)根指数不同:平方根的根指数是2,通常省略不写;立方根的根指数是3,却不能省略.(2)被开方数取值范围不同:平方根中被开方数必须是非负数;而立方根中被开方数可以为任何数. (3)平方的结果不同:平方根的结果除0之外,还有两个互为相反数的结果;而立方根的结果只有一个.(4)平方根等于本身的数是0,算术平方根等于它本身的数是0,1,立方根等于它本身的数是0,1,1-; 联系:(5)平方根与立方根相等的数是0.(6)平方根与立方根都是与乘方运算互为逆运算.模块三 实数1 无理数的概念:无限不循环小数叫做无理数. 注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数. (2)圆周率π及一些含π的数是无理数. (3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数. 2 无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数; 3 实数的概念:有理数和无理数统称为实数. 实数的分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 4实数的性质:(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小. 5 实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点.对实数定义的考察【例12】 判断正误.(1)实数是由正实数和负实数组成.( ) (2)0属于正实数.( )(3)数轴上的点和实数是一一对应的.( )(4)如果一个数的立方等于它本身,那么这个数是±1.( ) (5)若x =则x =( ) 【难度】2星【解析】略 【答案】(1)×;(2)×;(3)√;(4)×;(5)√.【例13】 下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对 D【难度】1星 【解析】略 【答案】D【例14】 下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数【难度】1星 【解析】略 【答案】A对实数性质的考察【例15】的相反数是________;的倒数是________;35-的绝对值是________.【难度】1星 【解析】略【答案】【例16】 3.141π-=______;=-|2332|______. 【难度】1星 【解析】略【答案】-3.141π;【例17】 若||x =x =______;若||1x =,则x =______. 【难度】1星 【解析】略【答案】1或1-实数的分类【例18】 把下列各数填入相应的集合:-1、π、 3.14-、127.0、0(1)有理数集合{ }; (2)无理数集合{ }; (3)整数集合{ }; (4)正实数集合{ }; (5)负实数集合{ }.【难度】1星 【解析】略【答案】(1)-1 3.14-、12、7.0、0;(2、π(3)-10(4π、1、7.0;(5)-1、 3.14-、比较大小【例19】 估 )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间【难度】1星 【解析】略 【答案】C【例20】 实数2.6 ( )A .2.6<<B .2.6<C 2.6<D 2.6< 【难度】2星 【解析】略 【答案】B【例21】 一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【难度】1星 【解析】略 【答案】A【巩固】把下列各数按照由大到小的顺序,用不等号连接起来.4,4-,153-,1.414,π,0.6, 34-,【难度】1星 【解析】略【答案】314 1.4140.64543π>>>>>>->-.对计算的考察【例22】 计算题(1)32716949+- (2)233)32(1000216-++【难度】1星【解析】(1)32716949+-71333=-+=-;(2)233)32(1000216-++226101633=++=. 【答案】(1)3-;(2)2163.综合应用【例23】 写出符合条件的数.(1)小于 (2)绝对值小于的所有整数.【难度】2星【解析】略【答案】(1)1,2,3,4;(2)1-,2-,0,1,2.【例24】 一个底为正方形的水池的容积是3150m 3,池深14m ,求这个水底的底边长.【难度】1星【解析】设这个水底的底边长为x ,则有2143150x =,解得15x =.【答案】15【例25】 已知a b 是它的小数部分,求32()(3)a b -++的值.【难度】2星【解析】91116<<,∴34<<,的整数部分为33,3,3a b ∴==,32()(3)a b -++32(3)33)271116=-++=-+=-.【答案】16-总结:没有最小的实数,0是绝对值最小的实数;带根号的数不一定是无理数;一个实数的立方根只有一个;负数没有平方根.无理数大小的比较方法:(1)比较两个数的平方的大小:a >0,b >0,若2>2若2<2<; 若2=2(2)比较被开方数的大小:a >0,b >0, 若a >b ; 若a <b , <若a =b .(3)作差法:若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,则a <b .(4)作商法:a >0,b >0,若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b .课堂检测【练习1】下列说法正确是( )A .有理数都是实数B .实数都是有理数C .带根号的数都是无理数D .无理数包含0【难度】1星【解析】略【答案】A【练习2】下列命题中,真命题是( )A .22011的平方根是2011B .64-的平方根是8±C6=± D .若22a b ==【难度】1星【解析】略【答案】D【练习3】有一个数值转换器原理如图所示,则当输入x 为36时,输出的y 是( )输出y输入xA .6 BCD.【难度】2星【解析】略【答案】B【练习4】数轴上,有一个半径为1个单位长度的圆上的一点A 与原点重合,该圆从原点向正方向滚动一周,这时点A 与数轴上一点重合,这点表示的实数是 .【难度】1星【解析】略【答案】2π【练习5】计算:(1(2【难度】1星【解析】(1585355245420+=-+=-; (2340.60.4-+=-. 【答案】(1)3220-;(2)0.4-.【练习6】已知()0328322=+-+-+y x y x ,求y x xy +3的值.【难度】2星【解析】利用非负性建立二元一次方程组,解出x ,y 的值,代入即可解决问题.【答案】2课后作业1. 下列命题中,错误的命题个数是( )(1)2a -没有平方根; (2)100的算术平方根是10,记作10100=±(3)数轴上的点不是表示有理数,就是表示无理数; (4)2是最小的无理数.A .1个B .2个C .3个D .4个【难度】1星【解析】错误的有(1),(2),(4).【答案】C2. 若22b a =,则下列等式成立的是( )A .33b a =B .b a =C .b a =D . ||||b a =【难度】1星【解析】略【答案】D3. 已知坐标平面内一点A(2-,3),将点A A′的坐标为 .【难度】2星【解析】在坐标平面内点的平移是左减右加,上加下减.【答案】(2-+4.已知10<<x ,则21x x x x 、、、的大小关系是__________________________(用“>”连接). 【难度】1星 【解析】可以采用特殊值法解题,如14x =.【答案】21x x x>>5.计算:(1 (2)2(2)-【难度】1星【解析】(111213333==-=- ;(2)2(2)-11433231423=⨯+-⨯=+-=. 【答案】(1) 13- ; (2)4.6.已知一个长方体封闭水箱的容积是1620立方分米,它的长、宽、高的比试5:4:3,则水箱的长、宽、高 各是多少分米?做这个水箱要用多少平方分米的板材?【难度】1星【解析】在列方程解应用题时,要注意见比设k 的应用.【答案】长、宽、高各是15分米,12分米,9分米;846平方分米.7.已知实数a ,满足0a +,求11a a -++的值.【难度】2星【解析】0a +,0a a a ∴++=,20a a +=,0a ∴=,112a a -++=【答案】28.先阅读理解,再回答下列问题:=,且12<的整数部分为1;=23<2;34<<3;n 为正整数)的整数部分为______,请说明理由.【难度】2星【解析】n2(1)n n n n +=+,又22(1)(1)n n n n <+<+,1n n ∴<<+(n 为正整数),∴整数部分为n .【答案】n9. 计算下列各组算式,观察各组之间有什么关系,请你把这个规律总结出来,然后完成后面的填空.(1;(2(3(4(5= ;(6= (0,0)a b ≥≥.【难度】2星【解析】(5=(6=【答案】(5;(610.若a 为217-的整数部分,1-b 是9的平方根,且a b b a -=-||,求b a +的算术平方根.【难度】3星【解析】161725,45,223,2a <<∴<∴<<∴=,14b b -==或2b =-.又a b b a -=-,b a ∴≥,2,4a b ∴==,==。