(完整版)八年级数学下册二次根式练习题及答案
八年级数学《二次根式》练习题(含答案)

八年级数学《二次根式》练习题(含答案)21.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 1x =+成立的条件是 。
12. 若1a b -+()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.)A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()4 21.2440y y -+=,求xy 的值。
22. 当a 1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题班级:__________ 座号:__________ 姓名:__________________ 成绩:___________一、选择题(每小题4分,共24分)1.二次根式1-a 中,字母a的取值范围是…………………………………………()A.a<1 B.a≤1 C.a≥1 D.a>12.下列与 2 是同类二次根式的是……………………………………………………()A. 3 B.12 C.8 D. 2 -13.下列计算正确的是……………………………………………………………………()A. 2 × 3 = 6 B. 2 + 3 = 5 C.8 =4 2 D. 4 - 2 = 24.若(3-b)2=3-b,则…………………………………………………………………()A.b>3 B.b<3 C.b≥3 D.b≤35.下列根式中不是最简二次根式的是…………………………………………………()A.10 B.8 C. 6 D. 26.已知12-n 是正整数,则实数n的最大值为………………………………………()A.12 B.11 C.8 D.3二、填空题(每题3分,共36分)7.使式子4-x 无意义的x取值的是______________;8.计算:(6)2=____________;9.化简:81×49 =______________;10.化简:153=_________;11.比较大小:-32___________-2 3 ;12.写出一个无理数,使它与32的积为有理数_____________;13.若x-23-x=x-23-x成立,则x满足________________;14.已知一个正数的平方根是2x-6和x+3 ,则这个数是___________;15.如果最简二次根式3a-3 与7-2a 是同类二次根式,那么a的值是________;16.已知a、b为两个连续整数,且a<7<b,则a+b=_________;17.把二次根式313中根号外的因数移到根号内,结果是______________;18.观察并分析右边的数据,寻找规律:0,6,3,23,15,32,…,那么第10个数据应是_____________。
八年级数学(下)第十六章《二次根式》同步练习(含答案)

八年级数学(下)第十六章《二次根式》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.式子1x -在实数范围内有意义,则x 的取值范围是A .x ≤1B .x ≥1C .x <1D .x >1【答案】B【解析】由题意得,x -1≥0,∴x ≥1.故选B .2.下列各式中①38;②()b --;③2a ;④1||0.1x +;⑤221x x ++,一定是二次根式的有 A .1个B .2个C .3个D .4个【答案】C3.(a -2的值为A .aB .-aC aD .a 【答案】B a -a ≤0,∴(a -2=-a .故选B .4.下列各式中,一定能成立的是A 22( 2.5)( 2.5)-=B 22(a a =C 221x x -+x -1D 2933x x x -=-+【答案】A【解析】A 22( 2.5)( 2.5)-=,成立;B 2||a a =,2()a =a ,则B 不成立;C 22+1|1x x x -=-|,则C 不成立;D 29(3)(3)x x x -=-+33x x -+,则D 不成立,故选A .5.已知55553y x x =-+--,则5xy 的值是A .15-B .15C .152-D .152【答案】A二、填空题:请将答案填在题中横线上.6.已知b >0,化简3a b -=__________.【答案】-a ab - 【解析】∵3a b ->0,b >0,∴a <0,∴原式=2()a ab ⋅-=-a ab -.故答案为:-a ab -. 7.二次根式2(32)-的值是__________.【答案】2-3【解析】∵32<,∴原式=2-3.故答案为:2-3.8.a ,b 在数轴上的位置如图所示,化简244a a -+-|a -b |=__________.【答案】2-2a +b【解析】由数轴可得:1<a <2,−1<b <0,244a a -+|a −b |=2−a −(a −b )=2−2a +b .故答案为:2−2a +b . 三、解答题:解答应写出文字说明、证明过程或演算步骤.9.计算:(1)23)5;(2)2(43);(32(6)-;(4)21()8-; (52(25)-6222169(13)x x x x x -+-+≤≤.【解析】(1)233)55=. (2)222(43)4(3)16348=⨯=⨯=.(3)2(6)|6|6-=-=. (4)2111()||888--=--=-. (5)2(25)|25|52-=-=-.(6)∵1≤x ≤3,∴x -1≥0,x -3≤0.221169x x x x -++-+22(1)(3)x x =-+-|1||3|x x =-+-13x x =-+-2=.10.先简化,再求值:221x x ++-21664x x -+,其中x =6.11.设a ,b ,c 为△ABC 2222()()()()a b c a b c b a c c b a ++------【解析】根据三角形的三边关系可得:a +b +c >0,a -b -c <0,b -a -c <0,c -b -a <0,原式=a +b +c +b -a +c +a -b +c +b -c +a =2(a +b +c ).。
八年级数学下册《二次根式》练习题附答案-人教版

八年级数学下册《二次根式》练习题附答案-人教版一、选择题1.下列函数中,自变量x的取值范围为x<1的是( )A.y=11-xB.y=1-1xC.y=1-xD.y=11-x2.若a<1,化简(a-1)2﹣1= ( )A.a﹣2B.2﹣aC.aD.﹣a3.下列根式是最简二次根式的是( )A.13B.0.3C. 3D.204.下列运算正确的是( )A.2+3= 5B.18=2 3C.2·3= 5D.2÷12=25.当a<0,b<0时,把化为最简二次根式,得( )A. B.- C.- D.6.下列二次根式中,与3是同类二次根式的是( )9 B.30 C.12 D.87.下列运算正确的是( )2+5=7 B.22×32=6 2 C.8÷2=2 D.32﹣2=38.已知a,b分别是6﹣13的整数部分和小数部分,则2a﹣b的值为( )A.3﹣13B.4﹣13C.13D.2+139.化简a+1+aa+1-a﹣a+1-aa+1+a的结果是( )A.2a+2B.4a+2C.4a2+aD.﹣4a2+a10.已知a+b=3,a﹣b=2,c=5,则代数式a2﹣b2﹣c2﹣2bc的值是( )A.正数B.负数C.零D.无法确定二、填空题11.当x________时,二次根式2x +3在实数范围内有意义. 12.当x =-2时,二次根式2-7x 的值 .13.计算:8+2= .14.计算(1-2)2+18的值是________.15.若a+b=5+ 3 ,ab=15- 3 ,则x+y=_______.16.比较大小:2+6________3+ 5.三、解答题17.计算:.18.计算:(32-23)(32+23).19.计算:1212﹣(313+2).20.计算:33﹣(3)2+(π+3)0﹣27+|3﹣2|;21.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.22.有一个长、宽之比为5∶2的长方形过道,其面积为 10 m2.(1)求这个长方形过道的长和宽;(2)用40块大小一样的正方形地板砖刚好把这个过道铺满,求这种地板砖的边长.23.设x=2+5,y=-2+5,求x2+y2﹣2xy的值.24.对于任意不相等的两个实数a,b,定义运算“*”如下:a*b=a+ba-b﹣a-ba-b(a>b>0).如4*3=4+34-3﹣4-34-3=7﹣1,试求下列各式的值:(1)13*5.(2)6*5﹣5×(8*3).25.小明在学习《二次根式》后,发现一些含根号的式子可以写成另一个式子的平方如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+2mn 2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+2b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=________,b=________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________3=(________+________3)2;(3)若a+43=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案1.D.2.D.3.C.4.D.5.B6.C7.C.8.C9.C.10.B11.答案为:≥-3212.答案为:4.13.答案为:3 214.答案为:42﹣1.15.答案为:4- 316.答案为:<.17.解:原式=-22;18.解:原式=6.19.解:原式=3﹣3﹣2=﹣ 2.20.原式=﹣3 3.21.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32.22.解:(1)设这个长方形过道的长为5x(m),宽为2x(m)则5x·2x=10∴x2=1,解得x1=1,x2=-1(不合题意,舍去).答:这个长方形过道的长为5 m,宽为2 m;(2)设这种地板砖的边长为m(m)则40m2=10∴m2=0.25解得m1=0.5,m2=-0.5(不合题意,舍去).答:这种地板砖的边长为0.5 m.23.解:∵x2+y2﹣2xy=(x﹣y)2∴把x=2+5,y=﹣2+5代入得:原式=(2+5+2﹣5)2=16.24.解:(1)13*5=13+513-5﹣13-513-5=328﹣228=28.(2)6*5﹣5×(8*3)=6+56-5﹣6-56-5﹣5×(8+38-3﹣8-38-3)=11﹣1﹣11+5=5﹣1.25.解:(1)∵a+b3=(m+n3)2∴a+b3=m2+3n2+2mn 3∴a=m2+3n2,b=2mn.(2)答案不唯一,如:设m=1,n=1∴a=m2+3n2=4,b=2mn=2.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m,n为正整数∴m=2,n=1或m=1,n=2∴a=22+3×12=7或a=12+3×22=13.。
人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。
八年级数学下册二次根式练习题

八年级数学下册二次根式练习题(含答案解析)学校:___________姓名:___________班级:___________一、单选题1⋅ )A .B .CD .2.若代数式x +x 等于( )AB .C .2D .1-3.下列运算正确的是( )A B =C5=- D .=4.已知有理数a ,b ,c 在数轴上对应的点位置如图所示,则a b ca b c -+的值是( )A .-1B .-2C .-3D .-45.下列运算正确的是( )A B .(23=- C .2-= D =60,0)a b >>等于( )A B C D .7.使分式201928x x --有意义的x 的取值范围是( )A .4x =B .4x ≠C .4x =-D .4x ≠-8x ,小数部分为y y -的值是( )A .3 B C .1 D .39.已知4y x =+,当x 分别取正整数1,2,3,4,5,…,2022时,所对应y 值的总和是()A .2026B .2027C .2028D .202910.秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为,下列估算正确的是( )A .205<<B .2152<<C .12<<1D 1> 二、填空题11_____. 12.若9x 2-16=0,则x =_______.13.化简;(1)=_____________;(2=___________()0a >;(3)10111)1)=_____________;14______.15.25的算数平方根是____________.16.二次根式的定义:形如______的式子.17.已知实数a 、b 30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1x +2x -1x 2x 的值为_____________.三、解答题18.如图,E ,F 是正方形ABCD 的对角线BD 上的两点,且BE =DF .(1)求证:△ABE △△CDF ;(2)若AB =,BE =2,求四边形AECF 的面积.19.化简:2(34x ≤≤)20.计算:(1)-+÷(2)101()|3|(2(1)2-+-++-. 21.计算:22.计算:(3)5623.先化简,再求值△2(53y x ,其中x =12,y =4参考答案:1.A【分析】根据二次根式的乘法法则计算,再化简,即可求解.⋅==.故选:A【点睛】本题主要考查了二次根式的乘法,熟练掌握二次根式的性质是解题的关键.2.B【分析】利用代数式x +x .【详解】△代数式x +x +=△x ==故选B .【点睛】本题考查了二次根式的加减运算,正确的合并同类二次根式是解题的关键.3.BA B ,根据二次a ,判断C ,根据二次根式的除法判断D .=故A 错误,=故B 正确,5,故C 错误,2=,故D 错误,故选B .【点睛】本题考查的是合并同类二次根式,二次根式的化简,二次根式的除法,掌握以上知识是解题的关键.4.C【分析】先由数轴观察得出c <a <0<b ,据此计算即可.【详解】解:由数轴可得:c <a <0<b ,()1113a b c a b c-+=--+-=-, 故选:C .【点睛】本题考查了利用数轴进行的相关计算,数形结合并明确绝对值等的化简法则,是解题的关键.5.D【分析】根据二次根式的运算法则,逐一解答.【详解】解:A.A 错误;B. (23= ,故B 错误;C. =C 错误;D. =D正确,故选:D.【点睛】本题考查二次根式的运算,是基础考点,掌握相关知识是解题关键.6.A【分析】直接根据二次根式的乘除法法则进行计算即可.==故选:A.【点睛】此题主要考查了二次根式的乘除法,熟练掌握运算法则是解答此题的关键.7.B【分析】根据分式有意义的条件,即分母不为零求出x的取值范围即可.x-≠,【详解】解:由题意得:280x≠,解得4故选:B.【点睛】本题主要考查了分式有意义的条件,熟知分式有意义,即分母不为零是解题的关键.8.C【详解】解:因为12<,11,y=,即x=1,1y-==.1)1故选:C.9.C【分析】根据二次根式的性质、绝对值的性质进行化简,然后代入求值即可.【详解】解:由二次根式的性质可知,4y x=+=|x-3|-x+4,当x=1时,y=5,当x=2时,y=3,当x≥3时,y=x-3+4-x=1,△当x分别取1,2,3,…,2022时,所对应的y值的总和是5+3+1×2020=2028;故选:C.【点睛】本题主要考查二次根式,熟练运用二次根式的性质是解答此题的关键.10.C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,△23,△1-1<2,△12<1,故选:C.【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.11【分析】根据二次根式的乘法法则和减法法则进行计算即可.444=【点睛】此题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.12.4 3±【分析】先将方程变形为2169x =,然后方程两边同时开平方即可得到x 的值. 【详解】解:由题意可知:2169x =, 等式两边同时开平方,得到:43x =±, 故答案为:43±. 【点睛】本题考查了利用平方根的定义解方程,计算过程中细心,注意正数开平方后有两个平方根. 13.4531.【分析】(1)根据二次根式的乘法运算法则计算,然后利用二次根式性质化简即可;(2)先把被开方式因式分解,利用二次根式性质化简,化简结果也可3(3)利用乘方的逆运算分出一次幂与10次幂即))1110111=,再利用积的乘方逆运将底数用平方差公式化简后再与一次幂因式相乘.【详解】解:(1)45==(23==()0a >;(3))))101011101)1)111111⎡⎤==⨯=⎣⎦故答案为(1)45(2)3(31.【点睛】本题考查二次根式的乘法乘方混合运算,掌握二次根式性质,二次根式乘方与乘法运算法则是解题关键. 14【分析】先化简二次根式,再合并同类二次根式即可.=【点睛】本题考查了二次根式的化简、二次根式的加减,掌握二次根式的性质和合并同类二次根式法则是解题的关键.15.53【分析】根据算术平方根的定义和实数的相反数分别填空即可.【详解】△2525=△25的算数平方根是5;3-3;故答案为:5,3.【点睛】本题考查了实数的性质,主要利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键.160)a≥0)a≥的式子叫做二次根式.0)a≥.【点睛】本题考查二次根式,解题的关键是正确理解二次根式的定义——0)a≥的式子叫做二次根式.17.5【分析】根据非负数的性质得出a=2,b=3,根据根与系数的关系可得x1+x2=2,x1•x2=3,整体代入即可求得.【详解】解:△实数a、b30b+=,△a=2,b=-3,△关于x的一元二次方程x2-ax+b=0的两个实数根分别为x1、x2,△x1+x2=a=2,x1•x2=b=-3,△12122(3)5x x x x-=-+-=,故答案为:5.【点睛】本题考查了非负数的性质以及一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解决本题的关键是熟练掌握一元二次方程根与系数的关系.18.(1)证明见解析(2)6【分析】(1)利用正方形的性质证明,45,AB CD ABE CDF 再结合BE =DF ,从而可得结论; (2)先利用正方形的性质证明6,,ACBD AC BD 再求解EF 的长,再利用四边形AECF 的面积12AEF CEF S S EF AC ,即可得到答案. (1)证明: 正方形ABCD ,,45,AB CD ABE CDF,BE DF = .ABE CDF ∴≌ (2)如图,连结AC , 正方形ABCD ,32,AB2232326,,AC BD AC BD2,BE DF == 6222,EF△四边形AECF 的面积12AEF CEF S S EF AC 126 6.2【点睛】本题考查的是全等三角形的判定与性质,正方形的性质,勾股定理的应用,二次根式的乘法运算,掌握“正方形的对角线相等且互相垂直平分”是解本题的关键.19.(1)3a (2)27x -【分析】(1)根据二次根式的乘法法则相乘,最后化简即可;(2a ,最后脱去绝对值化简即可.(1)原式3a =(2)△34x ≤≤△30x -≥,40x -≥原式234x x =---3(4)x x =---27x =-【点睛】本题考查了二次根式的性质及二次根式的乘法运算,绝对值的化简;(2)小题中一定注意确定绝对值符号内式子的符号.20.(1)(2)5【分析】(1)运用分配律进行运算,再利用二次根式除法运算法则运算,最后再进行加减运算即可;(2)先进行负整数指数幂运算、绝对值运算、零指数幂运算,然后再进行加减运算即可.【详解】解:(1)原式===2018-+(2)原式=2+3+1﹣1=5.【点睛】本题考查的知识点比较多,涉及二次根式除法运算、负整数指数幂、绝对值、零指数幂、有理数的加减等知识,但都比较简单,注意在运算的时候要细心,减少出错.21.(1)384;(2)【分析】(1)根据平方根和立方根的定义开方,在计算即可;(2)先化简,再利用二次根式的运算法则运算即可.(1)解:原式=3+5+34=834; (2)原式==【点睛】本题考查二次根式的化简,理解平方根、立方根的定义,熟练运用二次根式的运算法则是解题的关键.22.(1)2(3)-【分析】(1)先计算二次根式的除法,再将每个二次根式化为最简二次根式,最后合并同类二次根式;(2)利用二次根式的性质化简,再计算乘除法,最后合并同类二次根式;(3)先化为最简二次根式,分母有理化,再计算二次根式的加减法.(1)解:原式2-=2(2)原式=9(3)原式=22-【点睛】本题考查二次根式的混合运算,涉及分母有理化、最简二次根式等知识,是基础考点,掌握相关知识是解题关键.23.【分析】先确定0,0x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将,x y 的值代入计算即可得. 【详解】解:由题意得:10,0y x x>>, 0,0x y ∴>>,则2(53y x222(53x y x x =⋅2(=2==+将1,42x y ==代入得:原式== 【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.。
八年级数学下册二次根式(全章)习题及答案(含答案)

二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()2311223224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
八年级数学-二次根式练习题(含解析)

八年级数学-二次根式练习题(含解析)一、单选题1.下列式子不是二次根式的是( )A B C D2有意义,则x的取值范围为( )A.x≥3B.x≠3C.x>3 D.x≤33.下列二次根式中,属于最简二次根式的是()A B C D4.已知a为实数,)A.a B.﹣a C.﹣1 D.05.若代数式1x-有意义,则x的取值范围是( )A.x>﹣1且x≠1B.x≥﹣1 C.x≠1D.x≥﹣1且x≠1 6.如果√(2a−1)2=1−2a,则a的取值范围是()A.a<12 B.a≤12C.a>12D.a≥127x﹣5,则x的取值范围是()A.x<5 B.x≤5C.x≥5D.x>58.式子√2−a+√a−2在实数范围内有意义,则x的取值范围是()A.x<2 B.x≥2C.x=2 D.x<﹣29.若1≤a≤2,则化简√a2−2a+1+|a−2|的结果是()A.2a−3B.−a C.3−2a D.1二、填空题10,则x的取值范围是___.11=_________.12.如图,数轴上点A表示的数为a,化简:a=_____.-=______.13.已知,x y为实数,且4y=,则x y14===n≥1时,第n个表达式为_____.三、解答题15.x为何值时,下列各式有意义?16.化简:(1(2(3;(417.已知a,b为等腰三角形的两边长,且满足b=4+求此三角形的周长.18.在一节数学课上,李老师出了这样一道题目:先化简,再求值:1x-+其中x=9.小明同学是这样计算的:解:1x-+x-1+x-10=2x-11.当x=9时,原式=2×9-11=7.小荣同学是这样计算的:解:1x-+x-1+10-x=9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?19.已知二次根式√3−1a.2(1)求x的取值范围;(2)求当x=-2时,二次根式√3−1a的值;2(3)若二次根式√3−1a的值为零,求x的值.220.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化===|1|=1=_________________=________________=_________________②根据上述思路,试将下列各式化简:参考答案1.B【解析】0)a ≥的式子叫做二次根式”分析可知,A 、C 、D 中的式子都是二次根式,只有B 中的式子,由于30π-<,所以选项B 中的式子不是二次根式.故选B.2.A【解析】有意义,得到x-3≥0,解得:x≥3,故选:A .3.C【解析】A 、故A 不是;B 故B 不是;C 是;D 故D 不是.故选C4.D【解析】根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时意义,所以.故选D.5.D【解析】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.6.B【解析】根据二次根式的性质1可知:√(2a−1)2=|2a−1|=1−2a,即2a−1≤0故答案为B.a≤1.27.C【解析】∴5-x≤0∴x≥5.故选C.8.C【解析】解:由题意可得2-x=0,x-2=0,则x=2.故选择C.9.D【解析】解:∵1≤a≤2,∴a-1≥0,a-2≤0,=a-1+2-a=1,∴原式=√(a−1)2+|a−2|故答案为:D.10.x2≥【解析】,即x﹣2≥0,解得x≥2.试题分析:根据题意,故答案是x≥2.11.3【解析】=-=,|3|3故答案为:3.12.2.【解析】由数轴可得:0<a<2,则(2﹣a)=2.故答案为2.13.1-或7-.【解析】∵290x -且290x -≥,∴3x =±,∴4y =,∴1x y -=-或7-.故答案为:1-或7-.14(n =+【解析】(n ==+(n =+ 15.(1) x≥0;(2) x≤0;(3) x 为任意实数;(4) x≥1.【解析】解:(1)2x≥0,解得x≥0,(2)-x≥0,解得x≤0,(3)x 2≥0,解得x 为任意实数,(4)x -1≥0,解得x≥1.16.(1)8;(2)8||3||b a ;(3)8||y ;(4)13||y 【解析】解:(1==(28||3||ba==.(3==.(413||y==. 17.三角形的周长10.【解析】由题意,得24020aa--≥⎧⎨≥⎩,解得a=2,∴b=4 ,当a为腰时,三边为2,2,4,由三角形三边关系定理可知,不能构成三角形,舍去, 当b为腰时,三边为4,4,2,符合三角形三边关系定理,故三角形的三边长分别为4,4,2,∴三角形的周长=4+4+2=10.故答案为10.18.【解析】小荣同学的计算结果是正确的;,19.(1)x≤6 (2)2 (3)x=6【解析】(1)根据二次根式有意义的条件可得 3−12a ≥0,解得x ≤6 ,∴x 的取值范围是:x ≤6;(2)当x= -2时,二次根式√3−12a =√3−12×(−2)=√3+1=2; (3)由题意可得3−12a =0,解得x=6 .故答案为(1)x≤6 (2)2 (3)x=6 .203(2) 12. 【解析】==3+3=5-=12=122+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册二次根式练习题及答案九年级数学科检测范围:二次根式完卷时间:45分钟满分:100分一、填空题。
1、当x ________时,2?x在实数范围内有意义。
2、计算: =________。
3、化简: = _______。
4、计算:2×=________。
5、化简:=_______。
6、计算:÷7、计算:-20-5=_______。
8化简: = ______。
1235=_______。
二、选择题。
、x为何值时,x在实数范围内有意义 x?1A、x > 1B、x ≥ 1C、x 10a = - a ,则a的取值范围是A、 a>0B、 a 11、若a?4=,则的值为A、B、1C、100 D、19612、下列二次根式中,最简二次根式的是A、17B、13C、±17D、±132)14、下列计算正确的是A、2+ =B、2+=22C、2=D、15、若x A、-1B、1C、2x-D、5-2x16、计算的结果是A、2+1B、3C、1D、-1三、解答题。
17、计算: -18、计算:00·00819、利用计算器探索填空:44?=_______; 444?8=_______;444444?88=_______;…… 由此猜想:n个8) =__________。
44444?881、≤、、、65、、、、-二、选择题9、A 10、D 11、C 12、B 13、B 14、C 15、D 16、A 三、解答题 17、解:原式=2-18、解:原式=[]200·=00·=-2219、解:;66;666;……;666…6。
20、解:∵x+ =,∴= 10,121∴x+2,∴x+=8,xx222- + =-21x1x1221∴ = x+2,xx∴x- = ±6。
1x5初中数学二次根式测试题判断题:.1.2=2.…….?1?x2是二次根式.……………2?122=2?2=13-12=1.4.a,ab2),c1a是同类二次根式.……5.a?b的有理化因式为填空题:6.等式a?b.…………选择题:3b1?x?x2=______________.4b?a是同类二次根式,则a=_________,b=__________.16.下列变形中,正确的是………2=2×3=25?=9?42=a+b=-2517.下列各式中,一定成立的是……+118.若式子=a2a2?1=?1?1ab=1bab2x?1-?2x+1有意义,则x的取值范围是 (111)x≥x≤x=以上都不对222a19.当a<0,b<0时,把化为最简二次根式,得…………………………………b111ab -ab -?ab bab bbb20.当a<0时,化简|2a-a|的结果是…a -a a -3a计算:23.-;24.÷;+-422?1+20;a3b-ab+2ba+ab)÷ba.求值:27.已知a=28.已知x=29.已知解答题:30.已知直角三角形斜边长为已知|1-x|- 12,b=14,求ba?-的值.1,求x2-x+的值.?2x?2y+3x?2y?8=0,求x的值.6+)cm,一直角边长为cm,求这个x2?8x?16=2x-5,求x的取值范围.- -试卷答案1.√;2.×;3.×;4.√;5.×..x≤1..二次根式8.∵a有意义的条件是什么?a≥0.≥3?4?2,∴ 119.2-2=?23.222a10.a.911.从数轴上看出a、b是什么数?[a<0,b>0.]3a -4b是正数还是负数? [3a-4b<0.]6a-4b.12.3.?2?0,2??0.<.x?8和y?2各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]8,2.)=-11.3+25.11114.x2-2x+1=2;-x+x2=2.[x-1;-x.]当<x <1时,x-1422113与-x各是正数还是负数?[x-1是负数,-x也是负数.]-2x.2213..∴ 直角三角形的面积为:S=12×3×=- -326?答:这个直角三角形的面积为cm2.2=|1-x|-|x-右边=2x-5.x的取31.由已知,等式的左边=|1-x|-?1?x?0只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时?解得1≤x≤4.∴x?4?0.?值范围是1≤x≤4.- -人教版八年级上册测试数学试卷一、填空题1.______个.. 当x= 时,二次根式x?1取最小值,其最小值为。
._____________.5. 实数a在数轴上的位置如图所示:化简:a??______.6. 已知三角形底边的边长是6cm,面积是cm2,则此边的高线长..若a?2?c?4??0,则a?b?c? . 计算:201020109. 已知x?3x?1?0,则2210.??,……,请你将猜想到的规律用?含自然数n的代数式表示出来是.二、选择题11. 下列式子一定是二次根式的是A.?x?B.x C.x2?2D.x2?212. 下列二次根式中,x的取值范围是x?2的是A2-xB.x+ C.x-D.1x-2b13. 实数a,,在数轴上的对应点的位置如图所示,式子①b?c?0②a?b?a?c③bc?ac④ab?ac中正确的有A.1个B.2个C.3个D.4个14. 下列根式中,是最简二次根式的是八年级数学201–201学年第二学期测试题共4页第1页A.B.C.15. 下列各式中,一定能成立的是 22A.? B.a2?2C.x2?2x?1?x?1 D.x2?9?16.设4a,小数部分为b,则a?x?3?x?31的值为bD.A.1?C.117. 把m?1根号外的因式移到根号内,得 m A.mB.?m C.??m D.?m18.2,则a的取值范围是A.a≥4三、解答题 19. 计算:B.a≤ C.2≤a≤ D.a?2或a?422?1??41214??2?1?0?2820. 已知:y?x?2?2?x?3,求:的值八年级数学201–201学年第二学期测试题共4页第2页421.。
如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺面成.求一块方砖的边长.22. 如图所示的Rt△ABC中,∠B=90°,点P从点B 开始沿BA边以1厘米/?秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?Q23. 10分)阅读下面问题:11?21?2?1?5?2?2?1;1?2?3?2?3?2;?1的值;??2,……。
试求:7?1n?1?n的值。
根据你发现的规律,请计算:11111 1?2?25?22010?20092011?2010八年级数学201–201学年第二学期测试题共4页第3页24. 已知M?N?.甲、乙两个同学在甲说M的值比N大,乙说N的值比My?18的条件下分别计算了M和N的值.大.请你判断他们谁的结论是正确的,并说明理由.25. 12分)如图:面积为48cm的正方形四个角是面积为3cm的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的底面边长和体积分别是多少?八年级数学201–201学年第二学期测试题共4页第4页22八年级上第十六章二次根式测试题参考答案一、填空题1..-1 ,03.24.65. 16.. 1 .9. 10。
2x?120.解:原式= ??x?2x?2=xx?11. x?2x?2x?2将x?21.?2代入得:原式=?13?2?2??.2223.4。
25。
解:乙的结论正确.理由:由y18,可得x?8,y?18.因此M??2???N???0.?M?N,即N的值比M大.26。
底面边长为3.5cm八年级数学201–201学年第二学期测试题共4页第5页。