直流电动机控制系统设计

合集下载

直流电机控制器设计说明书

直流电机控制器设计说明书

直流电机控制器设计说明书1.1 设计思想直流电机PWM 控制系统主要功能包括:直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便读出电机转速的大小,能够很方便的实现电机的智能控制。

其间,还包括直流电机的直接清零、启动、暂停、连续功能。

该直流电机系统由以下电路模块组成:振荡器和时钟电路:这部分电路主要由89C51单片机和一些电容、晶振组成。

设计输入部分:这一模块主要是利用带中断的独立式键盘来实现。

设计控制部分:主要由89C51单片机的外部中断扩展电路组成。

设计显示部分:包括液晶显示部分和LED 数码显示部分。

LED 数码显示部分由七段数码显示管组成。

直流电机PWM 控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。

1.2 系统总体设计框图直流电机PWM 调速系统以AT89C51单片机为核心,由命令输入模块、LED 显示模块及电机驱动模块组成。

采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给直流电机驱动芯片发送PWM 波形,H 型驱动电路完成电机正,反转控制;同时单片机不停的将从键盘读取的数据送到LED 显示模块去显示,进而读取其速度。

1.3 程序设计流程图图1-2中断服务流程图2 总体硬件电路设计2.1 芯片介绍2.1.1 89C51单片机结构特点: 8位CPU ;片内振荡器和时钟电路; 32根I/O 线;外部存贮器寻址范围ROM 、RAM64K ; 2个16位的定时器/计数器; 5个中断源,两个中断优先级; 全双工串行口;图1.2 定时中断服务流程图布尔处理器。

图2-1 89C51单片机引脚分布图2.1.2 RESPACK-8排阻RESPACK-8是带公共端的8电阻排,它一般是接在51单片机的P0口,因为P0口内部没有上拉电阻,不能输出高电平,所以要接上拉电阻。

图2-2 RESPACK-8引脚分布图2.1.3 驱动器L298L298是双电源大电流功率集成电路,直接采用TTL逻辑电平控制,可用来驱动继电器,线圈,直流电动机,步进电动机等电感性负载。

直流电机PWM控制系统设计

直流电机PWM控制系统设计

0 前言在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用,无论在工业农业生产、交通运输、国防航空航天、医疗卫生、商务与办公设备,还是在日常生活中的家用电器,都在大量地使用着各式各样的电动机。

据资料统计,现在有的90%以上的动力源来自于电动机,电动机与人们的生活息息相关,密不可分。

随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机控制向更复杂的控制发展。

直流电动机具有优良的调速特性,调速平滑、方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转,能满足生产过程自动化系统各种不同的特殊运行要求。

直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。

直流电机的数字控制是直流电动机控制的发展趋势,用单片机的数字控制的发展趋势,用单片机进行控制是实现电动机数字控制的最常用的手段。

由于电网相控变流器供电的直流电机调速系统能够引起电网波形畸变、降低电网功率因数,除此之外,该系统还有体积大、价格高、电压电流脉动频率低、有噪声等缺点。

而采用直流电动机的PWM调速控制系统可以克服电网相控调速系统的上述诸多缺点。

电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。

正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。

电动机的驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。

功率器件控制条件的变化和微电子技术的使用也使新型的电动控制方法能够得到实现,脉宽调制控制方法(PWM和SPWM),变频技术在直流调速和交流调速中获得广泛的应用。

非线性大作业—直流电动机调速系统的建模与控制系统的设计

非线性大作业—直流电动机调速系统的建模与控制系统的设计
其中,n为矩阵A的维数, 称为系统的能控性判别矩阵。
3、PBH秩判据
线性定常系统(1)为完全能控的充分必要条件是,对矩阵A的所有特征值 均成立, ( )或等价地表示为 , 也即(SI-A)和B是左互质的。
4、PBH特征向量判据
线性定常系统(1)为完全能控的充分必要条件是A不能有与B的所有列相正交的非零左特征向量。也即对A的任一特征值,使同时满足 , 的特征向量 。
所谓最优控制,就是根据建立的系统的数学模型,选择一个容许的控制规律,在一定的条件下,使得控制系统在完成所要求的控制任务时,使某一指定的性能指标达到最优值、极小值或极大值。本文利用线性二次型最优调节器(LQR)方法对移动高架吊车进行最优控制。控制目的是使移动高架吊车能在不平衡点达到平衡,并且能够经受一定的外加干扰[8]。
能控性的直观讨论:
从状态空间的角度进行讨论:输入和输出构成系统外部变量,状态为系统内部变量。能控性主要看其状态是否可由输入影响。每一个状态变量的运动都可由输入来影响和控制,由任意的始点到达原点,为能控,反之为不完全能控。具体来说就是指外加控制作用u(t) 对受控系统的状态变量x(t)和输出变量y(t)的支配能力,它回答了u(t)能否使x(t)和y(t)作任意转移的问题。
3.1.2能控性判据
我们利用线性系统的能控性判据来判断其能控性。
设线性定常系统状态方程为:
(1)
1、格拉姆矩阵判据
线性定常系统(1)为完全能控的充分必要条件是,存在时刻,使如下定义的格拉姆(Gram)矩阵 为非奇异。
其中,该判据的证明用到了范数理论中的矩阵范数,在此不再赘述。
2、秩判据
线性定常系统(1)为完全控的充分必要条件是 ,
2 直流电动机调速系统数学模型的建立

课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计

课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。

直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。

改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。

直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。

随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。

与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。

基于这么多的优点无刷直流电机有了广泛的应用。

比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。

1.2 国内外研究状况目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。

外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。

当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。

近些年来,计算机和控制技术快速发展。

单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。

经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。

所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。

1.3 课题设计的主要内容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。

选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。

本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要内容。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

直流电机速度PID控制系统设计毕业论文(设计).doc.doc

直流电机速度PID控制系统设计毕业论文(设计).doc.doc

序号(学号〉: 161240303长春大学 毕业设计(论文)直流电机速度PID 控制系统设计李一丹国际教育学院自动化1612403曹福成2016 年 5 月 30 0姓 名 学 院 专 业 班 级 指导教师直流电机速度PID控制系统设计摘要:针对现有的直流电机控速难的问题,本文设计了一种基于ATmegal6L单片机的直流电机速度控制系统。

本系统以ATinegal6L单片机为主控制器,搭载了L298n为电机驱动,通过霍尔元件进行测速,通过按键控制电机的转动方向和转动速度,并配以温度传感器DS18B20对温度进行监测,通过PID算法调节PW\1 进行对速度控制。

该系统包括的模块主要有单片机为主体的控制模块、电机的驱动模块、对电机速度进行监测的模块、由LCD1602构成的显示ky r模块、电源模块和按键控制模块等。

本系统可以通过PID算法实现可编程脉宽波形对直流电机的速度进行控制,并且可以显示出当前电机的转速。

关键词:单片机;PID算法;直流电机The design of DC motor speed control system with PID Abstract: According to the existing DC motor speed control problem, this paper describes the design of a DC motor speed control system based on ATmegal6L MCU. To ATMEGA16L microcontroller as the main controller for the system, equipped with a L298n for motor drive, through the hall element of speed, through the buttons to control the motor rotation direction and the rotation speed, and the temperature sensor DS18B20 the temperature monitoring, PID algorithm is used to adjust the PWM control of the speed. The system includes the following modules display microprocessor control module, as the main body of the motor drive module, monitoring module, the speed of motor is composed of LCD1602 module, power supply module and key control module.This system can realize through PID algorithm to control the speed of the programming pulse waveforms of DC motor, and can display the current motor speed.Keywords: single chip microcomputer, PID algorithm, DC motor ky r戈ml ml ——II —In —In | * 11—I 1111 ml 1111目录Bit (1)l.i选题背景及意义 (1)1.2国内外研宄现状 (2)1.3木文主要研究的内容 (3)第2章总体方案论述 (4)ky r2.1系统主要传感器介绍 (4)2.1.1温度传感器 (4)2.1.2转速检测模块 (5)2.2系统总体功能及方案选择 (6)2.2.1系统所需模块及功能 (6)2.2.2主控制器选择 (8)第3章系统总体硬件设计 (10)3.1单片机最小系统 (10)3.1.1ATmegal6L单片机的引脚分布 (10)3.1.2最小系统的硬件电路 (13)3.2电机驱动电路 (14)3.3温度检测电路 (15)3.4光电管提示电路和按键控制电路 (15)3.5LCD1602 显示电路 (16)3.6电源电路 (17)3.7本章小节 (18)第4章系统软件设计 (19)4.1系统总体流程图 (19)4.2 PID算法简介 (19)4.2.1PID算法介绍 (20)4.2.2HD算法结果 (21)4.3系统调试步骤 (21)4.4误差分析即改进方法 (22)给论 (23)致谢 (24)参考文献 (25)隱 (26)附录I系统总体硬件电路图 (26)附录II系统中部分程序 (27)ky r In—ml ml ml ml | , I af—.第1章绪论1.1选题背景及意义电动机简称电机,俗称马达,在现实生活中,我们处处都可以见到电机的身影,小到小学生玩的电动四驱车,大到炼钢厂用的滚动罐,这些都是电机家族的成员。

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。

采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。

而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。

并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。

随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。

1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。

示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X X X X X学院题目:直流电动机控制系统学 院 XXXXXX学院专 业 自动化班 级 XX班姓 名 XXX学 号 XXXXX指导老师 XXX2012年 12 月 25 日1、 设计题目:直流电动机控制系统1、前言近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。

直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。

采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。

而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。

另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。

PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。

2、系统设计原理脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。

按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

直流电动机的转速n和其他参量的关系可表示为(1)式中 Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。

由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。

3、方案选择及论证3.1、方案选择3.1.1、改变电枢回路电阻调速可以通过改变电枢回路电阻来调速,此时转速特性公式为n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。

当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。

Rw的改变可用接触器或主令开关切换来实现。

这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,效率低,故现在这种调速方法已极少采用,本次设计不采用。

3.1.2、改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。

由式1-1可看出,电动机的转速与磁通Ф(也就是励磁电流)成反比,即当磁通减小时,转速n升高;反之,则n降低。

与此同时,由于电动机的转矩Te 是磁通Ф和电枢电流Ia的乘积(即Te=CTФIa),电枢电流不变时,随着磁通Ф的减小,其转速升高,转矩也会相应地减小。

所以,在这种调速方法中,随着电动机磁通Ф的减小,其转矩升高,转矩也会相应地降低。

在额定电压和额定电流下,不同转速时,电动机始终可以输出额定功率,因此这种调速方法称为恒功率调速。

为了使电动机的容量能得到充分利用,通常只是在电动机基速以上调速时才采用这种调速方法。

本次设计不采用。

3.1.3、采用PWM控制的调速方法图1为PWM降压斩波器的原理电路及输出电压波形。

在图1a中,假定晶体管V1先导通T1,秒(忽略V1的管压降,这期间电源电压Ud全部加到电枢上),然后关断T2秒(这期间电枢端电压为零)。

如此反复,则电枢端电压波形如图1b中所示。

电动机电枢端电压Ua为其平均值。

图1 PWM降压斩波器原理电路及输出电压波形a) 原理图 b)输出电压波形(3)式(3)中(4)为一个周期T中,晶体管V1导通时间的比率,称为负载率或占空比。

使用下面三种方法中的任何一种,都可以改变的值,从而达到调压的目的:(1)定宽调频法:T1保持一定,使T2在0~∞范围内变化;(2)调宽调频法:T2保持一定,使T1在0~∞范围内变化(3)定频调宽法:T1+T2=T保持一定,使T,在0~T范围内变化。

不管哪种方法,的变化范围均为0≤≤l,因而电枢电压平均值Ua的调节范围为0~Ud,均为正值,即电动机只能在某一方向调速,称为不可逆调速。

当需要电动机在正、反向两个方向调速运转,即可逆调速时,就要使用图1—2a所示的桥式(或称H型)降压斩波电路。

在图2a中,晶体管V1、V4是同时导通同时关断的,V2、V3也是同时导通同时关断的,但V1与V2、V3与V4都不允许同时导通,否则电源Ud 直通短路。

设V1、V4先同时导通T1秒后同时关断,间隔一定时间(为避免电源直通短路。

该间隔时间称为死区时问)之后,再使V2、V3同时导通T2秒后同时关断,如此反复,则电动机电枢端电压波形如图2b所示。

图2 桥式PWM降压斩波器原理电路及输出电压波形a)原理图 b)输出电压波形电动机电枢端电压的平均值为(4)由于0≤≤1,Ua值的范围是 -Ud~+Ud,因而电动机可以在正、反两个方向调速运转。

图3给出了两种PWM斩波电路的电枢电压平均值的特性曲线。

图3两种斩波器的输出电压特性3.2、元器件的选择比较3.2.1、基于IGBT和 MOSFET功率管的驱动电路设计的比较IGBT驱动电路能驱动大型的功率设备,但价格高。

MOSFET能驱动较大的功率设备,价格比IGBT低很多。

本课程设计是驱动小功率直流电动机,可以用IGBT和 MOSFET功率管的驱动电路设计。

但电动机功率仅为100W,所以本课程设计采用MOSFET管来进行控制。

功率场效应管(MOSFET)与双极型功率相比具有如下特点: 1.场效应管(MOSFET)是电压控制型器件(双极型是电流控制型器件),因此在驱动大电流时无需推动级,电路较简单; 2.输入阻抗高,可达108Ω以上; 3.工作频率范围宽,开关速度高(开关时间为几十纳秒到几百纳秒),开关损耗小; 4.有较优良的线性区,并且场效应管(MOSFET)的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小,最合适制作Hi-Fi音响; 5.功率场效应管(MOSFET)可以多个并联使用,增加输出电流而无需均流电阻。

3.2.2、 89S52单片机52单片机价格便宜,使用简单、方便,功能较齐全,能够达到控制本电路的要求。

所本本课程设计采用89S52单片机。

3.2.2、 光耦隔离开关光耦隔离开关是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

3.2.3、 7805稳压管7805能使输入电压(正常条件7-25伏)转化为5伏左右输出,供光耦隔离开关发光部分及单片机等供电。

价格便宜,使用方便。

3.2.4 IRF740 MOSFET功率管1管脚(G)接输入信号,2管脚(s)接地,3管脚(D)接电压源。

图4 IRF740示意图 图5 IRF740主要参数3.2.5、 直流电机参数额定转速1600r/min,额定电压220V。

4、系统电路总设计图6 总体电路原理图本次课程设计采用定频调宽法:T1+T2保持一定,使T1在0~T范围内变化来改变a的值从而达到调压的目的。

以89S51单片机系统和7805稳压电源系统以及光电耦合MOSFET部分组成。

由键盘K1和K2发出指令,单片机处理后经P26口发出矩形波,通过占空比的调节达到电机调速的目的。

当按下key1按键时,IRF740MOSFET功率管1脚的高电平占空比增大,电枢电压增大,电机转速增大;当按下key2按键时,IRF740MOSFET 功率管1脚的高电平占空比减小,电枢电压减小,电机转速减小。

从而通过单片机达到简单调速的目的。

4.1、单片机最小系统部分图7 最小单片机系统本次设计中主要应用了89S51单片机,由最小单片机系统组成,并将单片机的P26口作为输出口,输出占空比不同的矩形波,供给后续驱转速和电压的关系动电路部分,在单片机的外围扩展了两个按键,K1作为加速按键,K2作为减速按键,进行调速控制。

4.2、驱动电路部分图8驱动电路驱动部分主要由用的光电耦合器和MOSFET组成,由单片机的P26口提供的信号,P26当为高电平时,发光管导通,光电耦合器输出低电平,MOSFET关闭,回路关闭。

当P26口为低电平时,发光管关闭,光电耦合器输出为高电平,MOSFET打开,回路导通。

4.3、电源部分图9电源电路电源部分采用的是三端稳压器7805,输入由AC-DC变压器提供+9V直流电,经7805稳压,由电容滤波,输出+5V电压,为单片机提供工作电源。

实验数据记录答辩时得知数据有偏差,但确实为实验实测数据。

附录有图。

序号1234转速(VPM)11931073906717电压(V)169152.3129.1102.45、硬件调试过程由于我在实习的缘故,调试过程主要由叶秋平完成,调试的过程中得到了杨成安同学的大力帮助,调试工程中出现了一个问题:电机转速快,不能调速。

经过大家商量,大致的调试步骤如下:用示波器检测检查电路1.使用按键,示波器检测MOSFET功率管1脚,发现其占空比能改变。

2.检测P2.6,光耦隔离开关发射端A脚,接受端C脚,波形正常。

然后检测MOSFET功率管1脚的波形,发现其低电平为1v左右,高电平为13v左右。

3.最后猜想可能是1V的电平也可能使MOSFET功率管导通,于是减小MOSFET功率管3脚的电压,把其改为5V。

用示波器测量1脚电压,显示方波的低电平为0.2v左右,高电平5v左右。

最后按下按键能控制电机转速。

原因分析:MOSFET功率管3脚的输入电压过高时,在前面电路的影响下其低电平电压会偏高,从而导通IRF740MOSFET功率管。

解决方法:降低MOSFET功率管3脚的输入电压,可降至5V6、设计总结体会这一次的课程设计让我学到了不少的东西,由于有前几次的经验,这次课程设计应该来说还是比较顺利的,由于我和胡佳春在实习,平时比较忙,许多准备工作都是******在做,自己对课程设计所花时间不多,以至于给后面的答辩和论文写作方面带来了很多的麻烦。

从原理图的设计,电路板的焊接到写课程设计论文,在这个过程中我们也遇到了很多的困难,如成员间分工不明确,程序大家都不熟悉等。

相关文档
最新文档