锂离子电池的工作原理、特点及分类

合集下载

【干货】锂离子电池的的原理、配方和工艺流程,正极材料介绍

【干货】锂离子电池的的原理、配方和工艺流程,正极材料介绍

锂离子电池的的原理、配方和工艺流程,正极材料介绍锂离子电池的的原理、配方和工艺流程锂离子电池是一种二次电池(充电电池),它主要依靠Li+ 在两个电极之间往返嵌入和脱嵌来工作。

随着新能源汽车等下游产业不断发展,锂离子电池的生产规模正在不断扩大。

本文以钴酸锂为例,全面讲解锂离子电池的的原理、配方和工艺流程,锂电池的性能与测试、生产注意事项和设计原则。

一,锂离子电池的原理、配方和工艺流程;一、工作原理1、正极构造LiCoO2 + 导电剂 + 粘合剂 (PVDF) + 集流体(铝箔)2、负极构造石墨 + 导电剂 + 增稠剂 (CMC) + 粘结剂 (SBR) + 集流体(铜箔)3、工作原理3.1 充电过程一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。

正极上发生的反应为:负极上发生的反应为:3.2 电池放电过程放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。

由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。

电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。

3.3 充放电特性电芯正极采用LiCoO2 、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走x个Li离子后,其结构可能发生变化,但是否发生变化取决于x的大小。

通过研究发现当x >0.5时,Li1-xCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。

所以电芯在使用过程中应通过限制充电电压来控制Li1-xCoO2中的x值,一般充电电压不大于4.2V那么x小于0.5 ,这时Li1-xCoO2的晶型仍是稳定的。

电动车的锂电池的分类

电动车的锂电池的分类

电动车的锂电池的分类电动车的锂电池是电动车的重要组成部分,根据不同的分类标准,可以将电动车的锂电池分为不同的类型。

本文将从电池结构、工作原理和应用领域等方面介绍电动车锂电池的分类。

一、按电池结构分类1. 平板式锂电池平板式锂电池是最常见的电动车锂电池之一。

它由多层正负极片和隔膜组成,采用薄型设计,能够提供较高的能量密度和功率密度。

这种电池结构简单,成本较低,适用于大部分电动车型。

2. 柱状式锂电池柱状式锂电池是另一种常见的电动车锂电池,它采用圆柱形结构,正负极片卷绕在一起,通过隔膜隔开。

柱状式锂电池具有较高的能量密度和循环寿命,适用于高端电动车型和电动自行车。

3. 聚合物锂电池聚合物锂电池是一种新型的锂电池技术,其正负极材料是以聚合物凝胶的形式存在,具有更高的能量密度和更好的安全性能。

聚合物锂电池体积轻薄,灵活性好,适用于一些特殊形状的电动车。

二、按工作原理分类1. 锂离子电池锂离子电池是目前最常用的电动车锂电池之一。

它通过锂离子在正负极之间的迁移来实现电荷和放电,具有高能量密度、长循环寿命和低自放电率等优点。

锂离子电池广泛应用于电动汽车和电动自行车等领域。

2. 锂聚合物电池锂聚合物电池是一种改进型的锂离子电池,它采用聚合物凝胶作为电解质,具有更高的能量密度和更好的安全性能。

锂聚合物电池具有轻薄、灵活性好等特点,适用于一些特殊形状的电动车。

三、按应用领域分类1. 电动汽车用锂电池随着电动汽车的发展,电动汽车用锂电池需求量不断增加。

电动汽车用锂电池通常需要具有较高的能量密度、循环寿命和安全性能,以满足长时间行驶和高功率输出的需求。

2. 电动自行车用锂电池电动自行车用锂电池是目前市场上最常见的锂电池应用之一。

电动自行车用锂电池通常以平板式或柱状式锂电池为主,具有较高的能量密度和较长的循环寿命,适用于日常代步和短途出行。

3. 电动摩托车用锂电池电动摩托车用锂电池通常需要具有较高的功率输出和较长的续航里程。

锂离子电池原理及工艺大全

锂离子电池原理及工艺大全

锂离子电池是一种二次电池(充电电池),它主要依靠Li+ 在两个电极之间往返嵌入和脱嵌来工作,它主要有能量密度高,充电时间快,使用寿命长等特点。

随着能源汽车下游产业不断发展,锂离子电池的生产规正在不断扩大。

锂离子电池原理及工艺 - 大全2018锂离子电池简介一,锂离子电池的原理、配方和工艺流程•1、工作原理•1.1正极构造•LiCoO2 + 导电剂 + 粘合剂 (PVDF) + 集流体(铝箔)•1.2负极构造•石墨 + 导电剂 + 增稠剂 (CMC) + 粘结剂 (SBR) + 集流体(铜箔)•1.3工作原理•1.3.1 充电过程•一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。

此时:正负极物理反应为:•1.3.2 电池放电过程•放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。

由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。

电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。

•1.3.3 充放电特性•电芯正极采用LiCoO2 、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走x个Li离子后,其结构可能发生变化,但是否发生变化取决于x的大小。

通过研究发现当x >0.5时,Li1-xCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。

所以电芯在使用过程中应通过限制充电电压来控制Li1-xCoO2中的x值,一般充电电压不大于4.2V那么x小于0.5 ,这时Li1-xCoO2的晶型仍是稳定的。

2.简述锂离子电池的主要组成及工作原理。

2.简述锂离子电池的主要组成及工作原理。

2.简述锂离子电池的主要组成及工作原理。

简述锂离子电池的主要组成及工作原理。

:一锂离子电池的组成及工作原理锂离子电池主要由正极、负极、电解液、隔膜以及外部连接、包装部件构成。

其中,正极、负极包含活性电极物质、导电剂、粘结剂等,均匀涂布于铜箔和铝箔集流体上。

锂离子电池的正极电位较高,常为嵌锂过渡金属氧化物,或者聚阴离子化合物,如钴酸锂、锰酸锂、三元、磷酸铁锂等;锂离子电池负极物质通常为碳素材料,如石墨和非石墨化碳等;锂离子电池电解液主要为非水溶液,由有机混合溶剂和锂盐构成,其中溶剂多为碳酸之类有机溶剂,锂盐多为单价聚阴离子锂盐,如六氟磷酸锂等;锂离子电池隔膜多为聚乙烯、聚丙稀微孔膜,起到隔离正、负极物质,防止电子通过引起短路,同时能让电解液中离子通过的作用。

在充电过程中,电池内部,锂以离子形式从正极脱出,由电解液传输穿过隔膜,嵌入到负极中;电池外部,电子由外电路迁移到负极。

在放电过程中:电池内部锂离子从负极脱出、穿过隔膜,嵌入到正极中;电池外部,电子由外电路迁移到正极。

随着充、放电,迁移于电池间的是“锂离子”,而非单质“锂”,因此电池被称为“锂离子电池”。

二锂离子电池的安全隐患一般来说,锂离子电池出现安全问题表现为燃烧甚至爆炸,出现这些问题的根源在于电池内部的热失控,除此之外,一些外部因素,如过充、火源、挤压、穿刺、短路等问题也会导致安全性问题。

锂离子电池在充放电过程中会发热,如果产生的热量超过了电池热量的耗散能力,锂离子电池就会过热,电池材料就会发生SEI膜的分解、电解液分解、正极分解、负极与电解液的反应和负极与粘合剂的反应等破坏性的副反应。

1正极材料的安全隐患当锂离子电池使用不当时,导致电池内部温度的升高,使正极材料会发生活性物质的分解和电解液的氧化。

同时,这两种反应能够产生大量的热,从而造成电池温度的进一步上升。

不同的脱锂状态对活性物质晶格转变、分解温度和电池的热稳定性影响相差很大。

2负极材料的安全隐患早期使用的负极材料是金属锂,组装的电池在多次充放电后易产生锂枝晶,进而刺破隔膜,导致电池短路、漏液甚至发生爆炸。

锂离子电池的结构及工作原理

锂离子电池的结构及工作原理

锂离子电池是一种可重复充放电的二次电池,其结构和工作原理如下:
一、结构:
1.正极:主要成分为锂化合物,如钴酸锂、镍钴锰酸锂等,同时还有导电剂和粘结剂。

这些材料共同作用,使正极具有良好的导电性能和机械强度。

2.负极:主要成分为石墨或近似石墨结构的碳材料,同时还有导电剂和粘结剂。

3.隔膜:一种经特殊成型的高分子薄膜,薄膜有微孔结构,允许锂离子自由通过,而电子不能通过。

4.电解液:溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液。

5.电池外壳:分为钢壳(方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。

二、工作原理:
在充电过程中,锂离子从正极通过电解液和隔膜向负极迁移;而在放电过程中,锂离子从负极通过电解液和隔膜向正极迁移。

这个过程会伴随着电子的流动以维持电荷平衡。

充电时,正极上的电子经外部电路、负极、隔膜和电解液流回到正极,维持电荷平衡。

放电时,电子则从负极经外部电路、正极和隔膜回到负极,维持电荷平衡。

在锂离子电池中,锂离子在正负极之间的迁移实现了电能与化学能的相互转换。

当锂离子在正负极之间迁移时,它会与电解液中的其他离子相互作用,使得整个电池系统达到动态平衡状态。

锂离子电池的工作原理

锂离子电池的工作原理

锂离子电池的工作原理引言概述:锂离子电池是一种常见的充电电池,被广泛应用于挪移设备、电动汽车等领域。

了解锂离子电池的工作原理对于我们更好地使用和维护电池具有重要意义。

本文将详细介绍锂离子电池的工作原理,包括正极、负极、电解质和电荷传输等四个方面。

一、正极的工作原理:1.1 锂离子电池的正极通常采用锂钴酸锂材料。

锂钴酸锂中的锂离子在充电时从正极材料中脱嵌,进入电解质中,形成锂离子的电荷。

1.2 充电过程中,锂离子在正极材料中的脱嵌导致正极材料的结构变化,形成锂离子的空位,这些空位在放电过程中会被重新填充。

1.3 正极材料的结构变化使得锂离子能够在充放电过程中快速地嵌入和脱嵌,实现电荷的传输。

二、负极的工作原理:2.1 锂离子电池的负极通常采用石墨材料。

在充电过程中,锂离子从电解质中嵌入负极材料的石墨层间结构中,形成锂离子的电荷。

2.2 充电过程中,锂离子在负极材料中的嵌入导致石墨层间结构的膨胀,而在放电过程中,石墨层间结构会收缩。

2.3 负极材料的膨胀和收缩使得锂离子能够在充放电过程中快速地嵌入和脱嵌,实现电荷的传输。

三、电解质的工作原理:3.1 锂离子电池的电解质通常采用有机溶液或者固体聚合物。

电解质中的离子能够在正负极之间传输锂离子的电荷。

3.2 电解质的离子传输速率决定了锂离子电池的充放电速度。

较高的离子传输速率可以提高电池的功率性能。

3.3 电解质还具有隔离正负极的作用,防止短路和电池内部反应的发生。

四、电荷传输的工作原理:4.1 锂离子电池的电荷传输主要通过电解质中的离子进行。

充电时,锂离子从正极脱嵌,通过电解质传输到负极嵌入。

放电时,锂离子从负极脱嵌,通过电解质传输到正极嵌入。

4.2 电池内部的电荷传输是通过离子的扩散和迁移来实现的。

离子的扩散是指离子在电解质中的无序运动,而离子的迁移是指离子在电场作用下的有序运动。

4.3 电荷传输的速率受到电解质的离子传输速率、电池内部电阻等因素的影响。

锂离子电池的工作原理、特点及分类

锂离子电池的工作原理、特点及分类

锂离子电池的工作原理、特点及分类锂离子电池的构成主要有正极、负极、非水电解质和隔膜四个部分组成,两个能可逆脱嵌的锂离子化合物构成正负极。

其工作原理图如1-1(b)所示,充电时锂离子从正极材料中脱出,通过隔膜经电解质溶液向负极迁移,同时电子在外电路从正极流向负极,锂离子在负极得到电子后被还原成金属锂,嵌入负极晶格中;而在放电时,负极的锂会失去电子成为锂离子,通过隔膜经电解质溶液向正极方向迁移并进入正极材料中储存。

正负两极间不仅有锂离子在迁移,为保持电荷平衡,相同数量的电子经外电路也在正负两极之间传递,使正负两极发生氧化还原反应,并保持一定电位。

图1-1锂离子电池工作示意图a. 金属锂二次电池;b. 锂离子二次电池(图中枝晶照片直接由原位扫描电镜拍出)Fig.1-1 Schematic representation and operating principles of Li batteriesa. Rechargeable Li-metal battery;b. Rechargeable Li-ion battery以目前已经商业化的锂离子电池为例,正极采用LiCoO2材料,负极采用碳材料,宇部隔膜为电池隔膜,LiPF6的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)或碳酸二甲酯(DMC)溶液为电解液,充电过程中发生的正负两极的电极反应可表示为:CoO2+xLi++xe-正极反应:LiCoO2 = Li(1-x)负极反应:C+x Li++xe- = Li x CCoO2+Li x C电池总反应:LiCoO2+C = Li(1-x)锂离子二次电池主要有以下优点:(1)能量密度高。

锂离子二次电池储存同样能量时体积小、质量也轻,可以实现锂离子二次电池的小型化、轻量化,使其成为便携式电子产品的首选电池;(2)电压高。

是其它电池电压是其它电池的2~3倍。

这也是锂离子二次电池能量密度高的最主要原因;(3)自放电小。

锂电池结构与原理

锂电池结构与原理

锂电池原理和结构1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。

人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。

以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。

这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4、LiFePO4。

⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0。

4~0.6,y=0。

6~0。

4,z=(2+3x+5y)/2)等。

2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳.一般大家较关心正极、负极、电解质锂电池的详细介绍1、锂离子电池锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。

其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。

正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂—碳层间化合物。

锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源.2、锂离子电池发展简史锂电池和锂离子电池是20世纪开发成功的新型高能电池。

这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池的工作原理、特点及分类
锂离子电池的构成主要有正极、负极、非水电解质和隔膜四个部分组成,两个能可逆脱嵌的锂离子化合物构成正负极。

其工作原理图如1-1(b)所示,充电时锂离子从正极材料中脱出,通过隔膜经电解质溶液向负极迁移,同时电子在外电路从正极流向负极,锂离子在负极得到电子后被还原成金属锂,嵌入负极晶格中;而在放电时,负极的锂会失去电子成为锂离子,通过隔膜经电解质溶液向正极方向迁移并进入正极材料中储存。

正负两极间不仅有锂离子在迁移,为保持电荷平衡,相同数量的电子经外电路也在正负两极之间传递,使正负两极发生氧化还原反应,并保持一定电位。

图1-1锂离子电池工作示意图
a. 金属锂二次电池;
b. 锂离子二次电池
(图中枝晶照片直接由原位扫描电镜拍出)
Fig.1-1 Schematic representation and operating principles of Li batteries
a. Rechargeable Li-metal battery;
b. Rechargeable Li-ion battery
以目前已经商业化的锂离子电池为例,正极采用LiCoO2材料,负极采用碳材料,宇部隔膜为电池隔膜,LiPF6的碳酸乙烯酯(EC)、碳酸二乙酯(DEC)或碳酸二甲酯(DMC)溶液为电解液,充电过程中发生的正负两极的电极反应可表示为:
CoO2+xLi++xe-
正极反应:LiCoO2 = Li
(1-x)
负极反应:C+x Li++xe- = Li x C
CoO2+Li x C
电池总反应:LiCoO2+C = Li
(1-x)
锂离子二次电池主要有以下优点:
(1)能量密度高。

锂离子二次电池储存同样能量时体积小、质量也轻,可以实现锂离子二次
电池的小型化、轻量化,使其成为便携式电子产品的首选电池;
(2)电压高。

是其它电池电压是其它电池的2~3倍。

这也是锂离子二次电池能量密度高的最主要原因;
(3)自放电小。

是镍氢、镍镉电池自放电的1/2~1/3;
(4)可大电流放电,且安全性好;
(5)无记忆效应。

记忆效应就是电池用电未完成时再充电时充电量下降。

镍氢电池特别是镍镉电池的记忆效应特别强,而锂离子电池无记忆效应;
(6)循环次数多。

电池使用寿命就长;
(7)不含铅、镉等有害物质,对环境友好。

锂离子电池种类很多,(1)根据电池所用电解质的状态不同,可分为:液体锂离子电池、聚合物锂离子电池和全固态锂离子电池;(2)根据温度来分,可分为高温锂离子电池和常温锂离子电池;(3)按正极材料分类,一般可分为:氧化钴锂型、氧化镍锂型、氧化锰锂型与铁基锂型;(4)从外形分类,一般可分为:圆柱形、扣式和方形三种,聚合物锂离子电池除制成圆形和方形外,还可根据需要制成任意形状。

方形的型号用6位数表示,前二位表示电池厚度,中间二位表示宽度,最后二位表示长度,如063448型,表示厚度8 mm、宽度34 mm、长度48 mm,用08×34×48表示;而圆柱形的型号用5位数表示,前二位数表示直径,后三位数表示高度,如18650型,表示直径18 mm、高度65 mm,用 18×65表示。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注!)。

相关文档
最新文档