(完整)人教版八年级下册二次根式教案
人教版八年级数学下册16.1二次根式(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的定义、性质、化简和运算。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点突破:对于分母有理化,通过例题演示如何将$\frac{1}{\sqrt{3}}$有理化为$\frac{\sqrt{3}}{3}$,强调分子分母同乘以$\sqrt{3}$的步骤和意义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数平方根的情况?”(如计算一个正方形的对角线长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的定义和性质。二次根式是指形如$\sqrt{a}$的表达式,其中$a$是一个非负实数。它是解决非整数平方问题的重要工具,广泛应用于数学和物理学等领域。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算一个边长为$\sqrt{2}$的正方形的面积,这里就需要用到二次根式的概念。
3.掌握二次根式的乘除法法则,提高数学问题解决能力;
4.通过二次根式的平方与立方的学习,增强数学空间想象力和创新意识;
5.能够将二次根式应用于解决实际问题,提升数学在实际生活中的运用能力。
三、教学难点与重点
1.教学重点
人教版八年级下册二次根式教案

人教版八年级下册二次根式教案一、教材分析本教材是人教版八年级下册,第一单元,二次根式。
本单元主要内容包括:1.二次根式的定义及性质2.二次根式的化简3.二次根式的运算4.二次根式的应用其中,二次根式的定义、化简、运算内容是本单元的重点,是学习本单元的基础。
而二次根式的应用则是拓展内容,可以让学生了解到根式在现实生活中的应用。
二、教学目标知识目标1.了解二次根式的定义及性质2.掌握二次根式的化简方法3.掌握二次根式的加减乘除运算方法4.了解二次根式在实际问题中的应用技能目标1.能够独立完成二次根式的化简、计算和应用题目2.能够在实际问题中使用二次根式进行运算和求解情感目标1.培养学生对于数学的兴趣和好奇心2.培养学生解决实际问题的能力和自信心三、教学重难点重点1.二次根式的化简方法2.二次根式的加减乘除运算方法难点1.二次根式的应用题目2.数学语言的运用四、教学过程1. 二次根式的定义及性质1.引导学生通过例题了解二次根式的定义2.讲解二次根式的性质,如非负性、次幂、加、减、积、商等2. 二次根式的化简1.讲解化简的基本原则2.通过例题一步一步地讲解化简的方法3. 二次根式的运算1.讲解加减乘除的基本原则2.通过例题一步一步地讲解加减乘除的方法4. 二次根式的应用1.讲解二次根式在实际问题中的应用2.通过例题引导学生理解应用题5. 课堂练习1.布置练习题,让学生通过练习加深对本单元内容的理解2.布置作业题,巩固本单元知识五、教学评价1.通过课堂回答问题、闪光灯、课堂练习等方式对学生进行监测和评价2.对学生参与课堂活动和完成作业的情况进行评价3.通过测试等方式对学生掌握情况进行评价六、教学反思本教案重点关注二次根式的化简及运算方法,同时通过应用题目的讲解让学生了解到二次根式的实际应用。
在教学过程中,我采用了多种教学方法,如例题、练习题、闪光灯等,以激发学生兴趣,提高课堂效率。
同时,在教学中也对学生的学习情况进行了监测和评价,以确保学生在本单元学习中取得良好的成果。
《二次根式(第1课时)》教学设计-人教版八年级下册数学

《二次根式(第1课时)》教学设计一、内容和内容解析1.内容二次根式的概念.2.内容解析本节课是在学生学习了平方根、算术平方根的概念,会用根号表示数的平方根、算数平方根根,知道开方与开平方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1.教学目标(1)体会研究二次根式是实际的需要,激发学生的数学学习兴趣。
(2)了解二次根式的概念,培养从特殊到一般的思维能力。
(3)理解二次根式有意义的条件。
2. 教学目标解析1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“双重非负性,”即被开方数≥0是非负数,算术平方根≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.本节课的教学难点为:理解二次根式的双重非负性.四、教学过程设计1.创设情境,提出问题问题1解答:(1)9的平方根是_______,算术平方根是_______;一个正数有_______个平方根;0的平方根是_______;负数_______平方根.你能用带有根号的的式子填空吗?(2)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(3)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.(4)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t=? _____.师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.问题2 上面得到的式子,分别表示什么意义?它们有什么共同特征?师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.【设计意图】为概括二次根式的概念作铺垫.2.抽象概括,形成概念问题3 你能用一个式子表示一个非负数的算术平方根吗?师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.追问:在二次根式的概念中,为什么要强调“a≥0”?师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.3.辨析概念,应用巩固例1 见ppt 例1、知识点一的1、2及思考:下列式子,哪些是二次根式?师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.例2 见ppt知识点二4、5当是怎样的实数时,在实数范围内有意义呢?师生活动:先让学生独立思考,再追问.【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.问题4 你能比较与0的大小吗?师生活动:通过分和这两种情况的讨论,比较与0的大小,引导学生得出≥0的结论,强化学生对二次根式本身为非负数的理解,【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.4.综合运用,巩固提高练习1 完成ppt第7题练习2 完成ppt8 , 9 , 10【设计意图】辨析二次根式的概念,确定二次根式有意义的条件. 【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.5.总结反思教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题. (1)本节课你学到了哪一类新的式子?(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?(3)二次根式与算术平方根有什么关系?师生活动:教师引导,学生小结.【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.6.布置作业:教科书习题16.1第1,3,5, 7,10题.。
人教版八年级下册16.2《二次根式的乘除》教案

1.教学重点
a.掌握二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$($a \geq 0$,$b \geq 0$)
b.掌握二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)
五、教学反思
在今天的教学中,我们探讨了二次根式的乘除运算。通过这节课的学习,我发现学生们在理解乘除法则和应用这些法则解决实际问题时,普遍存在一些挑战。首先,学生们在从理论到实际应用的转换上存在一定的难度。他们能够理解乘法法则和除法法则的概念,但在将法则应用到具体题目中时,往往不知道如何下手。
例如,在计算$\sqrt{12} \times \sqrt{18}$时,部分学生未能首先将根式化简,而是直接相乘,导致计算错误。这让我意识到,在讲解乘除法则时,需要更加强调化简的步骤,让学生形成自动化的解题流程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.了解二次根式乘除运算在实际问题中的应用。
教学内容涵盖以下例题与练习:
1.计算下列二次根式的乘积:
$\sqrt{3} \times \sqrt{5}$,$2\sqrt{6} \times 3\sqrt{2}$,$5\sqrt{2} \times \sqrt{18}$
人教版八年级下册数学16.1二次根式(教案)

-二次根式的化简:学会化简二次根式,包括将复杂二次根式化简为最简二次根式,以及合并同类二次根式。
-二次根式的应用:了解二次根式在实际问题中的应用,如求解平面几何中的面积、长度等。
举例:重点强调√a(a≥0)的定义,以及如何将√(ab)和√(a/b)等复杂形式化简为最简二次根式。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对二次根式的概念和性质掌握得还算不错。通过引入日常生活中的例子,他们能够更好地理解二次根式的实际意义。在讲授过程中,我注意到有些学生对于二次根式的化简和混合运算感到有些困惑,这让我意识到这部分内容是教学的难点。
3.二次根式的化简:学会化简二次根式,掌握将复杂二次根式化简为最简二次根式的方法。
4.二次根式的乘除法运算:掌握二次根式的乘除法运算规则,能正确进行相关运算。
5.二次根式的加减法运算:学会二次根式的加减法运算,并能熟练运用运算规则进行混合运算。
6.二次根式的应用:了解二次根式在实际问题中的应用,如求解平面几何中的面积、长度等问题。
4.培养学生的数学建模素养:通过解决实际问题时运用二次根式,培养学生建立数学模型、运用数学知识解决现实问题的能力。
5.培养学生的几何直观素养:在学习二次根式的应用过程中,使学生能运用几何直观发现、理解并解决相关问题。
三、教学难点与重点
1.教学重点
-二次根式的概念:理解二次根式的定义,掌握其一般形式,这是学习后续内容的基础。
人教版八年级数学下册(教案)16.1二次根式

1.理论介绍:首先,我们要了解二次根式的定义和基本性质。二次根式是指根号下含有变量的表达式,它是解决非完全平方数平方根的有力工具,并在几何图形的计算中有着广泛应用。
2.案例分析:接下来,我们来看一个具体的案例,如计算边长为√5的正方形的面积。这个案例展示了二次根式在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学Βιβλιοθήκη 将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.二次根式的乘除法:熟练掌握二次根式的乘除法则,并能应用于解决实际问题。
4.二次根式的加减法:了解二次根式加减法的法则,学会合并同类二次根式。
5.二次根式的应用:运用二次根式解决生活中的实际问题,如计算面积、体积等。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析、解决问题,形成严密的数学思维。
五、教学反思
今天我们在课堂上探讨了二次根式的相关知识,回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于导入新课的部分,我发现通过提问的方式引导学生思考生活中的二次根式应用,能够激发他们的好奇心和学习兴趣。但在实际操作中,可能需要更加贴近学生生活的例子,让他们更容易理解和接受。
其次,在新课讲授中,我尽量用简洁明了的语言解释二次根式的定义和性质,但发现部分学生在理解上仍有困难。我想在以后的课堂上,可以增加一些具体实例,让学生在实际运算中逐步掌握这些概念。
人教版数学八年级下册16章《二次根式》单元整体教学设计

(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。
人教版数学八年级下册第十六章二次根式(教案)

-难点二:二次根式的乘除运算。在进行乘除运算时,如何正确应用乘除法则,特别是当根号下的数不明确时,如何进行化简。
-举例:解决√(12/18)的问题,需要先化简分数,再进行根号下的运算。
-难点三:二次根式的化简。在化简二次根式时,如何正确识别和分解根号下的因数,以及如何处理含有变量的问题。
我也注意到,在讲解二次根式的乘除法则时,需要更多的例题和练习来巩固学生的理解。有些学生对于如何正确应用这些法则感到困惑,特别是在处理含有变量的二次根式时。因此,我计划在下一节课中增加一些更具挑战性的练习题,让学生在解决问题的过程中深化对法则的理解。
此外,我发现学生在化简二次根式时,对因数分解的掌握不够熟练,这影响了他们对二次根式的化简能力。针对这一点,我打算在未来的课堂中,加强对因数分解的复习和练习,帮助学生更好地掌握这个工具。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是表示非负数的平方根的数学表达式,如√9。它在解决面积、速度等实际问题中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在计算非标准图形面积中的应用,以及它如何帮助我们解决问题。
-重点二:二次根式的乘除运算。掌握二次根式的乘除法则,能够正确进行运算,包括合并同类项,如√a * √b = √(ab)。
-重点三:二次根式的化简与应用。能够对二次根式进行化简,解决实际问题,如计算√(4x^2)或求解含二次根式的方程。
2.教学难点
-难点一:对二次根式概念的理解。学生对二次根式定义的理解可能存在困难,特别是对于根号下的非负性要求,以及根号内外的数如何进行运算。
四、教学流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1.1 二次根式 教学内容 二次根式的概念及其运用 教学目标
理解二次根式的概念,并利用(a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键
1.重点:形如(a≥0)的式子叫做二次根式的概念;
2.难点与关键:利用“(a≥0)”解决具体问题. 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根
的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号. (学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?
3.当a<0,有意义吗? 老师点评:(略) 例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、
、、-、、(x≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二
次根式的有:、、、. 例2.当x是多少时,在实数范围内有意义?
aaa
310
4
6
a
a2331xx
0422
1
xyxy
2x02xy
33
1
x42
1
xy
31x 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义. 解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义. 三、巩固练习 教材P5练习1、2、3. 四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得 由①得:x≥- 由②得:x≠-1 当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2) (2)若+=0,求a2004+b2004的值.(答案:) 五、归纳小结(学生活动,老师点评) 本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业 1.教材P5 1,2,3,4 2.选用课时作业设计.
31x131331x
23x11x
23x11x23x11x
23010xx
32
3223x11x
2x2xxy
1a1b25
a 第一课时作业设计 一、选择题 1.下列式子中,是二次根式的是( )
A.- B. C. D.x 2.下列式子中,不是二次根式的是( ) A. B. C. D. 3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B. C. D.以上皆不对 二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根. 三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?
2.当x是多少时,+x2在实数范围内有意义?
3.若+有意义,则=_______. 4.使式子有意义的未知数x有( )个. A.0 B.1 C.2 D.无数 5.已知a、b为实数,且+2=b+4,求a、b的值.
第一课时作业设计答案: 一、1.A 2.D 3.B
二、1.(a≥0) 2. 3.没有
三、1.设底面边长为x,则0.2x2=1,解答:x=.
2.依题意得:,
∴当x>-且x≠0时,+x2在实数范围内没有意义. 3. 4.B 5.a=5,b=-4
737x4168
1
x
515
23xx3x3x2x2(5)x
5a102a
aa52300xx
320xx
3223xx
1316.1.2 二次根式(2) 教学内容 1.(a≥0)是一个非负数;
2.()2=a(a≥0). 教学目标 理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题. 教学重难点关键 1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;•用探究的方法导出()2=a(a≥0). 教学过程 一、复习引入 (学生活动)口答 1.什么叫二次根式?
2.当a≥0时,叫什么?当a<0时,有意义吗? 老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a≥0)是一个非负数. 做一做:根据算术平方根的意义填空: ()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______. 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
aa
aaaa
aaaa
aaaa4293
13720
444 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以 ()2=a(a≥0) 例1 计算
1.()2 2.(3)2 3.()2 4.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题. 解:()2 =,(3)2 =32·()2=32·5=45,
()2=,()2=. 三、巩固练习 计算下列各式的值:
()2 ()2 ()2 ()2 (4)2
四、应用拓展 例2 计算
1.()2(x≥0) 2.()2 3.()2
4.()2 分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0; (4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题. 解:(1)因为x≥0,所以x+1>0 ()2=x+1
(2)∵a2≥0,∴()2=a2 (3)∵a2+2a+1=(a+1)2 又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴=a2+2a+1
293
13137
27
2
0a
325567
2
a323
255
565
67
22
2(7)7
24
182394078
22(35)(53)
1x2a2
21aa
24129xx
a1x2a
221aa (4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结 本节课应掌握:
1.(a≥0)是一个非负数;
2.()2=a(a≥0);反之:a=()2(a≥0). 六、布置作业 1.教材P5 5,6,7,8 2.选用课时作业设计.
第二课时作业设计 一、选择题
1.下列各式中、、、、、,二次根式的个数是( ). A.4 B.3 C.2 D.1 2.数a没有算术平方根,则a的取值范围是( ). A.a>0 B.a≥0 C.a<0 D.a=0 二、填空题
1.(-)2=________.
2.已知有意义,那么是一个_______数. 三、综合提高题 1.计算
(1)()2 (2)-()2 (3)()2 (4)(-3)2
(5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) (4)x(x≥0)
3.已知+=0,求xy的值. 4.在实数范围内分解下列因式: (1)x2-2 (2)x4-9 3x2-5
24129xx
aaa
153a21b22ab220m144
31x
9312623
(2332)(2332)
16
1xy3x