第9章 压杆稳定《材料力学》教学课件
合集下载
《材料力学压杆稳定》课件

05
压杆稳定性设计原则与实例
压杆稳定性设计原则
压杆稳定性是指压杆在受到外力作用 时,能够保持其原有平衡状态的能力 。
压杆稳定性设计原则是确保压杆在使 用过程中能够承受外力作用,避免发 生失稳和破坏的关键。
设计压杆时,应遵循以下原则:选择 合适的材料、确定合理的截面尺寸、 优化压杆长度和形状、避免过大的偏 心载荷等。
本课程介绍了多种稳定性分析方法,包括欧拉公式法、经验公式法、能量法等。通过这些 方法的学习和应用,我们能够根据不同情况选择合适的分析方法,对杆件进行准确的稳定 性评估。
实际应用与案例分析
本课程结合实际工程案例,对压杆稳定问题进行了深入的探讨和分析。通过这些案例的学 习,我们了解了压杆稳定问题在实际工程中的重要性和应用价值,提高了解决实际问题的 能力。
不同截面形状的压杆,其临界载荷和失稳形态 存在差异。
支撑条件
支撑刚度、支撑方式等对压杆的稳定性有重要 影响。
提高压杆稳定性的措施
选择合适的材料
选择具有高弹性模量和合适泊松 比的材料,以提高压杆的稳定性
。
优化截面形状与尺寸
通过改变截面形状或增加壁厚等 方法,提高压杆的稳定性。
改善支撑条件
采用具有足够刚度的支撑,并合 理布置支撑位置,以提高压杆的
的比率。
03
压杆稳定性的定义与分类
压杆稳定性的定义
压杆稳定性是指压杆在受到轴向 压力时,保持其平衡状态而不发
生弯曲或屈曲变形的能力。
压杆稳定性问题主要关注的是压 杆在轴向压力作用下,是否能够 保持直线形状而不发生弯曲变形
。
压杆的稳定性取决于其自身的力 学特性和外部作用力的大小和分
布。
压杆稳定性的分类
材料力学压杆稳定

D 0, C 1 l 2
3
x 0, w
1 Fa l 2
3 EIl
3EI Fcr al
§14.7 纵横弯曲旳概念
❖9.15
作业9-2
在图示铰接杆系ABC中,AB和BC皆为细长压杆, 且截面相同,材料一样。若因在ABC平面内失稳而 破坏,并要求0<</2,试拟定F为最大值时旳角。
Fcr
2 EI ( l )2
截 面
F
F
材
料
相
同 ,
1.5l
2l
拟
定
失
稳
顺 l 3l
2l
序 。
(1)
(4)
F
F
F
4l
5l
3l
2.8l
2.5l
1.5l
(2)
(3)
(5)
Fcr
2 EI ( l )2
图示托架中AB杆旳直径
d=30mm,长度l=800mm,
两端可视为铰支,材料为
F
A3钢,s=240MPa。试求
第九章 压杆稳定
§9.1 压杆稳定旳概念 §9.2 两端铰支细长压杆旳临界压力 §9.3 其他支座条件下细长压杆旳临界压力 §9.4 欧拉公式旳合用范围 经验公式 §9.5 压杆旳稳定校核 §9.6 提升压杆稳定性旳措施 §9.7 纵横弯曲旳概念
§9.1 压杆稳定旳概念
1. 平衡旳稳定性
a)稳定平衡
B = 0 sinkl=0 kl = n k = n/l
F
k 2 EI
n
2
EI
l
Fcr
2 EI l2
w
A
sin
x
l
§9.3 其他支座条件下细长压杆 旳临界压力
《材料力学压杆稳定》PPT课件

当 s 时,就发生强度失效,而不是失稳。
所以应有: 4 压杆分类
cr
P A
s
不同柔度的压杆,需应用不同的临界应力的公
式。可根据柔度将压杆分为三类
(1) 大柔度杆(细长杆) (2) 中柔度杆
p 的压杆 s p 的压杆 29
4 压杆分类
不同柔度的压杆,需应用不同的临界应力的公 式。可根据柔度将压杆分为三类
l
i
柔度 是压杆稳定问题中的一个重要参数,它全
面反映了压杆长度、约束条件、截面尺寸和形
状对临界应力的影响。
22
柔度 (长细比)
l
i
柔度 是压杆稳定问题中的一个重要参数,它全 面反映了压杆长度、约束条件、截面尺寸和形 状对临界应力的影响。
则临界应力为
cr
2E 2
2 欧拉公式的适用范围
欧拉公式
2
§9. 1 压杆稳定的概念
前面各章节讨论了构件的强度和刚度问题。 本章讨论受压杆件的稳定性问题。
稳定性问题的例子
平衡形式突然改变
丧失稳定性
失稳3
平衡形式突然改变
丧失稳定性
失稳
构件的失稳通常突然发生,所以,其危害很大。
1907年加拿大劳伦斯河上,跨度为548米的魁北 克大桥,因压杆失稳,导致整座大桥倒塌。
其中,A为杆中点的挠度。 l
A的数值不确定。
欧拉公式与精确解曲线
精确解曲线
P 1.152Pcr时,
0.3l
理想受压直杆 非理想受压直杆
11
§9. 3 不同杆端约束下细长压杆的临界力的 欧拉公式.压杆的长度因数
1. 一端固支一端自由的压杆
由两端铰支压杆的临界
压力公式
Pcr
所以应有: 4 压杆分类
cr
P A
s
不同柔度的压杆,需应用不同的临界应力的公
式。可根据柔度将压杆分为三类
(1) 大柔度杆(细长杆) (2) 中柔度杆
p 的压杆 s p 的压杆 29
4 压杆分类
不同柔度的压杆,需应用不同的临界应力的公 式。可根据柔度将压杆分为三类
l
i
柔度 是压杆稳定问题中的一个重要参数,它全
面反映了压杆长度、约束条件、截面尺寸和形
状对临界应力的影响。
22
柔度 (长细比)
l
i
柔度 是压杆稳定问题中的一个重要参数,它全 面反映了压杆长度、约束条件、截面尺寸和形 状对临界应力的影响。
则临界应力为
cr
2E 2
2 欧拉公式的适用范围
欧拉公式
2
§9. 1 压杆稳定的概念
前面各章节讨论了构件的强度和刚度问题。 本章讨论受压杆件的稳定性问题。
稳定性问题的例子
平衡形式突然改变
丧失稳定性
失稳3
平衡形式突然改变
丧失稳定性
失稳
构件的失稳通常突然发生,所以,其危害很大。
1907年加拿大劳伦斯河上,跨度为548米的魁北 克大桥,因压杆失稳,导致整座大桥倒塌。
其中,A为杆中点的挠度。 l
A的数值不确定。
欧拉公式与精确解曲线
精确解曲线
P 1.152Pcr时,
0.3l
理想受压直杆 非理想受压直杆
11
§9. 3 不同杆端约束下细长压杆的临界力的 欧拉公式.压杆的长度因数
1. 一端固支一端自由的压杆
由两端铰支压杆的临界
压力公式
Pcr
材料力学课件 第九章 压杆稳定

对于脆性材料,将s改为b 。
2 1 的杆为中柔度杆,其临界应力用经验
公式。它的破坏既有强度又有稳定性。
四、压杆的分类及临界应力总图(Classification of
Columns and the Diagram of critical stress cr versus slenderness ratio )
(Applicable range for Euler’s formula)
只有在 cr ≤ p 的范围内,才可以用欧拉公式计算 压杆的临界压力 Fcr(临界应力 cr )。推导欧拉公式时 所用的挠曲线近似微分方程是以材料服从虎克定律为 基础导得的,所以欧拉公式仅适用于线弹性范围。
σcr
或 令
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态
临界状态 稳 定 平 衡 对应的
过 度
关键
确定压杆的临界力 Fcr
不 稳 定 平 衡
压力
临界压力: Fcr
失稳(屈曲):压杆丧失直线状态的平衡,过渡 到曲线状态的平衡。 临界压力:压杆由稳定平衡过渡到不稳定平衡 的压力临界值。
欧拉公式 的统一形式(General Euler Buckling Load Formula)
π 2 EI Fcr ( l )2
——长度因数,代表支持方式对临界载荷的影响。 l——相当长度,压杆失稳时挠曲线上两拐点间的长
度。
l物理意义是各种支承条件下,细长压杆失稳
时,相当的两端铰支细长压杆的长度,也就是挠曲线 中相当于半波正弦曲线的一段长度。
2 EI Fcr 2 l
这就是两端铰支等截面细长受压直杆
临界力的计算公式(欧拉公式)。
2 1 的杆为中柔度杆,其临界应力用经验
公式。它的破坏既有强度又有稳定性。
四、压杆的分类及临界应力总图(Classification of
Columns and the Diagram of critical stress cr versus slenderness ratio )
(Applicable range for Euler’s formula)
只有在 cr ≤ p 的范围内,才可以用欧拉公式计算 压杆的临界压力 Fcr(临界应力 cr )。推导欧拉公式时 所用的挠曲线近似微分方程是以材料服从虎克定律为 基础导得的,所以欧拉公式仅适用于线弹性范围。
σcr
或 令
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态
临界状态 稳 定 平 衡 对应的
过 度
关键
确定压杆的临界力 Fcr
不 稳 定 平 衡
压力
临界压力: Fcr
失稳(屈曲):压杆丧失直线状态的平衡,过渡 到曲线状态的平衡。 临界压力:压杆由稳定平衡过渡到不稳定平衡 的压力临界值。
欧拉公式 的统一形式(General Euler Buckling Load Formula)
π 2 EI Fcr ( l )2
——长度因数,代表支持方式对临界载荷的影响。 l——相当长度,压杆失稳时挠曲线上两拐点间的长
度。
l物理意义是各种支承条件下,细长压杆失稳
时,相当的两端铰支细长压杆的长度,也就是挠曲线 中相当于半波正弦曲线的一段长度。
2 EI Fcr 2 l
这就是两端铰支等截面细长受压直杆
临界力的计算公式(欧拉公式)。
材料力学:压杆稳定

坍塌后的奎拜克桥
材料力学教学课件
韩国汉城
1995年6月29日下午,韩国汉城三 丰百货大楼,由于盲目扩建、加层, 致使大楼四五层立柱不堪重负而产 生失稳破坏,大楼倒塌,死502人, 伤930人,失踪113人。
2020年2月3日星期一
10
第九章 压杆稳定
中国南京 2000年10月25日上午10时,南京电视台演播中 心演播大厅的屋顶的施工中,由于脚手架失稳, 造成屋顶模板倒塌,死6人,伤34人。
材料力学教学课件
2020年2月3日星期一
26
第九章 压杆稳定
1)、细长杆的临界应力
cr
2E 2
p
2E p
引入记号 1
2E p
欧拉公式的适用范围
l
i
1
2E p
2)、中长杆的临界应力(经验公式)
cr a b, 2 1
sin
kl
l
coskl
0
2020年2月3日星期一
19
第九章 压杆稳定
由于杆在微弯状态下保持平衡时,
Fy不可能等于零,故由上式得
1 sin kl l coskl 0 k 亦即 tan kl kl
满足此条件的最小非零解为kl=4.49,亦即 Fcr l 4.49 EI
从而得到此压杆求临界力的欧拉公式:
受均匀压力的球形薄壳或薄圆环,当压力超过一定数值时,圆环将 不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式。
材料力学教学课件
2020年2月3日星期一
9
第九章 压杆稳定
由于构件的失稳往往是突然发生的,因而其危害性也较大。 历史上曾多次发生因构件失稳而引起的重大事故。如1907年 加拿大劳伦斯河上,跨长为548米的奎拜克大桥,因压杆失 稳,导致整座大桥倒塌。近代这类事故仍时有发生。
第9章 压杆稳定 课件

第9 章 压杆稳定
物体平衡的稳定性
随遇平衡 不稳定平衡
稳定平衡
第9 章 压杆稳定
压杆稳定性的几个概念
? 稳定失效:指构件在某种外力 (例如轴向压力)作用下,其 平衡形式发生突然转变。
? 稳定平衡状态 :当承受的载荷 小于 某一确定值 Fcr 时,压杆保持直线 平衡状态。此时给杆加一 横向干扰 力,杆便发生微小弯曲,干扰力去 掉后,杆件将在平衡位置附近摆动, 最终恢复到原来的直线平衡位置。 这说明压杆原来的平衡状态是稳定 的。
对于细长杆件 ,受压 开始时轴线为直线,接着 被压弯,发生大的弯曲变 形,最后折断。
例:如图所示发动机 配气机构中的 挺杆,在推 动摇臂打开气阀时,受到 压力作用。
摇臂
气阀
挺杆
第9 章 压杆稳定
内燃机的 连杆
撑杆跳运动员用的 杆
第9 章 压杆稳定
勃兰登堡门 (BRANDENBURGER TOR ): 它建于 1788年~1791年,一直是德国统一的象征。
第9 章 压杆稳定
失稳曲线
w ? A sin n? x
l
n=1
n=2
n=3
l
第9 章 压杆稳定
附:求二阶常系数齐次微分方程 y ??? p y ?? 的q 通? 解0
特征方程为 r 2 ? pr ? q ? 0 ① 两个不相等的实 根r1,r2 通解
y ? C1e r1x ? C2e r2x ② 两个相等的实根 r1=r2 通解
EI
d2y dx2
?
k
2y
?
0
第9 章 压杆稳定
x
Pcr
通解为:
d2y dx2
?
k
2y
材料力学上册第九章压杆稳定

一、工程实例
压力机的压杆
Mechanics of Materials
网架结构中的杆
桥墩
Mechanics of Materials
铁塔中的杆
Mechanics of Materials
Mechanics of Materials
航 天 飞 机 发 射 架 中 的 杆 件
Mechanics of Materials
第九章 压杆稳定
§9-1 压杆稳定性的概念 §9-2 细长中心受压直杆临界力的欧拉公式 §9-3 不同杆端约束下细长压杆临界力的欧拉
公式·压杆的长度因数 §9-4 欧拉公式的应用范围·临界应力总图 §9-5(9-6)压杆的稳定计算·压杆的合理截面
§9-1 压杆稳定的概念
Mechanics of Materials
压杆可能在低应力情况下发生弯曲 —失稳破坏
Mechanics of Materials
鱼洞长江大桥边 跨现浇支架失稳
Mechanics of Materials
稳定计算的重要性
Mechanics of Materials
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
材料力学压杆稳定PPT课件

6
工程背景 (Engineering background)
crane truck
7
问题的提出
p pcr
p pcr
p pcr
求载荷pcr是稳定问题的实质!!! 对象—压杆
方法—静力学方法
基本问题—
求pcr; 讨论支承对临界力的影响;
8
压杆稳定条件
2 细长压杆的欧拉临界压力
横向干扰力产生初始变形, P
1983年10月4日,北京的一幢正在施工的高层建筑 的高54.2m、长17.25m、总重565.4kN大型脚手架屈 曲坍塌,5人死亡、7人受伤 。
1907年北美魁北克圣劳伦斯河上大铁桥施工中,珩架下 弦受压杆屈曲,就如少一杆,成变形体而坍塌.
1925年苏联莫兹尔桥试运行时,因压杆失稳而破坏。
1940年美国塔科马桥,一场大风,因侧向压杆失稳而破 坏。
解:压杆在xoy平面内,
z
l
iz
1210012.21 17 .32
压杆在xoz平面内,
y
l1
iz
1200086 .6 11 .55
1
2E p
2205109
200106
101
maxmax{y,z}121.21
18
iz
b 23
17 .32 mm
iy
a 23
1ห้องสมุดไป่ตู้ .55 mm
所以,压杆为细长杆。
Pcr2E2 A33.06kN
3
液压缸顶杆
hydraulic pressure post rod
4
Scaffold frame
脚手架中的压杆
工程背景 (Engineering background)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程,得 即
w M Fw EI EI
w F w 0 EI
(9-1)
9.2 两端铰支细长压杆的临界压力
图9-5
9.2 两端铰支细长压杆的临界压力
k 2 F ,式(9-1)可写为
EI
w″+k2w=0
(9-2)
此二阶常微分方程的通解为
w=Asin kx+Bcos kx
(9-3)
式中,A、B为积分常数,可通过压杆的位移边界条件确定。
图9-1
9.1 稳定性的概念
下面是一个弹性杆受轴向压缩的问题。取一根长为300 mm,横截面尺寸为20 mm×1 mm的钢板尺,许用应力[σ] =196MPa F=3.92 kN 。实际上,两端压力不到40 N钢板尺就被明显压 弯。显然,钢板尺在远未达到强度极限时,就已经不能承受轴 向压力,即不能维持原有平衡状态,此时弹性杆失去了稳定性, 简称 失稳 或 屈曲 。当压力较小时,不发生失稳是稳定平衡 状态;当压力大于某一临界值时发生失稳,此临界值就是弹性 压杆的 临界压力 。确定压杆的临界压力是解决压杆稳定性问 题的首要任务。
9.2 两端铰支细长压杆的临界压力
【例9-1】
9.2 两端铰支细长压杆的临界压力
解: 挺杆横截面的惯性矩为
I(D 2 d2 ) =(1 2 4 1 0 4)5 2 7 m m 4
6 4
6 4
挺杆上端并未完全固定,可以看成两端铰支的细长压
杆,根据式(9-7)计算挺杆的临界压力为
F c r 2 lE 2 I 2 2 1 0 3 8 3 1 2 0 3 5 2 7 7 4 4 6 N = 7 .4 4 6 k N
9.1 稳定性的概念
圆柱形薄壳在轴向压力或扭矩作用下, 会突然出现局部折皱;简支平板四边受压发 生屈曲,产生横向位移等。失稳后构件的承 载能力会突然下降,甚至完全丧失。由于构 件的失稳具有突然性,造成结构的破坏也是 十分严重的,有时会发生灾难性事故。因此, 研究构件的弹性稳定性是特别必要的。
9.1 稳定性的概念
9.1 稳定性的概念
弹性构件还存在其他形式的稳定性问题。例如,均匀外压作用下的 球形薄壳在外压达到临界值时,会突然发生局部内凹,如图 (a)中虚线所 示;均匀外压作用下的圆柱形薄壳在达到临界压力时,局部截面会突然 变成扁圆,如图 (b)中虚线所示;板条悬臂梁在端部集中载荷作用下发生 弯曲变形,当载荷达到临界值时,会突然发生侧向偏转,如图 (c)所示;
9.1 稳定性的力
其他支座条件下细长 压杆的临界压力
9.4 临界压力
9.5 压杆稳定性的校核
9.6 提高压杆稳定性的措施
9.1 稳定性的概念
前面研究物体或结构的平衡问题时,只是要求满足平衡方 程,而并没有考虑该平衡状态在外界的干扰下是否能够维持。 如果外界的微小干扰不能打破该平衡状态,称之为稳定平衡; 反之则称之为不稳定平衡。比如在光滑面上放一个小球,小球 在重力和支持力作用下平衡,如图9-1所示。
材料力学
LOGO
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ PPT课件下载:/kejian/ 范文下载:/fanwen/
图9-4
9.1 稳定性的概念
需要指出的是,本章研究的压杆是轴 线为直线、材料均匀的理想压杆,承受的载 荷在轴线上。而实际的压杆由于制造的缺陷, 轴线往往存在初曲率,材料也不均匀,压力 作用线也不可能与轴线完全重合,所以工程 上的受压杆件的临界压力略低于理论结果。
9.1 稳定性的概念
图中给出了压杆横向最大挠 度w和轴向压力F之间的关系。可 以看出,当实际压力较小时,杆 件已经开始弯曲变形(曲线OF); 当压力接近临界值时,弯曲挠度 增加很快。当杆件制作得越精确, 压力越对中,则试验曲线就越接 近于理论结果。
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
第9章 压杆稳定
9.2 两端铰支细长压杆的临界压力
某两端球形铰支的细长压杆如图9-6(a)所示。该压杆
为等直压杆,材料均匀,承受轴向压力 F 的作用。当轴向
压力达到临界值Fcr时,压杆可以在任意微小的弯曲位置保
持平衡状态。建立图9-6所示的坐标系,设在压力 F 作用
下压杆微弯时任意截面的挠度为w,弯矩为M
M=Fw。考虑到图9-6(b)中弯矩的方向,采用挠曲线近似
铰支细长压杆相同,所以挠曲线形状也一样。如果把其挠曲线对称
考虑压杆左端的铰支边界条件x=0时,w=0,有
B=0
再考虑压杆右端的铰支边界条件x=l时,w=0,有
Asin kl=0
(9-4)
9.2 两端铰支细长压杆的临界压力
9.2 两端铰支细长压杆的临界压力
上述推导过程中采用了挠曲线近似微分方程, 压杆中点的挠度A很小,而且不确定。当弯曲变形较 大时,应采用精确的挠曲线微分方程式(6-2)计算压 杆的挠曲线。图9-5中曲线AC给出了中点挠度w和压 力 F 关系的精确理论解。挠度越趋于零,近似解和 精确解的差别越小。由于挠曲线微分方程仅适用于 线弹性变形,所以式(9-7)要求压杆内的应力不能超 过材料的比例极限σp。
9.3 其他支座条件下细长压杆的临界压力
压杆的临界载荷不但与压杆本身的材料和尺寸有关,而且与支
座条件关系很大。其
他支座条件下细长压杆的临界压力可通过类似的方法推导。也
可以应用 变形比较 的方法得到某种支座条件下压杆的临界压力。
如图9-8(a)所示,一端固定另一端自由的细长压杆AB。在轴向压力
作用下处于微弯平衡状态,由于其挠曲线微分方程及其通解与两端