高一等比数列及其性质

合集下载

等比数列概念知识点归纳总结

等比数列概念知识点归纳总结

等比数列概念知识点归纳总结等比数列是数学中常见的一个概念,也是数列中的一种特殊类型。

在等比数列中,每一项与前一项的比值都是相等的。

本文将对等比数列的概念、性质和应用进行归纳总结。

一、等比数列的概念等比数列是指一个数列中,从第二项开始,每一项与前一项相除的商都相等。

通常用字母a表示首项,q表示等比数列的公比。

根据这个概念,我们可以得到等比数列的通项公式:an = a * q^(n-1)其中,an为等比数列的第n项。

二、等比数列的性质1. 公比的取值:公比q可以是任意实数,也可以是0,但不能是1。

当q为正数时,等比数列的项随着n的增大而增大;当q为负数时,等比数列的项随着n的增大而交替增大和减小。

2. 比值关系:等比数列中任意两项的比值都是相等的,即相邻项的比值等于公比q。

3. 对数关系:等比数列的对数数列也是等差数列。

如果取对数后的数列为Ar,则有Ar = loga + (n-1)logq,其中,loga为log以a为底的对数。

三、等比数列的应用等比数列在实际中有广泛的应用,以下是一些常见的应用场景:1. 财务领域:等比数列常用于计算复利的问题,例如存款利息计算、债券利息计算等。

2. 自然科学:许多物理、化学等自然科学问题中都可以用等比数列来描述,如放射性元素衰变问题、细胞分裂问题等。

3. 经济学:等比数列常用于描述经济增长、人口增长等问题。

4. 数学应用:等比数列常用于解决等比方程、等比不等式等数学问题。

总结:通过对等比数列的概念、性质和应用的归纳总结,我们了解到等比数列在数学以及实际生活中的重要性。

等比数列是数学中的一种基本概念,在解决实际问题时具有广泛的应用。

熟练掌握等比数列的概念和性质,能够更好地解决与等比数列相关的各种数学问题。

等比数列的性质-高中数学知识点讲解

等比数列的性质-高中数学知识点讲解

等比数列的性质1.等比数列的性质【等比数列】(又名几何数列),是一种特殊数列.如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,这2个数列就叫做等比数列,因为第二项与第一项的比和第三项与第二项的比相等,这个常数叫做等比数列的公比,公比通常用字母表示.注:时,为常数列.q (q 0)q=1 an等比数列和等差数列一样,也有一些通项公式:①第项的通项公式,=,这里a 为首项,q 为公比,n a a q n﹣1n 1 1푎1(1―푞푛)我们发现这个通项公式其实就是指数函数上孤立的点.②求和公式,S =n,表示的是前面项的n1―푞和.③若m n=q p ,且都为正整数,那么有a •a =a •a .m n p q例:成等比数列,则=.2,x,y,z,18 y解:由成等比数列,设其公比为,2,x,y,z,18 q4则,解得,18=2q q2=32∴.y=2q =23=6故答案为:.6本题的解法主要是运用了等比数列第项的通项公式,这也是一个常用的方法,即知道某两项的值然后求出公比,n继而可以以已知项为首项,求出其余的项.关键是对公式的掌握,方法就是待定系数法.【等比数列的性质】(1)通项公式的推广:=,(,).a a q ﹣n m N*•n mn m*(2)若{a n}为等比数列,且,则k l=m n,(k,l,m,n N ) a •a=a •ak l m n(3)若{ }{ }(项数相同)是等比数列,则 a a a b ,仍是等比数列.a ,b {(} 0),,{•}n n n n n푎1>0푎1<0푎1>0푎1<0 (4)单调性:{푞>1或{0<푞<1是递增数列;{0<푞<1或{{a } {a } q=1 {a }푞>1是递减数列;是 n n n 常数列;是摆动数列.q<0 {a }n1/ 1。

等比数列的基本性质与求和公式

等比数列的基本性质与求和公式

等比数列的基本性质与求和公式等比数列是数学中常见的一种数列,它的前后两项的比值始终保持不变。

等比数列具有许多重要的性质和求和公式,本文将对这些性质和公式进行详细介绍与解析。

一、等比数列的基本性质等比数列的基本性质包括公比、通项公式以及前n项和的公式。

1. 公比公比是等比数列中相邻两项的比值,通常用字母q表示。

对于等比数列{a1, a2, a3, ...},公比q = a2/a1 = a3/a2 = ...。

公比q可以是正数、负数或零。

2. 通项公式等比数列的通项公式是指根据数列的首项和公比,可以得到任意项的数值表达式。

对于等比数列{a1, a2, a3, ...},通项公式为an = a1 *q^(n-1),其中n表示项数,an表示第n项。

通项公式可以帮助我们方便地计算等比数列中任意一项的数值。

3. 前n项和公式等比数列的前n项和公式是指根据数列的首项、公比和项数,可以得到前n项之和的表达式。

前n项和公式为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和。

这个公式的推导涉及到对等比数列求和的方法,下文我们将介绍这个求和方法的详细步骤。

二、等比数列的求和公式的推导为了推导等比数列的求和公式,我们可以从以下几个步骤入手:Step 1: 假设等比数列的首项为a1,公比为q。

Step 2: 将等比数列的前n项和用Sn表示。

Step 3: 将等比数列的首项a1与公比q对齐。

Step 4: 将等比数列展开为a1, a1*q, a1*q^2, ..., a1*q^(n-1)。

Step 5: 将等比数列反向展开为a1*q^(n-1), a1*q^(n-2), ..., a1*q^2,a1*q, a1。

Step 6: 将两个等比数列按位相减,并观察相减结果的特点。

Step 7: 将相减结果与等比数列前n项和Sn相加,并观察相加结果的特点。

Step 8: 确定等比数列的前n项和公式Sn。

等比数列的性质和求和公式

等比数列的性质和求和公式

等比数列的性质和求和公式等比数列是指数列中任意两项之间的比值都相等的数列。

在数学中,等比数列有自己独特的性质和求和公式,本文将详细介绍这些内容。

一、等比数列的性质1. 公比:等比数列中,任意两项之间的比值称为公比,通常用字母q表示。

公比q不为零,且常数项不为零时才能构成等比数列。

当q>1时,数列为递增的;当0<q<1时,数列为递减的。

2. 通项公式:等比数列中,第n项an与第一项a1之间存在以下关系:an = a1 * q^(n-1)3. 任意两项之比:等比数列中,第n项与第m项之间的比值可表示为:an / am = q^(n-m)4. 前n项和:等比数列的前n项和Sn可通过以下公式计算:Sn = a1 * (q^n - 1) / (q - 1)二、等比数列的求解及应用1. 求解等比数列的常见问题:a) 已知首项a1和公比q,求第n项an:根据等比数列的通项公式an = a1 * q^(n-1),代入已知的a1和q即可求得an;b) 已知首项a1和第n项an,求公比q:将已知的an代入等比数列的通项公式an = a1 * q^(n-1),解方程即可求得q;c) 已知首项a1、公比q和项数n,求前n项和Sn:利用等比数列的求和公式Sn = a1 * (q^n - 1) / (q - 1),代入已知的a1、q和n即可求得Sn。

2. 等比数列的实际应用:a) 财务分析:等比数列的求和公式可以应用于财务分析中的复利计算,用于计算投资收益等问题;b) 科学研究:等比数列可以用于描述一些自然界和社会现象中的增长和衰减规律,如生物种群的繁殖、细菌的增长等;c) 工程问题:等比数列可以应用于工程问题中的增长和递减模型,如工程材料的强度、电路中的电压等。

三、案例分析假设有一个等比数列的首项a1为2,公比q为3,项数n为4,我们可以通过等比数列的性质和求和公式来计算该等比数列的一些重要性质。

首先,根据等比数列的通项公式an = a1 * q^(n-1),可以求得该数列的各项:a2 = 2 * 3^1 = 6a3 = 2 * 3^2 = 18a4 = 2 * 3^3 = 54其次,利用等比数列的求和公式Sn = a1 * (q^n - 1) / (q - 1),可以求得前4项和:S4 = 2 * (3^4 - 1) / (3 - 1) = 2 * (81 - 1) / 2 = 40所以,该等比数列的第4项为54,前4项和为40。

高一数学《等比数列公式性质》知识点

高一数学《等比数列公式性质》知识点

高一数学《等比数列公式性质》知识点
高一数学《等比数列公式性质》知识点
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,下面是小编整理的高一数学《等比数列公式性质》知识点,希望对大家有帮助!
1.等比数列的有关概念
(1)定义:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N*,q 为非零常数).
(2)等比中项:
如果a、G、b成等比数列,那么G叫做a与b的`等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
3.等比数列{an}的常用性质
(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N*),则am·an=ap·aq=a.
特别地,a1an=a2an-1=a3an-2=….
(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-
S2m,…仍是等比数列(此时q≠-1);an=amqn-m.
4.等比数列的特征
(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数.
(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.
5.等比数列的前n项和Sn
(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.
(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.。

高中数学知识点总结等比数列与等比数列的性质

高中数学知识点总结等比数列与等比数列的性质

高中数学知识点总结等比数列与等比数列的性质等比数列是数学中常见的一种数列,又被称为等比数列或几何数列。

在高中数学中,等比数列的概念及其性质是学习数列的重要一环。

本文将对等比数列以及等比数列的性质进行总结和讨论。

1. 等比数列的定义等比数列是指一个数列中的每一项与它的前一项之比都相等的数列。

假设数列的首项为a,公比为r,那么等比数列的通项公式可以表示为:an = a * r^(n-1)其中,an为数列的第n项。

2. 等比数列的性质等比数列有许多特殊的性质,下面将逐一介绍。

2.1 等比数列的公比公比r是等比数列中非常重要的一个概念,它决定了数列的增长或衰减趋势。

当|r|>1时,等比数列呈现增长趋势,此时数列的绝对值逐项增大;当|r|<1时,等比数列呈现衰减趋势,此时数列的绝对值逐项减小;当|r|=1时,等比数列的绝对值保持不变。

2.2 等比数列的通项公式的推导等比数列的通项公式an = a * r^(n-1)可以通过递推关系式得出。

首先可以得到数列的第二项:a2 = a * r。

推导出来的通项公示能够方便我们计算等比数列中各项的大小。

同时,通过改变公比,我们可以观察等比数列的特点。

2.3 等比数列前n项和的计算等比数列的前n项和Sn可以通过以下公式进行计算:Sn = a * (r^n - 1) / (r - 1)这个公式也可以通过递推关系式的推导得出。

等比数列前n项和的计算在实际问题中具有重要的应用,可以帮助我们求解等比数列求和问题。

3. 等比数列的应用举例3.1 高度问题假设一个球从一定的高度往下落,每次反弹高度都是之前一次的一半。

如果求第n次反弹的高度,我们可以建立等比数列来描述这个过程。

首项为球的初始高度,公比为1/2,利用等比数列的通项公式即可求解。

3.2 利息问题在金融领域中,利息的计算经常涉及到等比数列。

例如,一笔钱每年按照固定的利率计算利息,那么每年的本金和利息的总额就构成了一个等比数列。

高一数学必修5等比数列知识点自己总结

高一数学必修5等比数列知识点自己总结

高一数学必修5等比数列知识点自己总结等比数列是数学中常见的数列,其特点是每个数与前一个数的比例保持不变。

等比数列在高中数学中常用于解题和推导。

下面是关于高一数学必修5中等比数列的知识点总结。

一、等比数列的定义等比数列是一种数列,它的每一项与前一项之比都相等。

记作a1、a2、a3、...、an、...的等比数列,它的通项公式为an=a1*r^(n-1),其中a1是首项,r是公比,n是项数。

二、等比数列的性质1. 公比为0时,等比数列为常数列。

2. 公比大于1时,等比数列呈递增趋势。

3. 公比小于1但大于0时,等比数列呈递减趋势。

4. 公比小于-1但大于-1时,等比数列呈交替增减趋势。

5. 等比数列的首项与公比的正负关系决定了数列的增减趋势。

三、等比数列的通项公式等比数列的通项公式可以通过下述推导得出:设等比数列的首项是a1,公比是r,第n项是an,第n-1项是an-1。

an=a1*r^(n-1) (等比数列的通项公式)an-1=a1*r^(n-2) (等比数列的通项公式)将第一个式子除以第二个式子得:an/an-1=(a1*r^(n-1))/(a1*r^(n-2))=r即等比数列的两项之比恒等于公比r。

四、等比数列的和等比数列的前n项和可以通过以下公式计算得出:Sn=a1*(1-r^n)/(1-r) (等比数列的前n项和公式)其中Sn是前n项的和。

特殊情况下,当公比r=1时,等比数列的前n项和可以简化为Sn=n*a1。

五、等比中项等比数列中,若数列中的某个数是它前后两个数的几何平均数,则称该数为等比数列的等比中项。

设该数为x,前一项是a,后一项是b,根据等比数列的性质可得:a/x=x/b即x^2=ab,解得x=√(ab)。

六、等比数列的应用1. 判断一组数是否构成等比数列,可通过两项之比是否恒等于公比来判断。

2. 求等比数列的前n项和,可使用等比数列的前n项和公式Sn=a1*(1-r^n)/(1-r)。

等比数列的性质与公式

等比数列的性质与公式

等比数列的性质与公式数列是数学中常见的一种序列,根据元素之间的规律可以分为等差数列和等比数列等。

在本文中,我们将重点讨论等比数列的性质与公式。

一、等比数列的定义等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。

设等比数列的首项为a₁,公比为r,则数列的通项公式为:aₙ = a₁ * r^(n-1)其中aₙ表示第n项的值。

二、等比数列的性质1. 公比的性质公比为r的等比数列中,如果r>1,则数列是递增的;如果0<r<1,则数列是递减的;如果r=1,则数列是恒定的。

2. 通项公式等比数列的通项公式为aₙ = a₁ * r^(n-1),通过该公式可以求出任意项的值。

3. 首项、公比与项数的关系根据等比数列的通项公式aₙ = a₁ * r^(n-1),我们可以得到首项、公比和项数之间的关系:aₙ = a₁ * r^(n-1)a₂ = a₁ * rr = a₂ / a₁a₃ = a₁ * r^2...即等比数列的第n项等于首项乘以公比的n-1次方。

4. 等比数列的前n项和等比数列的前n项和记为Sₙ,可以通过以下公式计算:Sₙ = a₁ * (1 - rⁿ) / (1 - r)其中n表示项数。

三、等比数列的常见问题1. 求等比数列中某一项的值如果已知等比数列的首项a₁、公比r和项数n,我们可以通过通项公式aₙ = a₁ * r^(n-1)计算出该项的值。

2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,可以通过前n项和的公式Sₙ = a₁ * (1 - rⁿ) / (1 - r)求得。

3. 求等比数列的项数已知等比数列的首项a₁、公比r和某一项的值aₙ,可以通过项数的对数形式求得:n = logₐ( aₙ / a₁ ) + 1其中logₐ表示以a为底的对数运算。

四、等比数列的应用等比数列在实际问题中有着广泛的应用。

例如在金融领域,利率、汇率等都可以用等比数列的形式来描述;在自然科学研究中,细胞分裂、物种繁殖等也常常涉及等比数列的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七错位相减法
1.推导等比数列前n项和的方法
一般地,等比数列{an}的前n项和可写为:
Sn=a1+a1q+a1q2+…+a1qn-1,①
用公比q乘①的两边,可得
qSn=a1+a1q2+…+a1qn-1+a1qn,②
由①-②,得(1-q)Sn=a1-a1qn,
整理得Sn= (q≠1).
2.我们把上述方法叫,一般适用于数列{an·bn}前n项和的求解,其中{an}为等差数列,{bn}为等比数列,且q≠1.
(2)由递推关系an+1=Aan+B(A,B为常数,且A≠0,A≠1)求an时,由待定系数法设an+1+λ=A(an+λ),可得λ= ,这样就构造了等比数列{an+λ}.
等比数列
一 等比数列的概念
1.定义:如果一个数列从第项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的,通常用字母表示(q≠0).
2.递推关系
在数列{an}中,若 =q(n∈N*),q为非零常数,则数列{an}是等比数列.
思考1 下列数列一定是等比数列的是________.
(1)已知an=128,a1=4,q=2,求n;
(2)已知an=625,n=4,q=5,求a1;
(3)已知a1=2,a3=8,求公比q和通项公式.
规律方法a1和q是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是根据条件,建立关于a1和q的方程组,求出a1和q.
【试一试】在等比数列{an}中,
2.等比数列前n项和公式的使用
公比q≠1时,公式Sn= 适用于已知a1,q和项数n,而公式Sn= 更适用于已知a1,q和末项an,使用时依据条件灵活选用.
思考 设f(n)=2+24+27+…+23n+1(n∈N*),则f(n)等于( )
A. (8n-1)B. (8n+1-1)C. (8n+2-1)D. (8n+3-1)
八 等比数列前n项和的变式
1.等比数列{an}的前n项和为Sn,当公比q≠1时,Sn= = = = - ;
当q=1时,Sn=.
2.当公比q≠1时,等比数列的前n项和公式是Sn= ,它可以变形为Sn=- ·qn+ ,设A= ,上式可写成Sn=.由此可见,非常数列的等比数列的前n项和Sn是由关于n的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.
五 等比数列的性质
1.如果m+n=k+l,则有.
2.如果m+n=2k,则有am·an=.
3.若m,n,p成等差数列,则am,an,ap成等比数列.
4.在等比数列{an}中,每隔k项(k∈N*)取出一项,按原来的顺序排列,所得的新数列仍为数列.
5.如果{an},{bn}均为等比数列,且公比分别为q1,q2,那么数列 ,{an·bn}, ,{|an|}仍是等比数列,且公比分别为 ,q1q2, ,|q1|.
思考1 已知等比数列{an}中,a1=1,a3=9,则a2=______.
思考2 除了课本上采用的不完全归纳法,还能用什么方法求数列的通项公式.
四 等比数列的通项公式的推广
{an}是等比数列,首项为a1,公比为q,则an=,an=m,n∈N*).
思考1 如何推导an=amqn-m?
思考2 若已知等比数列{an}中,q=3,a3=3,则a7=____.
(1)定义法: =q(q为常数且不为零)⇔{an}为等比数列.
(2)等比中项法:a =anan+2(n∈N*且an≠0)⇔{an}为等比数列.
(3)通项公式法:an=a1qn-1(a1≠0且q≠0)⇔{an}为等比数列.
【试一试】已知各项都为正数的数列{an}满足a1=1,a -(2an+1-1)an-2an+1=0.
2.Sm+n=Sm+qmSn(q为数列{an}的公比).
3.若{an}是项数为偶数、公比为q的等比数列,则 =q.
思考 在等比数列{an}中,若a1+a2=20,a3+a4=40,则S6等于( )
A.140 B.120 C.210 D.520
【知识梳理1】等比数列的通项公式及应用
例1在等比数列{an}中,
(1)1,3,32,33,…,3n-1,…;
(2)-1,1,2,4,8,…;
(3)a1,a2,a3,…,an,….
思考2 若数列{an}满足an+1=2an(n∈N*),那么{an}是等比数列吗?
二等比中项的概念
如果a,G,b成等比数列,那么G叫做a与b的,且G=
三 等比数列的通项公式
已知等比数列{an}的首项为a1,公比为q(q≠0),该等比数列的通项公式为.
当公比q=1时,因为a1≠0,所以Sn=na1是n的正比例函数(常数项为0的一次函数).
思考 在数列{an}中,an+1=can(c为非零常数)且前n项和Sn=3n-1+k,则实数k等于________.
九 等比数列前n项和的性质
1.连续m项的和(如Sm,S2m-Sm,S3m-S2m)仍构成数列.(注意:q≠-1或m为奇数)
6.等比数列的项的对称性:在有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积,即a1·an=a2·an-1=ak·an-k+1=….
思考 在等比数列{an}中, =________,a5·a11=________.
六 等比数列前n项和公式
1.等比数列前n项和公式
(1)公式:Sn=
(2)注意:应用该公式时,一定不要忽略q=1的情况.
(1)求a2,Βιβλιοθήκη 3;(2)求{an}的通项公式.
【知识梳理3】构造等比数列求数列的通项公式
例3已知数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),且an+Sn=n.
(1)设cn=an-1,求证:{cn}是等比数列;
(2)求数列{bn}的通项公式.
规律方法(1)已知数列的前n项和,或前n项和与通项的关系求通项,常用an与Sn的关系求解.
(1)已知a3=2,a5=8,求a7;
(2)已知a3+a1=5,a5-a1=15,求通项公式an.
【知识梳理2】等比数列的判定与证明
例2已知f(x)=logmx(m>0且m≠1),设f(a1),f(a2),…,f(an),…是首项为4,公差为2的等差数列,
求证:数列{an}是等比数列.
规律方法判断一个数列是不是等比数列的常用方法
相关文档
最新文档