单相全波整流电路的设计(1)

合集下载

第一节单相全波整流和滤波电路

第一节单相全波整流和滤波电路

第一节 单相全波整流和滤波电路 单相全波整流和滤波电路
3.波形图 . 个二极管组合封装在一起, 将 4个二极管组合封装在一起 , 个二极管组合封装在一起 制成单相桥式整流器,如图所示。 制成单相桥式整流器,如图所示。
第一节 单相全波整流和滤波电路 单相全波整流和滤波电路
二、滤波电路
1.电容滤波电路 .
稳压电路的最大输出电流取决于调整管的功率容量,若需要 稳压电路的最大输出电流取决于调整管的功率容量, 进一步扩大输出电流, 进一步扩大输出电流,可采用功率容量更大的调整管且接成复合 调整管。 调整管。
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
[例 7-1] 在图中,已知输入电压 VI = 20 V,基准电压 VZ = 6 例 在图中, , V ,取样电阻 R1 = R2 = RP = 2 kΩ,试求:(1)输出电压 VO 的可 Ω 试求: ) 调范围; 调范围;(2)设调整管的饱和压降 VCES 约为 2 V,为使电路正常 ) , 工作, 最小值应为多少? 工作,输入电压 VI 最小值应为多少?
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
3.实用电路 .
稳压原理: 稳压原理:
VO 增大 (减小 ) → I B 减小(增大 ) → I C减小(增大 ) → VCE 增大 (减小 ) → 限制 VO 变化
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
二、串联调整型稳压电路
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
一、串联调整型直流稳压电路的基本原理
1.工作原理 . 增大, ① 输入电压 VI 增大 ,致使 VO 增大 , 增大 RP , 其上压降增大 , VO 的增大也受到了限制。 的增大也受到了限制。 不变, 增大时,输出电压亦将增大, ② VI 不变, RL 增大时,输出电压亦将增大,此时增大 RP 使分压系数减小, 的增大受到限制。 使分压系数减小,就可以使 VO 的增大受到限制。 与负载串联,故称为串联型稳压电路。 因调整元件 RP 与负载串联,故称为串联型稳压电路。

单相全波整流电路的设计

单相全波整流电路的设计

单相全波整流电路的设计摘要电力电子技术是一门诞生和发展于20世纪的崭新技术,在21世纪仍将以迅猛的速度发展。

以计算机为核心的信息科学将是21世纪起主导作用的科学技术之一。

电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。

因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。

电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。

电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。

近代新型电力电子器件中大量应用了微电子学的技术。

电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。

这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。

利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。

这些装置常与负载、配套设备等组成一个系统。

电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。

整流电路(Rectifier)是电力电子技术中最为重要的电路,应用十分广泛,对单相全波可控整流电路的相关参数和不同性质负载的子电路理论学习的重要一环,在对单相全波可控整流电路工作原理理解的基础上,设计单相全波可控整流电路带负载时的电路原理图,并建立基于PSIM的仿真模型,对工程实践中的实际应用具有预测和指导作用。

关键词:电力电子单相全波可控整流电路目录摘要 (1)1.设计任务书 (1)1.1 设计目的: (1)1.2 设计要求: (1)1.3 设计内容: (1)1.4 设计题目: (1)1.4.1 设计要求: (1)1.4.2 方案的选择 (2)2.设计内容 (3)2.1 触发电路的设计 (3)2.1.1晶闸管的介绍 (3)2.2.2 晶闸管的基本特性 (4)2.2.3 晶闸管的主要参数 (5)2.2.4 晶闸管的触发条件 (6)2.2.5 晶闸管的分类 (6)3.电路总设计 (7)3.1 单相全波可控整流电路: (7)3.2 参数计算 (7)4. 设计总结 (13)参考文献 (14)1.设计任务书1.1 设计目的:《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。

单相全波可控整流电路仿真设计

单相全波可控整流电路仿真设计

单相全波可控整流电路仿真设计首先,我们需要了解单相全波可控整流电路的基本结构和原理。

单相全波可控整流电路由主变压器、整流电路和滤波电路组成。

主变压器将外部交流电源的电压变换为适合整流电路工作的电压,整流电路将交流电转换成直流电,滤波电路用于平滑输出的直流电。

在Multisim中,我们可以利用模拟电源来模拟交流电源,该电源具有可调的频率和电压。

首先,在Multisim中选择一个恰当的电源模块,设置其频率为50Hz,电压为220V。

将该电源与单相全波可控整流电路的输入端相连。

在整流电路部分,我们采用双向可控硅器件(thyristor)作为开关元件。

在Multisim中,选择恰当的双向可控硅器件模块,设置其相关参数(如触发角等)。

将相应的双向可控硅器件添加到Multisim的工作区域,并将其与交流电源相连。

在滤波电路部分,我们可以采用电容滤波来平滑输出的直流电。

在Multisim中,选择恰当的电容模块,将其添加到双向可控硅器件的输出端,并与负载相连。

完成上述连接后,我们需要对整个电路进行仿真。

在Multisim中,点击“运行”按钮,通过模拟电路中的双向可控硅器件的触发角来控制整流电路的开关状态,从而实现交流电转换成直流电的功能。

同时,可以通过添加示波器测量电路中不同节点的电压和电流,并根据实际情况进行参数调整,以获得理想的电路效果。

在进行仿真过程中,我们还可以通过Multisim的仿真分析工具,对电路进行性能评估。

例如,可以使用电流表、电压表等工具实时监测电路的工作状态,同时进行电流和电压波形分析,以评估电路的稳定性和效率。

综上所述,单相全波可控整流电路的仿真设计包括电源模拟、添加双向可控硅器件、连接滤波电路以及进行仿真分析等步骤。

通过Multisim等仿真工具,我们可以直观地观察电路的工作状态,并对其进行优化和改进。

希望本文对你的学习和实践有所帮助。

单相全控整流电路详解

单相全控整流电路详解

第一题说明全控型整流电路的工作原理,并设计出一个单相全控整流电路及其控制电路(开环)1.单相全控型PWM整流电路的结构单相电压型桥式PWM整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1-1所示。

每个桥臂由一个全控器件和反并联的整流二极管组成。

u s是正弦波电网电压,u d是整流器的直流侧输出电压,Ls为交流侧附加的电抗器,Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。

起平衡电压,支撑无功功率和储存能量的作用。

全桥电路直流侧电容只要一个就可以。

由图1-1所示,能量可以通过构成桥式整流的二极管VD1-VD4完成从滞留测到交流侧的传递,也可以经过全控型器件V1-V4从直流侧你变为交流,反馈给电网。

图1-1所以PWM整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视V1-V4的脉宽调制方式而定。

2.单相全控型PWM整流电路的工作原理用正弦信号波和三角波相比较的方法对图1-1中的V1-V4进行SPWM控制,就可以在桥的交流输入端AB产生一个SPWM波u AB。

u AB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。

当正弦信号波频率和电源频率相同时,i s也为与电源频率相同的正弦波。

由于Ls的滤波作用,谐波电压只使i s产生很小的脉动。

u s一定时,i s 幅值和相位仅由u AB中基波u ABf的幅值及其与u s的相位差决定。

改变u ABf的幅值和相位,可使i s和u s同相或反相,i s比u s超前90°,或使i s与u s相位差为所需角度。

u s> 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。

V2通时,u s通过V2、VD4向Ls储能。

V2关断时,Ls中的储能通过VD1、VD4向C充电。

单相全波整流电路

单相全波整流电路
教学过程: 一、复习引入 1、单相半波整流电路组成
单相全波整流电路
2、工作原理分析 (1)单相交流电压v1经变压器降压后输出为v2; (2)当v2正半周时,A为正,B为负。 二极管承受正向电压导通,电路有电流。 问题:a.标出电流方向。
b.若二极管电压为0,vL与v2的关系如何? (3)当v2负半周时,B为正,A为负。 二极管承受反向电压截止,电路中无电流。 结的论电:流负为载直RL流上电只流有。自上而下的单方向电流,即RL
单相全波整流电路
3、工作波形 a.v2与v1是变压关系,波形为正弦波。 b.同正步向变导化通。时,vL与v2几乎相等,即vL随v2 c.负载上的电流与电压波形类似,因为是阻
性负载。 d.管反反向向截电止压时与,v2v负2的半电周压相加同于。二(极引管导,学二生极作
出波形。)
单相全波整流电路
单相全波整流电路
VRM 2V21.4V 12
单相全波整流电路
5、 优点:结构简单。 缺点:电源利用率低,且输出脉动大。
二、新课教学 一)单相全波整流电路 1、电路组成 变压器中心抽头式单相 全波整流电路
单相全波整流电路
2、工作原理 (1)当输入电压为正半周时,A、B、C三点电位
高低如何? V1、V2哪个导通?哪个截止?作出 电流通路。 V电A阻>。VC>VB ;V1导通,V2截止;电流从上流入 (2)若输入电压为负半周时,A、B、C三点电位 高低如何? V1、V2哪个导通?哪个截止?作出 电流通路。 VA ﹤ VC ﹤ VB ;V 2导通,V 1截止; 归纳结论:通过RL的电流在电源正负半周时均 为同方向,说明RL的电流是直流电。
电子技术基础与技能
第一章 二极管及其应用
课题: §1.3.2 单相全波整流电路

实验二单相全波可控整流电路

实验二单相全波可控整流电路

实验二 单相全波可控整流电路一.实验目的1.了解可控硅整流电路的组成、特性和计算方法。

2.了解不同负载类型的特性。

二.实验原理1.可控硅(又名晶闸管)不同于整流二极管,可控硅的导通是可控的。

可控整流电路的 作用是把交流电变换为电压值可以调节的直流电。

图2-1所示为单相半波可控整流实验电路。

可控硅的特点是以弱控强,它只需功率很小的信号(几十到几百mA 的电流,2~3V 的电压)就可控制大电流、大电压的通断。

因而它是一个电力半导体器件,被应用于强电系统。

(a )主回路(b )控制回路图2-1 单相全波可控整流电路2. 如图2-1,设变压器次级电压为U=Usin ωt 则负载电压与电流的平均值以及有效值:在 控制角为α时,负载上直流电压的平均值U dA V =⎰παωωπ)(sin 1t td U =)cos 1.(απ+U直流电流平均值I dA V =d d R U =dR Uπ )cos 1(α+ 直流电压有效值:U dRMS =⎪⎭⎫ ⎝⎛+-22sin 22ααππU 直流电流有效值:I dRMS =⎪⎭⎫ ⎝⎛+-22sin 22ααππdR U三.实验器材名称 数量 型号 1.变压器45V/90V 3N 1 MC0101 2.保险丝 1 MC0401 3.可控硅 1 MC0309D 4.负载板 各1 MC0603 MC0604 5.2脉冲控制单元 1 MC0501 6.稳压电源(±15V ) 1 MC0201 7.电压/电流表 2 MC0701 8.输入单元 1 MC0202 10.隔离器 1 11.示波器 1 12.导线和短接桥 若干四.带电阻性负载的可控整流实验步骤1. 根据图2-1连接线路,注意:主回路和控制回路交流供电电源必须同步。

将各实验模块连接好,采用电阻负载,取U 1=U 2=45V 档的交流电为输入电压,负载R=50Ω(采用2只100Ω电阻并联)。

2. 用电压电流表实测输入电压U 2有效值= ______________V 。

第3章 整流电路3-1 单相全波可控整流电路

第3章 整流电路3-1 单相全波可控整流电路

o
ωt1 π

ωt
ug
– VT2导通,两端电压为0
o ud
ωt
• 负 载:ud = –u2,id = Id
o
ωt
• 变压器:i1 = –nId
αθ i1
• 电 感:电感放电,感应电压为负
o
ωt
uVT1
• 晶闸管:uVT1 = 2u2,iVT1 = 0
o
ωt
• 晶闸管:uVT2 = 0,iVT2 = Id
12:18
第3章 整流电路
3
3.1.3 单相全波可控整流电路
带阻性负载时的工作情况
电路分析:寻找α = 0的位置
• VT1和VT2都不导通:VT1承受电压u2,VT2承受电压–u2
• VT1导通,VT2承受反压–2u2 • VT2导通,VT1承受反压2u2 • VT1和VT2同时导通?
u2
o
ωt
12:18
第3章 整流电路
18
思考题
计算题
如图所示,单相全波半控整流电路,变压器二次侧电压有效值U2
• 画出ud、i1和VT1的工作波形
• 求Ud、Id和α关系
u2
• 求晶闸管的移相范围 • 求晶闸管的额定电压和额定电流
o
ωt1 π

ωt
α
ug
o
ωt
ud
i1 T
VT1
o
ωt
*
* u2
ωt1 π

ωt
ug
– VT2阻断,承受正向电压–2u2
o ud
ωt
• 负 载:ud = u2,id = Id • 变压器:i1 = nId
o

单相全波整流电路波形

单相全波整流电路波形

单相全波整流电路波形单相全波整流电路是一种常用的电路配置,用于将交流电转换为直流电。

它通过将负半周的电压进行翻转,使其与正半周的电压方向一致,从而实现全波整流的目的。

在这篇文章中,我们将会详细介绍单相全波整流电路的原理和波形,并提供一些使用和设计上的指导意义。

单相全波整流电路的原理非常简单明了。

它主要由一个变压器、四个二极管和一个负载组成。

交流电源通过变压器进行降压,然后经过四个二极管进行整流。

四个二极管中的两个二极管连接到变压器的一侧,被称为正半波整流二极管;另外两个二极管连接到变压器的另一侧,被称为负半波整流二极管。

负载则直接连接在整流电路的输出端。

在正半周的周期内,正半波整流二极管导通,电流从负载流过。

在负半周的周期内,负半波整流二极管导通,电流同样从负载流过。

通过这样的翻转机制,整个交流电信号都被完全利用,从而实现了全波整流。

接下来我们来看一下单相全波整流电路的波形。

在正半周期内,电压为正,整流电路的输出电压与输入电压相同。

在负半周期内,电压为负,因此负半波整流二极管会将输入电压翻转,使得负半周期内的输出电压方向与输入电压一致。

总体而言,单相全波整流电路经过整流处理后,输出的波形为一段段的脉冲电压,其幅值等于输入电压的峰值,并且具有相同的频率。

这样的波形相对于单相半波整流电路来说更加平滑稳定。

对于单相全波整流电路的应用和设计,我们有一些指导意义要提供。

首先,根据负载的特性和电流要求,选择合适的变压器和二极管。

其次,考虑到输出电压的稳定性,可以采用滤波电容和稳压电路进行进一步处理。

此外,在设计中应该考虑到电路的安全性和可靠性,确保电路的耐电压等级和电流容量符合要求。

综上所述,单相全波整流电路是一种常见且实用的电路配置,可以将交流电转换为直流电。

通过对其原理和波形的了解,我们可以更好地应用和设计这种电路。

希望这篇文章能对大家有所指导和帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术》课程设计之单相全波整流电路的设计姓名学号年级专业系(院)指导教师2012/8/21目录第一章设计任务书1.1 设计目的 (2)1.2 设计要求 (2)1.3 设计内容 (2)1.4设计题目 (2)第二章设计内容2.1 方案的论证与选择 (3)2.1.1主电路的方案论证 (3)2.2 主电路的设计 (5)2.2.1 带阻感负载的单相桥式全控整流电路 (5)2.2.2 原理图分析 (6)2.3 电路方案说明 (7)第三章触发电路3.1 同步触发电路 (7)3. 2 晶闸管的触发条件 (7)3.3 晶闸管的分类 (13)3.4 同步环节 (13)3.5 脉冲形成环节 (14)3.6双窄脉冲形成环节 (14)3.7 同步变压器 (15)第四章保护电路的设计4.1 过电流保护 (16)4.2 过电压保护 (17)第五章元器件的选用 (20)第六章参数的计算 (26)第七章心得体会 (27)第八章参考文献 (28)第一章设计任务书1.1 设计目的:《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。

主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理;2:重点理解移相电路的功能、结构、工作原理;3:理解同步变压器的功能。

1.2 设计要求:1:根据课题正确选择电路形式;2:绘制完整电气原理图(包括主要电气控制部分);3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值;4:编制使用说明书,介绍适用范围和使用注意事项;说明:负载形式及参数可自行选择1.3设计内容:单相全波整流电路的设计。

1:主电路方案论证2:电路方框图3:整流电路方框图4:电路方案说明单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。

单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。

变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。

单相桥式全控桥整流电路与半波整流电路相比较:(1)a的移相范围相等,均为0~180。

(2)输出电压平均值Ud是半波整流电路的2倍。

(3)相同的负载功率下,流过晶闸管的平均电流减小一半。

(4)功率因数提高了1.414倍。

单相桥式全控整流电路与单相全波整流电路相比较:1.4设计题目:单相全波整流电路1.41单相单相全波整流电路的设计 1.42、设计参数:(1)单相桥式全控整流电路接电阻性负载; (2)要求输出电压在0~100V 连续可调; (3)输出电流在20A 以上; (4)采用220V 变压器降压供电; 1.43、设计要求:(1)根据课题正确选择电路形式;(2)绘制完整电气原理图(包括主要电气控制部分);(3)详细介绍整体电路和各功能部件工作原理并计算各元、器件值; (4)编制使用说明书,介绍适用范围和使用注意事项;说明:负载形式及参数可自行选择(例如:输入的为市电,即相电压为220V ,输出电压在0—200V 可调,负载R L =5Ω)第二章 设计内容2、1方案的论证与选择2.1.1主电路的方案论证:我们知道,单相整流器的电路形式是各种各样的,整流的结构也是比较多的。

因此在做设计之前我们主要考虑了以下几种方案: 方案一:单相桥式半控整流电路 电路简图如下:对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使成为正弦半波,即半周期为正弦,另外半周期为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。

所以d U必须加续流二极管,以免发生失控现象。

方案二:单相桥式全控整流电路电路简图如下:此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。

方案三:单相半波可控整流电路:电路简图如下:此电路只需要一个可控器件,电路比较简单,VT的a 移相范围为180 。

但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。

实际上很少应用此种电路。

方案四:单相全波可控整流电路:电路简图如下:此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。

不存在直流磁化的问题,适用于输出低压的场合作用。

但是绕组及铁心对铜、铁等材料的消耗比单相全控桥多,在当今世界上有色金属有限的情况下,这是很不利的,所以我们也放弃了这个方案。

单相半控整流电路的优点是:线路简单、调整方便。

弱点是:输出电压脉冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。

而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。

单相全控式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。

综上所述,针对他们的优缺点,我们采用方案二,即单相桥式全控整流电路(负载为阻感性负载)。

2、2主电路的设计2.2.1 带阻感负载的单相桥式全控整流电路图 2.1 单相全控桥式整流电路电感性负载及其波形(a)电路; (b) 电源电压; (c) 触发脉冲; (d) 输出电压; (e) 输出电流; (f) 晶闸管V -1 , V -4上的电流; (g) 晶闸管V -2 , V -3上的电流;(h) 变压器副边电流; (i) 晶闸管V -1 , V -4上的电压R(a)(b)(c)(d)(e)(f)L(g)(h)(i)电路如图2 a) 所示。

为便于讨论,假设电路已工作于稳态。

(1)工作原理:在u2正半周期,触发角 α 处给晶闸管VT1和VT4加触发脉冲使其开通,ud = u2负载中有电感存在使负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流 id 连续且波形近似为一水平线,其波形如图 2 e) 所示。

u2 过零变负时,由于电感的作用晶闸管VT1和VT4 中仍流过电流 id 并不关断。

至ωt =π+α 时刻,给 VT2 和 VT3 加触发脉冲,因VT2和VT3本已承受正电压,故两管导通。

VT2和VT3导通后,u2通过 VT2 和 VT3 分别向 VT1 和 VT4 施加反压使VT1 和VT4 关断,流过 VT1 和 VT4 的电流迅速转移到 VT2 和 VT3 上,此过程称为换相,亦称换流。

至下一周期重复上述过程,如此循环下去。

(2) u d 波形如 图2(d)所示,其平均值为:当α= 0时,Ud0= 0.9 U2。

α= 90o 时,Ud = 0。

α角的移相范围为90o 。

单相桥式全控整流电路带阻感负载时,晶闸管VT1、VT4两端的电压波形如图2 i)所示,晶闸管承受的最大正反向电压均为 。

晶闸管导通角θ与α无关,均为180o ,其电流波形如图2 b)所示,平均值和有效值分别为: 和变压器二次电流 i 2的波形为正负各180o 的矩形波,其相位由α角决定,有效值I 2= I d 。

2.2.2原理图分析:在单相桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。

在U2正半周,若4个晶闸管均不导通,负载电流Id 为零,也为零,VT1和VT4串联承受电压U2。

若在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。

当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。

在u2负半周,仍在触发角α处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。

到u2过零时,电流又降为零,VT2和VT3关断。

此后又是VT1和VT4导通,如此循环的工作下去,22U d U ααπωωπαπαcos 9.0cos 22)(sin 21222U U t td U U d ===⎰+晶闸管承受的最大正向电压和反向电压分别为和。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在一个周期内,整流电压波形脉动2次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,如图2.2所示,不存在变压器直流磁化问题,变压器绕组的利用率也高。

整流电压平均值为: U 2sin ωtd(ωt)=2 U 2 α=0时,。

α=时,。

可见,α角的移相范围为。

向负载输出的直流电流平均值为:==0.9 U 2晶闸管VT1、VT4和VT2、VT3轮流导电,流过晶闸管的电流平均值只有输出直流电流平均值的一半,即为选择晶闸管、变压器容量、导线截面积等定额,需考虑发热问题,为此需计算电流有效值。

流过晶闸管的电流有效值为== 变压器二次电流有效值与输出直流电流有效值I 相等,为由上面的公式可知 不考虑变压器的损耗时,要求变压器的容量为2.3 电路方案说明单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。

单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。

变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流222U 22U 2U ⎰=παπ21Uo U π229.02cos 1=+ α2cos 1 α+209.0U U U d d ==01800=d U 0180d I 2cos 1222απ+=R U R U d 2cos 11α+R 2cos 145.0212α+==R U I I d dVT VT I ⎰⎪⎪⎭⎫ ⎝⎛παωωπ)(sin U 22122t d R t πππa a R U -+2sin 21222I παππωωπα-+=⎪⎪⎭⎫ ⎝⎛==⎰a R U t d R t U I I 2sin 21)(sin 2π12222I I VT 21=22I U S =分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。

相关文档
最新文档