第五章测量误差及数据处理基本知识
第五章 测量误差的基本知识

在测量工作中,如某个误差超过了容许误差,则相应 观测值应舍去重测。
3.相对误差
绝对误差值与观测值之比,称为相对误差。在某 些测量工作中,有时用中误差还不能完全反映测量精度, 例如测量某两段距离,一段长200m,另一段长100m, 它们的测量中误差均为±0.2m,为此用观测值的中误差 与观测值之比,并将其分子化为1,即用1/K表示,称为 相对误差。
180°00ˊ00"
0
0
179°59ˊ57"
-3
9
180°00ˊ01"
+1
1
24
130
m2
2 3.6 10
两组观测值的误差绝对值相等 m1 < m2,第一组的观测成果的精度高于第二组观测成
果的精度
2.容许误差
容许误差又称极限误差。根据误差理论及实践证明, 在大量同精度观测的一组误差中,绝对值大于两倍中误差 的偶然误差,其出现的可能性约为5%;大于三倍中误差 的偶然误差,其出现的可能性仅有3‰,且认为是不大可 能出现的。因此一般取三倍中误差作为偶然误差的极限误 差。
全微分
dZ Kdx
得中误差式 mZ K 2mx2 Kmx
例:量得 1:1000 地形图上两点间长度l =168.5mm0.2mm,
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
测量误差=观测值-真值
观测误差来源于仪器误差、人的感官能力和外界环境 (如温度、湿度、风力、大折光等)的影响,这三方面的 客观条件统称观测条件。
《测量学》第5章 测量误差基本知识

4 180-00-01.5
5 180-00-02.6
S
m
244 .3 7.0秒 5
m2 3m2 m 3m
-10.3
+2.8 +11.0 -1.5 -2.6 -1.6
106.1
7.8 121 2.6 6.8 244.3
A BC
m m / 3 4.0秒
误差传播定律应用举例
1、测回法观测水平角时盘左、盘右的限差不超 过40秒; 2、用DJ6经纬仪对三角形各内角观测一测回的 限差; 3、两次仪器高法的高差限差。
24
130
中误差 m 1
2 2 .7 n
m2
2 3 .6
n
三、相对误差
某些观测值的误差与其本身 大小有关
用观测值的中误差与观测值之比 的形式描述观测的质量,称为相 对误差(全称“相对中误差”)
T m l
1 l
m
例,用钢卷尺丈量200m和40m两段距 离,量距的中误差都是±2cm,但不 能认为两者的精度是相同的
x l1 l2 ln
已知:m1 =m2 =….=mn=m
n
求:mx
dx
1 n
dl1
1 n
dl2
1 n
dln
mx
(
1 n
)2
m12
(1)2 n
m22
(1)2 n
mn2
1m n
算例:用三角形闭合差求测角中误差
次序 观测值 l
Δ ΔΔ
1 180-00-10.3
2 179-59-57.2
3 179-59-49.0
误差传播定律
应用举例
观测值:斜距S和竖直角v 待定值:水平距离D
第5章 测量误差的基本知识

结论
在观测过程中,系统误差和偶然误差往往是同时存在 的。当观测值中有显著的系统误差时,偶然误差就居 于次要地位,观测误差呈现出系统误差的性质;反之, 呈现出偶然误差的性质。因此,对一组剔除了粗差的 观测值,首先应寻找、判断和排除系统误差,或将其 控制在允许的范围内,然后根据偶然误差的特性对该 组观测值进行数学处理,求出最接近未知量真值的估 值,称为最或是值;同时,评定观测结果质量的优劣, 即评定精度。这项工作在测量上称为测量平差,简称 平差。
2 相对误差
对于衡量精度来说,有时单靠中误差还不能完全表达观 测结果的质量。 例如,测得某两段距离,一段长200m,另一段长1000m, 观测值的中误差均为±0.2m 。从表面上看,似乎二者精 度相同,但就单位长度来说,二者的精度并不相同。这 时应采用另一种衡量精度的标准,即相对误差。 相对误差:是中误差与观测值之比,是个无量纲数,在 测量上通常将其分子化为1。即用K=1/N的形式来表示。 上例前者的相对中误差为0.2/200=1/1000,后者为 0.2/1000=1/5000。显然,相对中误差愈小(分母愈 大),说明观测结果的精度愈高,反之愈低。
解:水准测量每一站高差: hi ai bi (i 1,2....,n)
则每站高差中误差
m站 m读 m读 m读 2
2 2 2.8m m
观测n站所得总高差 h h1 h2 hn 则n站总高差h的总误差
2
2
m总 m站 n 2.8 nmm
2
第二组观测 观测值 l Δ 0 180°00ˊ00" +1 159°59ˊ59" -7 180°00ˊ07" -2 180°00ˊ02" -1 180°00ˊ01" 179°59ˊ59" 179°59ˊ52" 180°00ˊ00" 179°59ˊ57" 180°00ˊ01" +1 +8 0 +3 -1 24
第五章误差基本知识

现在的位置:课程介绍 >> 理论部分 >> 电子讲稿第五章误差基本知识5.1误差的来源和分类一、定义:观测值与真值之差,记为:X为真值,即能代表某个客观事物真正大小的数值。
为观测值,即对某个客观事物观测得到的数值。
为观测误差,即真误差。
二、误差的来源1、测量仪器一是仪器本身的精度是有限的,不论精度多高的仪器,观测结果总是达不到真值的。
二是仪器在装配、使用的过程中,仪器部件老化、松动或装配不到位使得仪器存在着自身的误差。
如水准仪的水准管轴不平行视准轴,使得水准管气泡居中后,视线并不水平。
水准尺刻划不均匀使得读数不准确。
又如经纬仪的视准轴误差、横轴误差、竖盘指标差都是仪器本身的误差。
2、观测者是由于观测者自身的因素所带来的误差,如观测者的视力、观测者的经验甚至观测者的责任心都会影响到测量的结果。
举例:如水准尺倾斜、气泡未严格居中、估读不准确、未精确瞄准目标都是观测误差。
3、外界条件测量工作都是在一定的外界环境下进行的。
例如温度、风力、大气折光、地球曲率、仪器下沉都会对观测结果带来影响。
上述三项合称为观测条件a.等精度观测:在相同的观测条件下进行的一组观测。
b.不等精度观测:在不同的观测条件下进行的一组观测。
测量误差的分类根据测量误差表现形式不同,误差可分为系统误差、偶然误差和粗差。
1、系统误差定义:误差的符号和大小保持不变或者按一定规律变化,则称其为系统误差。
如:钢尺的尺长误差。
一把钢尺的名义长度为30m,实际长度为30.005m,那么用这把钢尺量距时每量一个整尺段距离就量短了5mm,也就是会带来-5mm的量距误差,而且量取的距离越长,尺长误差就会越大,因此系统误差具有累计性。
如:水准仪的i角误差,由于水准管轴与视准轴不平行,两者之间形成了夹角i,使得中丝在水准尺上的读数不准确。
如果水准仪离水准尺越远,i角误差就会越大。
由于i角误差是有规律的,因此它也是系统误差。
正是由于系统误差具有一定的规律性,因此只要找到这种规律性,就可以通过一定的方法来消除或减弱系统误差的影响。
第5章 误差基本知识

例如:
水准仪的视准轴与水准轴不平行,则测量结果中含有i 角 误差或交叉误差。
水准尺的分划不均匀,必然产生水准尺的分划误差。
3
2、人的原因
观测者感官鉴别能力有一定的局限性。观测者的习惯 因素、工作态度、技术熟练程度等也会给观测者成果带来 不同程度的影响。
3、外界条件
例如:外界环境如温度、湿度、风力、大气折光等因素 的变化,均使观测结果产生误差。 例如:温度变化使钢尺产生伸缩阳光曝晒使水准气泡偏 移,大气折光使望远镜的瞄准产生偏差,风力过大使仪器安置 不稳定等。 人、仪器和外界环境通常称为观测条件; 观测条件相同的各次观测称为等精度观测; 观测条件不相同的各次观测称为不等精度观测。
⑤ 随着 n 的增大,m 将趋近于σ 。
17
必须指出: 同精度观测值对应着同一个误差分布,即对应着同一个标 准差,而标准差的估计值即为中误差。 同精度观测值具有相同的中误差。 例3: 设对某个三角形用两种不同的精度分别对它进行了10次 观测,求得每次观测所得的三角形内角和的真误差为
第一组: +3″, -2″, -4″,+2″,0″,-4″,+3″, +2″, -3″, -1″; 第二组: 0″, -1″, -7″,+2″,+1″,+1″,- 8″, 0″, +3″, -1″.
2
n
lim
n
n
13
•
从5-3式可以看出正态分布具有前述的偶然误差特性。即:
1.f(△)是偶函数。即绝对值相等的正误差与负误差求得 的f(△)相等,所以曲线对称于纵轴。这就是偶然误差的第三 特性。 • 2.△愈小,f(△)愈大。当△=0时,f(△)有最大值; 反之, △愈大,f(△)愈小。当n→±∞时,f(△) →0,这就是偶然误 差的第一和第二特性。 • 3.如果求f(△)二阶导数并令其等于零,可以求得曲线拐 点横坐标: △拐=± • 如果求f(△)在区间± 的积分,则误差出现在区间内 的相对次数是某个定值 ,所以当 愈小时,曲线将愈陡峭, 即误差分布比较密集;当 愈大时,曲线将愈平缓,即误差 分布比较分散。由此可见,参数 的值表征了误差扩散的特 征。
第5章测量误差的基本知识

1、仪器 三、观测条件
2、观测者
3、外界条件
仪器的质量,人的水平及外界条件的综合 四、等精度观测 在相同观测条件下进行的观测 五、不等精度观测 观测条件不相同的观测 六、误差的分类(按其对观测结果影响性质的不同) 1、系统误差 在相同观测条件下对某一量进行一系列观测,所出现的误差在大小,符号上表现出一致性或按 一定规律变化的为常数。 2、偶然误差 所出现的误差从表面上看没有规律。 3、系统误差对待方法(检校仪器、用一定的观测方法、加改正数) 七、多余观测:多于必要观测次数的观测。 可以及时发现错误,据所评定精度,提交最后成果精度。 八、偶然误差的物性 在 相 同 观 测 条 件 下 , 独 立 地 观 测 了 某 测 区 内 365 个 的 全 部 内 角 , 内 角 和 的 真 误 差
180 ,将正、负误差分开,以误差区间 d 2 对误差个数及频率进行统计。
1、绝对值超过一定限值的误差出现的频率为零 2、小误差出现的频率比大误差出现的频率大 3、正负误差出现的频率相等 4、当观测次数无限增大时,误差的算术平均值→0。 有界性 单峰性 对称性
mx
n
0.71
0.50 0.41 0.35 0.32 0.29
0.20
0.18
0.17
0.16
m 增多观测次数可提高算术平均值的精度
n 25 精度的提高缓慢,提高仪器的等级
四、应用定律注意事项 1、观测值仅含偶然误差。 2、观测值必须相互独立。 3、仅需取两个有效数字。 4、单位统一。 5、有时先取自然对数方便得多。
2 mz (
30 三、举例 1、和差函数
z x1 x2 xn dz dx1 dx2 dxn
测量误差及数据处理

x0
x
相对误差ε是一个无量纲的数据,通常以百分数的形式表
示。相对误差比绝对误差能更好地说明测量的精确程度。例如,
在上面的例子中,ε1=0.002/20×100%=0.01%,ε2= 0.02/250×100%=0.008%,可以看出,后者的测量精度更高。
1.2 测量误差的来源
计量器具 误差
计量器具误差是指计量器具本身在设计、制造和使用
(2)随机误差的评定指标
① 算术平均值 。对同一被测量进行n次等精度测量,测
量结果为x1、x2、…、xn,则算术平均值x 为:
x
x1 x2 xn n
1 n
n i1
xi
测量次数n越大,算术平均值 越趋近于真值x0。因此,用
算术平均值 x 作为最后测量结果是可靠的、合理的。
② 标准偏差σ。
用算术平均值 x 表示测量结果虽然可靠,但不能全面反
映测量精度。例如,有两组测得值: 第一组:12.005,11.996,12.003,11.994,12.002; 第二组:11.90,12.10,11.95,12.05,12.00。
两组测得值的算术平均值 x1= x2=12,但第一组测得
值比较集中,第二组测得值比较分散,也就是说,第一组的 每一个测得值比第二组的更接近于算术平均值,第一组测得 值的测量精度比第二组高。此时,算术平均值就不能准确地 反映测量精度了,而常用标准偏差σ来反映测量精度的高低。
源
误差
所引起的误差。环境条件主要包括温度、湿度、气压、振
动和灰尘等,其中,温度对测量结果的影响最大。
测量人员 误差
测量人员误差是指由测量人员的主观因素所引起的误
差。例如,测量人员技术不熟练、测量瞄准不准确、估读 判断错误和测量习惯等引起的误差。
第五章测量误差的基本知识

mC
试求 中误差
5.3等精度直接观测量的最可靠值及其中 误差
▪ 当观测次数n趋于无穷大时,算术平均值趋 于未知量的真值。当n为有限值时,通常取 算术平均值做为最可靠值。
▪ 利用观测值的改正数vi计算中误差:
m [vv] (n 1)
▪ 算术平均值中误差:
M m [vv] n n(n 1)
例:对某直线丈量了6次,丈量结果如表,求算术
▪ 4相同的观测条件下,一测站高差的中误差为 _______。
▪ 5衡量观测值精度的指标是_____、_______和 ______。
▪ 6对某目标进行n次等精度观测,某算术平均值的中 误差是观测值中误差的______倍。
▪ 7在等精度观测中,对某一角度重复观测多次,观测 值之间互有差异,其观测精度是______的。
第五章 测量误差的基本知识
第五章 测量误差基本知识
5.1 测量误差与精度 5.2误差传播定律 5.3等精度直接观测量的最可靠值及其中误 差 5.4非等精度直接观测值的最可靠值及其中 误差
第五章 测量误差基本知识
▪ 主要内容:测量误差的概念、来源、分类 与处理方法;精度概念及评定标准;误差 传播定律;观测值中误差计算;直接观测 值的最可靠值及其中误差
C.水准管轴不平行与视准轴的误差
▪ 经纬仪对中误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 尺长误差和温度误差属( )
▪ A.偶然误差; B.系统误差; C.中误差
▪ 下面是三个小组丈量距离的结果,只有( 测量的相对误差不低于1/5000的要求
)组
▪ A.100m 0.025m; B.200m 0.040m; C.150m 0.035m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆测量与观测值
◆观测与观测值的分类
● 观测条件:
人、仪器、客观环境总称观测条件,它们 是引起观测误差的主要因素
● 等精度观测和不等精度观测 ● 直接观测和间接观测 ● 独立观测和非独立观测
鲁东大学地理与规划学院
4
2020年4月9日星期四
§6.1 测量误差概述
◆ 测量误差及其来源
● 测量误差(真误差=观测值-真值) l X
23
2020年4月9日星期四
(1) f1x1(1) f2x2(1) fnxn(1)
对Z观测 了k次,
(2) f1x1(2) f2x2(2) fnxn(2)
(d)
有k个式
(k) f1x1(k) f2x2(k) fnxn(k)
对(d)式中的一个式子取平方:(i,j=1~n且i≠j)
设 xi有真误差 xi ,函数 Z 也产生真误差
对(a)全微分:
dZ
F x1
dx1
F x2
dx2
F xn
dxn
(b)
由于xi和是一个很小的量,可代替上式中的dxi 和dz :
代入(b)得
F x1
x1
F x2
x2
F xn
xn
(c)
令
xi 的系数为 fi
鲁东大学地理与规划学院
F xi
, (c)式为:
分析结果表明,当观测次数很多时,偶然 误差的出现,呈现出统计学上的规律性。而 且,观测次数越多,规律性越明显。
鲁东大学地理与规划学院
9
2020年4月9日星期四
鲁东大学地理与规划学院
10
2020年4月9日星期四
用频率直方图表示的偶然误差统计:
频率直方图中,每一条形的面积表示误差出现在该区 间的频率k/n,而所有条形的总面积等于1。
计算该两点实地距离S及其中误差ms: 解:列函数式 S 1000 l
求全微分 dS 1000dl
mS 1000ml 1000 0.2 200mm 0.2m
中误差式 S 168.5m 0.2m
鲁东大学地理与规划学院
28
2020年4月9日星期四
2.线性函数的中误差 设有函数式 Z k1x1 k2 x2 kn xn
xix j K
(g)
由偶然误差的抵偿性知:
i j
lim xix j 0
n
n
(g)式最后一项极小于前面各项, 可忽略不计,则:
2
K
f12
x12 K
f
2 2
x22 K
f
2 n
xn2 K
即
mz2
f12mx21
f
m 2 2
2 x2
f
2 n
mx2n
பைடு நூலகம்
(h)
鲁东大学地理与规划学院
25
2020年4月9日星期四
鲁东大学地理与规划学院
14
2020年4月9日星期四
衡量精度的标准
• 在测量工作中,常采用以下几种标准评定测 量成果的精度。 – 中误差 – 相对中误差 – 极限误差
鲁东大学地理与规划学院
15
2020年4月9日星期四
§6.4 衡量精度的指标
1.方差与标准差
由正态分布密度函数
y
x
1
e
xa 2
2 2
n
n
观测次数n有限时,用中误差m表示偶然误差的离散情形:
m 21 22 2n []
n
n
上式中,偶然误差为观测值 与真值X之差:
i= i - X
鲁东大学地理与规划学院
18
2020年4月9日星期四
P123表5-2
鲁东大学地理与规划学院
19
2020年4月9日星期四
m1=2.7是第一组观测值的中误差; m2=3.6是第二组观测值的中误差。
2 lim 21 22 2n lim [2 ]
n
n
n n
称为标准差:
lim
[2 ] lim
[]
n n
n n
鲁东大学地理与规划学院
17
2020年4月9日星期四
测量工作中,用中误差作为衡量观测值精度的标准。
中误差:
观测次数无限多时,用标准差 表示偶然误差的离散情形:
lim []
鲁东大学地理与规划学院
12
2020年4月9日星期四
偶然误差具有正态分布的特性
当观测次数n无限增多(n→∞)、误差区间d无限缩小 (d→0)时,各矩形的顶边就连成一条光滑的曲线, 这条曲线称为 “正态分布曲 线”,又称为 “高斯误差分 布曲线”。 所以偶然误差 具有正态分布 的特性。
鲁东大学地理与规划学院
§6.2 测量误差的种类
测量误差分为:粗差、系统误差和偶然误差
1.粗差(错误)——超限的误差
2.系统误差 —— 误差出现的大小、符号相同,或按
规律性变化,具有积累性。
例: 误差
处理方法
钢尺尺长误差ld 钢尺温度误差lt
计算改正 计算改正
水准仪视准轴误差I 操作时抵消(前后视等距)
经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)
图6-1 误差统计直方图
13
2020年4月9日星期四
衡量精度的标准
• 测量成果中都不可避免地含有误差,在测量工作中, 使用“精度”来判断观测成果质量好坏的。所谓精 度,就是指偶然误差分布的密集或离散程度。误差 分布密集,误差就小,精度就高;反之,误差分布 离散,误差就大,精度就低。
• 一组观测值对应一种分布,也就代表这组观测值精 度相同。不同组观测值,分布不同,精度也就不同。 一组观测值具有相同的分布,但偶然误差各不相同。
解: K1=—01.00—02 =5—00—10 ; K2= —02.00—02 = —101—000
K2<K1,所以距离S2精度较高。
鲁东大学地理与规划学院
22
2020年4月9日星期四
§6.5 误差传播定律
一.一般函数的中误差
设有函数: Z F(x1, x2, , xn )
(a)
xi为独立观测值
|容|=3|m| 或 |容|=2|m|
鲁东大学地理与规划学院
21
2020年4月9日星期四
3.相对误差(相对中误差)
——误差绝对值与观测量之比。
用于表示距离的精度。 用分子为1的分数表示。 分数值较小相对精度较高;分数值较大相对精度较低。
例2:用钢尺丈量两段距离分别得S1=100米,m1=0.02m; S2=200米,m2=0.02m。计算S1、S2的相对误差。
解:对上式全微分:
由中误差式得:
dz
4 14
dx1
9 14
dx2
1 14
dx3
mZ f1mx1 2 f2mx2 2 f3mx3 2
测量的基本任务
高差测量
1.水准仪的使用及其普通 水准测量步骤
2.水准测量成果计算表 (闭合、附合)按距离 调整、按测站数调整
3.水准仪的检校。重点是i 角的校验与校正
角度测量
距离测量
1.测回法测水平角,记录、 计算过程
2.竖直角的观测,记录、计 算
3.盘左、盘右观测法的好处
1.钢尺量距 2.视距测量计算公式 3.直线定向与直线定线
全微分 dz k1dx1 k2dx2 kndxn
中误差式 mZ k12m12 k22m22 kn2mn2 例:设有某线性函数
Z
4 14
x1
9 14
x2
1 14
x3
其中 x1、x2 、x3分别为独立观测值,它们的中误差分
别为m1 3mm, m2 2mm, m3 6mm求Z的中误差 mZ 。
频率直方图的中间高、两边低,并向横轴逐渐逼近, 对称于y轴。
各条形顶边中点 连线经光滑后的曲 线形状,表现出偶 然误差的普遍规律
鲁东大学地理与规划学院
图6-1 误差统计直方图
11
2020年4月9日星期四
◆从误差统计表和频率直方图中,可以归纳出偶然误 差的四个特性:
3.偶然误差的特性
(1)在一定的观测条件下,偶然误差的绝对值不会超过一定 的限值(有界性);
前面章节小结(重点掌握内容)
鲁东大学地理与规划学院
1
2020年4月9日星期四
测量学
第6章
测量误差及数据处理的基本知识
鲁东大学地理与规划学院
2
2020年4月9日星期四
本章主要内容
1
测量误差的概念
2
评定精度的标准
3
观测值的精度评定
4
误差传播定律
鲁东大学地理与规划学院
3
2020年4月9日星期四
§5.1 测量误差概述
正态分布曲线(a=0)
2
式中 a 、 为常数;e =2.72828…
令: x a ,上式为:
x=
y f ()
1
2
e 2 2
2
鲁东大学地理与规划学院
16
2020年4月9日星期四
标准差 的数学意义
y f ()
1
e
2
2 2
2
y 较小 较大
上式中, 2称为方差:
表示的 x=
离散程度
24
2020年4月9日星期四
n
2
f12 x12
f
2 2
x22
f
2 n
xn2
2
fi f j xix j (f)
(f)式两边除以K,得(g)式:
i, j1
i j
<<前面各项
2
K
f12
x12 K
f