精馏塔的计算
塔精馏塔的计算1

一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。
%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。
实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。
精馏塔计算方法

目录1 设计任务书 (1)1.1 设计题目………………………………………………………………………………………………………………………………………………………………………1.2 已知条件………………………………………………………………………………………………………………………………………………………………………1.3设计要求…………………………………………………………………………………………………………………………………………………………………………2 精馏设计方案选定 (1)2.1 精馏方式选择…………………………………………………………………………………………………………………………………………………………………2.2 操作压力的选择…………………………………………………………………………………………………………………………………………………………………2.4 加料方式和加热状态的选择……………………………………………………………………………………………………………………………………………………2.3 塔板形式的选择…………………………………………………………………………………………………………………………………………………………………2.5 再沸器、冷凝器等附属设备的安排……………………………………………………………………………………………………………………………………………2.6 精馏流程示意图…………………………………………………………………………………………………………………………………………………………………3 精馏塔工艺计算 (2)3.1 物料衡算…………………………………………………………………………………………………………………………………………………………………………3.2 精馏工艺条件计算………………………………………………………………………………………………………………………………………………………………3.3热量衡算…………………………………………………………………………………………………………………………………………………………………………4 塔板工艺尺寸设计 (4)4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………4.2 塔径………………………………………………………………………………………………………………………………………………………………………………4.3溢流装置…………………………………………………………………………………………………………………………………………………………………………4.4 塔板布置及浮阀数目与排列……………………………………………………………………………………………………………………………………………………5 流体力学验算 (6)5.1 气相通过塔板的压降……………………………………………………………………………………………………………………………………………………………5.2 淹塔………………………………………………………………………………………………………………………………………………………………………………5.3 雾沫夹带…………………………………………………………………………………………………………………………………………………………………………6 塔板负荷性能图 (7)6.1 雾沫夹带线………………………………………………………………………………………………………………………………………………………………………6.2 液泛线…………………………………………………………………………………………………………………………………………………………………………6.3 液相负荷上限线…………………………………………………………………………………………………………………………………………………………………6.4 漏液线…………………………………………………………………………………………………………………………………………………………………………6.5 液相负荷下限线…………………………………………………………………………………………………………………………………………………………………6.6 负荷性能图………………………………………………………………………………………………………………………………………………………………………7 塔的工艺尺寸设计 (8)8釜温校核 (9)9热量衡算 (9)10接管尺寸设计 (10)符号说明 (10)参考文献 (13)结束语 (13)1.设计任务1.1设计题目:年产8000吨乙醇板式精馏塔工艺设计1.2已知条件:1原料组成:含35%(w/w)乙醇的30度液体,其余为水。
精馏塔的设计计算

第2章精馏塔的设计计算2.1 进料状况设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下回流至塔内该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.7倍。
塔釜采用间接蒸汽加热具体如下:塔型的选择本设计中采用浮阀塔。
2.2 加料方式和加料热状况加料方式和加料热状况的选择:加料方式采用泵加料。
虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取泡点进料。
2.3 塔顶冷凝方式塔顶冷凝采用全冷凝器用水冷却。
甲醇和水不反应而且容易冷却,故使用全冷凝器,塔顶出来的气体温度不高冷凝回流液和产品温度不高无需进一步冷却,此分离也是为了得到甲醇故选用全冷凝器。
2.4 回流方式回流方式可分为重力回流和强制回流,对于小型塔冷凝器一般安装在塔顶。
其优点是回流冷凝器无需支撑结构,其缺点是回流控制较难。
需要较高的塔处理或因为不易检修和清理,这种情况下采用强制回流.故本设计采用强制回流。
2.5加热方式加热方式为直接加热和间接加热。
直接加热由塔底进入塔内。
由于重组分是水故省略加热装置。
但在一定的回流比条件下,塔底蒸汽对回流有稀释作用,使理论板数增加,费用增加,间接蒸汽加热器是塔釜液部分汽化维持原来浓度,以减少理论板数。
本设计采用间接蒸汽加热。
2.6工艺流程简介连续精馏装置主要包括精馏塔,蒸馏釜(或再沸器),冷凝器,冷却器,原料预热器及贮槽等.原料液经原料预热器加热至规定温度后,由塔中部加入塔内.蒸馏釜(或再沸器)的溶液受热后部分汽化,产生的蒸汽自塔底经过各层塔上升,与板上回流液接触进行传质,从而使上升蒸汽中易挥发组分的含量逐渐提高,至塔顶引出后进入冷凝器中冷凝成液体,冷凝的液体一部分作为塔顶产品,另一部分由塔顶引入塔内作为回流液,蒸馏釜中排出的液体为塔底的产品。
化工单元操作:精馏塔计算

(四)单股进料,无侧线出料 塔体上只有一个进料口,除塔顶馏出液和塔底残液,没有其他出料口。
二、全塔物料衡算(质量守恒)
1、物料衡算公式:
F = D + W FzF = DxD + WxW 2、采出率、易挥发组分回收率、难挥发组分回收率的概念和计算
2、提馏段操作线方程
L′ =V ′ + W
L′xm = V ′ym+1 + WxW
y m +1
=
L′ L′ −W
xm
−
WxW L′ −W
或者
y m +1
=
L′ V′
xm
− Wxw V′
它表达了在一定的操作条件下,提馏段内相邻两层塔板的下一层塔板上升蒸汽浓度 ym+1 与上 一层塔板下降液体浓度 xm 的关系。
3)进料线方程 y = q x − xF 进料线的意义:精馏段与提馏段两段操作线的交点轨迹。 q −1 q −1
二、操作线的绘制 步骤:
1、精馏段操作线 2、进料线,并与精馏段操作线有一交点 3、提馏段操作线
精馏塔计算
一、精馏塔塔板层数的确定
1、理论塔板的概念 汽液两相在塔板上充分接触,使离开塔板的两相温度相同,且两相组成互为平衡,则称
D = z F − xW F xD − xW
W = xD − zF =1− D
F xD − xW
F
ηD
=
Dx D Fz F
× 100%
ηW
= W (1 − xW ) ×100% F (1 − z F )
三、精馏操作线方程
1、精馏段操作线方程
精馏塔主要尺寸的计算

第三章 精精馏塔工艺尺寸的计算3.1精馏段和提馏段相关数据的计算3.1.1操作温度由第二章可知80.07D t C =︒,95.79F t C =︒,108.5W t C =︒精馏段温度:()11()80.0795.7987.94361.0922n D F n t t t C T k =+=+=︒⇒=提馏段温度:()11()95.79108.5102.145375.29522m w F m t t t C T k =+=+=︒⇒=3.1.2平均分子量由第二章可知,塔顶馏出液,进料液及塔底残液的液相分子量分别为=78.35kg /kmol M L ,D ,=86.68kg /kmol M L ,F ,,=91.8kg/kmol L W M精馏段液相平均分子量:,1(78.3586.68)82.522L n M =+=提馏段液相平均分子量:,1(86.6891.8)89.242L m M =+=由第二章可知0.9932,0.0518,0.61D W F y y y === 塔顶馏出液,进料液及塔底残液的气相分子量1ni iii M y M ==∑ (3.1)由式(3.1)得塔顶馏出液的气相分子量,0.993278.11-=V D M =⨯+⨯(10.9932)92.1378.21由式(3.1)得进料液的气相分子量,0.6178.11+-=V F M =⨯⨯(10.61)92.1383.58由式(3.1)得塔底残液的气相分子量,0.051878.11(10.0518)92.1391.4V W M =⨯+-⨯=精馏段气相平均分子量,1(78.2183.58)80.862V n M =+=提馏段气相平均分子量,1(83.5891.4)84.82V m M =+= 3.1.3平均气相密度根据任务书的要求,塔顶表压为4 kPa ,压降为0.7 kPa 则塔顶压力:104,D p kPa =进料压力:1040.716115.2F p kPa =+⨯=塔底压力:1040.725121.5,W p kPa =+⨯=精馏段压力:1(104115.2)109.6,2n p kPa =+=提馏段压力:1(121.5115.2)118.35,2m p kPa =+=pM RT ρ= (3.2)精馏段密度:,,109.680.642.948.314361.09V nn 3V n n p M kg /m RT ρ⨯===⨯提馏段段:, 3.383V m kg /m ρ=3.1.3.1平均液相密度由任务得:98%,35%,2%D F W a a a ===利用表1.3的数据用插值法求得苯和甲苯在塔顶、塔底及进料温度时的密度其中,a D ρ表示苯在塔顶温度下的密度,,b D ρ表示甲苯在塔顶温度下的密度。
精馏塔的工艺计算

2 精馏塔的工艺计算精馏塔的物料衡算基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯h ;苯 Kmol/h ;甲苯h 。
(三)分离要求:馏出液中乙苯量不大于,釜液中甲苯量不大于。
物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x , 005.0=W LK x ,表 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D= 0681.1005.06225.21322=⨯==W X W ,ωKmol/h 5662.90681.16343.10222=-=-=ωf d Kmol/h编号 组分 i f /kmol/h i f /% 1 苯 2 甲苯 3 乙苯总计100132434.001.02434.1333=⨯==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表精馏塔工艺计算操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位,温度单位K编号 组分 i f /kmol/h馏出液i d釜液i ω 1 苯 0 2 甲苯 3 乙苯总计组份 相对分子质量临界温度C T 临界压力C P苯 78 甲苯 92乙苯106名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯甲苯乙苯泡点方程:p x pni i i=∑=10 试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni i i=∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α 514.2=甲苯α 1=乙苯α;136=底t ℃, 96.1=甲苯α 1=乙苯α;133=进t ℃, 38.4=苯α 97.1=甲苯α 1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
精馏塔计算方法

目录1 设计任务书 (1)1.1 设计题目………………………………………………………………………………………………………………………………………………………………………1.2 已知条件………………………………………………………………………………………………………………………………………………………………………1.3设计要求…………………………………………………………………………………………………………………………………………………………………………2 精馏设计方案选定 (1)2.1 精馏方式选择…………………………………………………………………………………………………………………………………………………………………2.2 操作压力的选择…………………………………………………………………………………………………………………………………………………………………2.4 加料方式和加热状态的选择……………………………………………………………………………………………………………………………………………………2.3 塔板形式的选择…………………………………………………………………………………………………………………………………………………………………2.5 再沸器、冷凝器等附属设备的安排……………………………………………………………………………………………………………………………………………2.6 精馏流程示意图…………………………………………………………………………………………………………………………………………………………………3 精馏塔工艺计算 (2)3.1 物料衡算…………………………………………………………………………………………………………………………………………………………………………3.2 精馏工艺条件计算………………………………………………………………………………………………………………………………………………………………3.3热量衡算…………………………………………………………………………………………………………………………………………………………………………4 塔板工艺尺寸设计 (4)4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………4.2 塔径………………………………………………………………………………………………………………………………………………………………………………4.3溢流装置…………………………………………………………………………………………………………………………………………………………………………4.4 塔板布置及浮阀数目与排列……………………………………………………………………………………………………………………………………………………5 流体力学验算 (6)5.1 气相通过塔板的压降……………………………………………………………………………………………………………………………………………………………5.2 淹塔………………………………………………………………………………………………………………………………………………………………………………5.3 雾沫夹带…………………………………………………………………………………………………………………………………………………………………………6 塔板负荷性能图 (7)6.1 雾沫夹带线………………………………………………………………………………………………………………………………………………………………………6.2 液泛线…………………………………………………………………………………………………………………………………………………………………………6.3 液相负荷上限线…………………………………………………………………………………………………………………………………………………………………6.4 漏液线…………………………………………………………………………………………………………………………………………………………………………6.5 液相负荷下限线…………………………………………………………………………………………………………………………………………………………………6.6 负荷性能图………………………………………………………………………………………………………………………………………………………………………7 塔的工艺尺寸设计 (8)8釜温校核 (9)9热量衡算 (9)10接管尺寸设计 (10)符号说明 (10)参考文献 (13)结束语 (13)1.设计任务1.1设计题目:年产8000吨乙醇板式精馏塔工艺设计1.2已知条件:1原料组成:含35%(w/w)乙醇的30度液体,其余为水。
精馏塔的工艺计算

2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B CD表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精馏塔的计算————————————————————————————————作者:————————————————————————————————日期:ﻩ4.3塔设备设计4.3.1 概述在化工、石油化工及炼油中,由于炼油工艺和化工生产工艺过程的不同,以及操作条件的不同,塔设备内部结构形式和材料也不同。
塔设备的工艺性能,对整个装置的产品产量、质量、生产能力和消耗定额,以及“三废”处理和环境保护等各个方面,都用重大的影响。
在石油炼厂和化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.93%。
塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。
因此,塔设备的设计和研究,对石油、化工等工业的发展起着重要的作用。
本项目以正丁醇精馏塔的为例进行设计。
4.3.2塔型的选择塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。
a.板式塔。
塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。
b.填料塔。
塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。
4.3.2.1 填料塔与板式塔的比较:表4-2 填料塔与板式塔的比较塔型项目填料塔板式塔压降小尺寸填料,压降较大,大尺寸及规整填料,压降较小。
较大空塔气速(生产能力)小尺寸填料气速较小,大尺寸及规整填料气速较大。
较大塔效率传统填料,效率较低,新型乱堆及规整填料效率较高。
较稳定、效率较高液-气比对液体量有一定要求。
适用范围较大持液量较小较大安装、检修较难较容易材质金属及非金属材料均可一般用金属材料造价新型填料,投资较大大直径时造价较低4.3.2.2塔型选择一般原则:选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。
(1)下列情况优先选用填料塔:a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度;b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔;c.具有腐蚀性的物料,可选用填料塔。
因为填料塔可采用非金属材料,如陶瓷、塑料等;d.容易发泡的物料,宜选用填料塔。
(2)下列情况优先选用板式塔:a.塔内液体滞液量较大,操作负荷变化范围较宽,对进料浓度变化要求不敏感,操作易于稳定;b.液相负荷较小;c.含固体颗粒,容易结垢,有结晶的物料,因为板式塔可选用液流通道较大的塔板,堵塞的危险较小;d.在操作过程中伴随有放热或需要加热的物料,需要在塔内设置内部换热组件,如加热盘管,需要多个进料口或多个侧线出料口。
这是因为一方面板式塔的结构上容易实现,此外,塔板上有较多的滞液以便与加热或冷却管进行有效地传热;e.在较高压力下操作的蒸馏塔仍多采用板式塔。
综合考虑,本项目采用板式塔。
4.3.3 塔盘的类型与选择4.3.3.1 板式塔塔板种类:根据塔板上气、液两相的相对流动状态,板式塔分为穿流式和溢流式。
目前板式塔大多采用溢流式塔板。
穿流式塔板操作不稳定,很少使用。
4.3.3.2各种塔盘性能比较:工业上需分离的物料及其操作条件多种多样,为了适应各种不同的操作要求,迄今已开发和使用的塔板类型繁多。
这些塔板各有各的特点和使用体系,现将几种主要塔板的性能比较列表如下:表4-3几种主要塔板的性能比较塔盘类型优点缺点适用场合泡罩板较成熟、操作稳定结构复杂、造价高、塔板阻力大、处理能力小特别容易堵塞的物系浮阀板效率高、操作范围宽浮阀易脱落分离要求高、负荷变化大筛板结构简单、造价低、塔板效率高易堵塞、操作弹性较小分离要求高、塔板数较多舌型板结构简单、塔板阻力小操作弹性窄、效率低分离要求较低的闪蒸塔浮动喷射板压降小、处理量大浮板易脱落、效率较低分离要求较低的减压塔下表给出了几种主要塔板性能的量化比较表4-4 几种主要塔板性能的量化比较塔盘类型塔板效率处理能力操作弹性压降结构成本泡罩板1.0 1.0 5 1复杂 1筛板1.2~1.4 1.4 3 0.5简单0.4~0.5浮阀板 1.2~1.3 1.5 9 0.6 一般0.7~0.9舌型板 1.1~1.2 1.5 30.8简单0.5~0.6从以上各图可以看出:浮阀塔在蒸汽负荷、操作弹性、效率和价格等方面都比泡罩塔优越,结合本项目实际情况,初步选择浮阀塔。
浮阀塔的工艺尺寸计算提取Aspenplus各塔板上的物性参数,选取塔板上气液相负荷最大的第3块塔板进行手工计算和校核,然后再用K G-TOWER 进行软件计算,通过比较来检查计算的正确性。
第3块物性参数如下表:表4-5 浮阀塔塔板参数气相流液相流气相密度液相密度混合液表面7.85 0.0333.045726.0330.0071.塔径计算 初选塔板间距mm H 800=板上液层高度mm h L 100=m h H L T 7.0=-气液两相流动参数:0.0653.045726.03384986.703306.05.05.0V L =⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ρρs s V L查史密斯关联图图4.1 史密斯关联图可查得:14.020=C矫正到表面张力为0.00699157N /m 时134.020919.1514.020σ2.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=C C泛点气速s m cu f /065.23.045045.3003.267134.0-V V L =-⨯==ρρρ 为避免雾沫夹带及液泛的发生,一般情况,f u u )8.0~6.0('=在此取安全系数0.7,s m u u f /45.1065.257.07.0'=⨯=⨯= 流通截面积243.545.184986.7''m u V A s ===由《化工原理》(朱家骅编制)表11.3选取塔板上的液体流动方式 本次设计选择双溢流弓形降液管,一般双溢流型7.0~5.0=D l w此处取0.7wl D= 由《化工原理》(朱家骅编制)图11.19查弓形降液管的参数,如下图088.0=TfA A 所以96.5912.043.5088.01'==-=A A Tm A D T75.296.544=⨯==ππ图4.2 弓形降液管参数图精馏段的塔径圆整为2.8m,由《化工原理》(朱家骅编制)表11-2校核。
对应板间距范围为≥800mm ,故满足条件,假设成立。
实际塔载面积22955.54/m D A T ==π 实际空塔气速s m D V u s /275.175.214.385.744'22=⨯⨯==π 2.溢流装置弓形降液管:0.7wl D =故堰长96.18.27.0=⨯=w l降液管面积2524.0955.609.099.0m A A T f =⨯==由《化工原理》(朱家骅编制)图11.19弓形降液管的参数图 查得148.0=DW d故降液管宽度m W d 481.08.2148.0=⨯=为降低气泡夹带,液体在降液管内应有足够的停留时间以使气体从液相中分离出,一般要求τ不应小于3~5s,而对于高压下操作的塔以及易起泡的物系,停留时间应更长些,为此,必须进行校核。
液体在降液管中停留时间:s s L H A s T f 56.21033147.08.0245.0>=⨯=⋅=τ 故降液管尺寸适宜。
溢流堰 取0.1L h m =则19.2296.133.119)(5.25.2==w h l L图4.3 液体收缩系数计算图由《化工原理》(朱家骅编制)图11.20液体收缩系数计算图查得:30.1=E由弗朗西斯公式,堰上液层高度m l L E h w s ow 232231053.41.9633.11930.100284.0100084.2-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎭⎫ ⎝⎛⋅=堰高0547.00453.01.0=-=-=ow L w h h h 受液盘和底隙:塔板上接受降液管流下液体的那部分区域称为受液盘,常用平形型式。
为减小液体流动阻力和考虑到固体杂质可能在底隙处沉积,所以h 不可过小。
但若h 过大,气体又可能通过底隙窜入降液管,故底隙宜小些以保证液封。
取0.15/OL m s u = 则m u lw Ls h OL 113.015.096.1033147.00=⨯=⋅=塔板布置a.受液区和降液区:一般这两个区域的面积相等,均可按降液管截面积f A 计。
b.边缘区:在塔壁边缘留出一定宽度的环形区域供固定塔板用。
c.入口安定区和出口安定区,通常宽度相等。
d.有效传质区:余下的塔板上有浮阀孔的区域。
于此处考虑:塔径900D mm >,采用分块组装式; 边缘宽度取500.05c W mm m ==; 安定区宽度均取0.08s W m =; 降液管宽0.3d W m =4.3.4 浮阀数目N 及孔间距F1重型浮阀阀孔直径00.039d m =。
取120=F 。
阀孔气速s m F u v/88.6045.3120===ρ 每层塔板浮阀数6.95588.6039.043600/5086.2825942020=⨯⨯=⨯=ππu d VsN圆整为956=N浮阀排列:采用等腰三角形叉排。
由上一小节所假设,鼓泡区面积为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=--r x r x r x r x r x r x A a 12221222sin 180'sin 180''ππ 其中m W W D x x s d 9056.008.0.4144022.82'=--=--== m W D r c 35.105.022.82=-=-=故49.4)35.19056.0(sin 35.11809056.025.19056.021222=⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯⨯=-πa A0.075t m =取 则0626.0075.095649.4'=⨯=⋅=t N A t a 由于塔直径D=2.8m ,采用分块式塔板四块(其中两块弓形板、通道板和矩形板各一块)。
0626m .0t 、075.0='=m t以等腰三角形交叉方式绘图排列如图所示:图4.4 塔板内部结构图由排布图可得实际的开孔数950个sm N d V u s /6.92950039.04849.74220=⨯⨯==ππ07.12045.392.600=⨯==V u F ρ 在适宜范围8-12内 塔板开孔率%4.88.2039.0950%100220=⎪⎪⎭⎫ ⎝⎛⨯=⨯⎪⎪⎭⎫ ⎝⎛=D d N φ1.塔板的流体力学校核 塔板压降校核:1f d h h h =+ a 、干板阻力 阀全开前0()oc u u <:L d u h ρ175.009.19=阀全开后0()oc u u >:g u h L V d ρρ234.520⋅=临界速度s m u Voc /71.5045.35.105.10825.11825.11===ρ有oc u u >0故054.081.9033.726288.6045.334.5234.522=⨯⨯⨯⨯=⋅⋅=g u h L o v d ρρb 、板上充气液层阻力0.6β=取m h h h ow w 60.01.06.0)(1=⨯=+=βm h h h d f 114.0540.060.01=+=+=故塔板压降为Pa gh P f L 9.118114.081.9033.726=⨯⨯==∆ρ满足要求。