因式分解——公式法教学设计
公式法教学设计

因式分解——公式法(二)●课 题§3.3.2 运用公式法(二)●教学目标(一)教学知识点1.使学生会用完全平方公式22)(22b a b ab a +=++分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.在应用完全平方公式的几何图形进行因式分解中,培养学生数形结合思想(三)情感与价值观要求通过综合运用提公因式法、完全平方公式因式分解,进一步培养学生的观察和联想能力. ●教学重点让学生掌握多步骤、多方进行法因式分解的方法.●教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式. ●教学方法观察—发现—运用法●教学过程一.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,逆用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a +b )(a -b )=a 2-b 2而且还学习了完全平方公式(a ±b )2=a 2±2ab +b 2本节课,我们就要学习用完全平方公式分解因式.二.、推导用完全平方公式分解因式的公式以及公式的特点.1、[师]什么是因式分解?[生]将一个多项式表示成若干个多项式的乘积的形式。
[师]很好.请将多项式222b ab a ++ 写成乘积的形式。
[生]将完全平方公式2222)(b ab a b a ++=+从右到左地使用,就可以把形如这样的多项式进行因式分解. 所以, 22)(22b a b ab a +=++[师]例如, 442++x x2、[师]什么样的多项式可以用完全平方公式22)(22b a b ab a +=++进行因式分解呢?[生](1)是三项式(2)有两个平方项且符号相同(3)另一项是两平方项底数之积的2倍由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.3、[师]判断:下列多项式能否用完全平方公式22)(22b a bab a +=++进行因式分解(1)222y xy x ++(2)422++x x(3)2296n mn m ++(4)25425m m -+(5)22y x +(6)229124y xy x ++生独立思考后举手回答4、独立练习:将能进行因式分解的多项式分解出来。
公式法因式分解教案

公式法因式分解教案公式法因式分解教案篇一学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方an的意义:an表示个相乘,即an=.乘方的结果叫a叫做,n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54=_________=5();(3)(-3)3×(-3)2=_________________=(-3)();(4)a6a7=________________=a().(5)5m5n猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:amanap=(m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.2.计算:(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式. (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1四、学以致用:1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=⑷-4444=⑸22n22n+1=⑹y5y2y4y=2.判断题:判断下列计算是否正确?并说明理由⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
初二数学教学设计:因式分解公式法

初二数学教学设计:因式分解—公式法课题15.4.2因式分解公式法(1)课型综合课教学目标知识储备点1.了解平方差公式的特点,掌握用平方差公式分解因式的方法.2.掌握提公因式法,平方差公式分解因式的综合运用.能力培养点1.经历探究分解因式的方法的过程,体会整式乘法与分解因式之间的联系.2.通过乘法公式的逆向变形,发展学生观察,归纳,类比,概括能力,有条理地思考及语言表达能力,培养学生的化归思想,同时培养合作意识.情感体验点通过探究平方差公式,让学生获得成功的体验,勇于发表自己的观点,锻炼克服困难的意志,建立自信心,并能从交流中获益.教学重点运用平方差公式分解因式.教学难点把多项式进行必要的变形,灵活地运用平方差公式分解因式.教学手段利用多媒体辅助教学.教学流程师生行为设计意图新课导入导语:有两块面积不等的正方形草坪,只知道它们的面积之差是24,且草坪的边长为整数,你能猜出这两块草坪的边长吗小明说:设大草坪边长为a,小草坪的边长为b,可得到a2 -b2=(a+b)(a-b),24=64.所以a+b=6,a-b=4.解关于a,b的方程,可求出a=5,b=1.小两说:我求出a=7,b=5.他们说得对吗还有其他答案吗二.学习目标1.掌握用平方差公式分解因式的方法.2.掌握提公因式法,平方差公式分解因式的综合运用.学习指导知识点回顾:你能叙述多项式因式分解的定义吗你知道因式分解与整式乘法有怎样的关系吗判断下列各式是因式分解的是____A.(x+2)(x-2)=x2-4B.x2-4+3x=(x+2)(x-2)+3xC.x2-4x=x(x-4)D.x2-4=(x+2)(x-2)运用平方差公式计算:(x+2y)(x-2y)=____;(y+5)(y-5)=____.探究:(1)你能将多项式x2-4与y2-25分解因式吗(2)这两个多项式有什么共同特点(3)能利用整式的乘法公式平方差公式(a+b)(a-b)=a2b2来解决这个问题吗归纳:平方差公式的特征:(1)__________;(2)_________;(3)__________.平方差公式:a2b2=_______;即两个数的平方差,等于__________.试一试:将多项式x2-4与9m2-4n2分解因式:X2-4=x2-22=(x+2)(x2)a2-b2=(a+b)(a-b)9m2-4n2=(3m)2-(2n)2=(3m+2n)(3m-2n)练一练:(1)下列多项式能否用平方差公式来分解因式a2+b2()m2-n2()-a2+b2()-a2-b2()(2)把下列多项式分解因式:4x2-9x2y2-z2(a+b)2-c2(x+p)2-(x+y)2四:合作学习:类型1.利用平方差公式计算:251012-99225类型2.综合运用因式分解的方法分解因式:(1)x4-y4(2)a3-ab五.盘点收获:知识:平方差公式;方法:类比思想,化归思想;反思:1.因式分解的步骤是先提公因式,再考虑用公式;2.因式分解时要分解到不能再分解为止;3.计算中运用因式分解,可使计算简便.六.消化性考试:1.填空:1-()2=(__+__)(1-5y).2.下列各式运用平方差公式分解因式正确的是()A.x2+y2=(x+y)(x+y)B.x2-y2=(x+y)(x-y)C.-x2+y2=(-x+y)(-x-y)D.-x2-y2=-(x+y)(x-y)3.下列因式分解错误的是()A.1-16a2=(1+4a)(1-4a)B.x3-x=x(x2-1)C.a2-b2c2=(a+bc) (a-bc)D.m2-0.01n2=(0.1n+m)(m-0.1n)4.(2019.黄冈)x3-xy2分解因式的结果为_______.5.(2019.杭州)因式分解(x-1)2-9结果是()A.(x+8)(x+1)B.(x+2)(x-4)C.(x-2)(x+4)D.(x-10)(x+8)6.设n为整数,试说明(2n+1)2-25能被4整除.7.计算:1002-992+982-972+962-952++22-12.七.教学反思:教师提出问题学生思考回答师生共同生成学习目标后,教师再出示学习目标.学生解答并互评教师引导并点评学生尝试用提公因式法分解因式,经过观察,每个多项式中都没有公因式,教师引导学生观察,;类比,归纳,得出结论. 这个活动的关键是逆用乘法公式,要给学生提供自主交流,探究的时间与空间.学生独立思考,自主完成练习并交流教师点评.小组讨论,交流并派代表阐述本组解决问题的方法,教师给予指导和点拨.学生总结教师补充学生按小组合作完成以实例引入新课,强化了数学的应用意识,提出的问题让学生产生浓厚的兴趣,激发他们的探究欲望.让学生明确本节课的学习任务.为新课做铺垫让学生充分经历观察,类比,归纳,概括的过程,探究出乘法公式逆用就能解决问题,发展了学生的逆向思维及分析能力和推理能力,让学生体会到数学知识之间的整体联系.通过练习达到检验,巩固和学以致用的目的,体现了本节课的重点.通过合作学习培养学生的合作意识,提高学生综合运用能力,也突破了本节课的难点.通过盘点收获,能帮助学生完善认知结构,形成解题经验.消化理解知识,同时进行知识反馈,便于随机调整教学.。
因式分解教案6篇

因式分解教案6篇在教学工作者开展教学活动前,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。
教案要怎么写呢?下面是精心整理的因式分解教案6篇,仅供参考,希望能够帮助到大家。
因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。
分解因式要进行到每一个因式都不能再分解为止。
分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么2、教学实例:学案示例3、课堂练习:学案作业4、课堂:5、板书:6、课堂作业:学案作业7、教学反思:因式分解教案篇2一、教材分析1、教材的地位与作用“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
初中数学_因式分解——公式法(2)教学设计学情分析教材分析课后反思

14.3 因式分解(第三课时)14.3.2 公式法(2)一、教学目标(一)学习目标1.掌握完全平方公式的特点.2.会运用完全平方公式因式分解.3.能熟练运用公式法和提公因式法分解因式.(二)学习重点掌握完全平方公式的特点,运用完全平方公式分解因式.(三)学习难点灵活运用公式分解分解因式.二、教学设计(一)课前设计1.自学反馈请同学们根据爱作业在线预习的情况组内交流,有困惑的地方组长帮忙解决。
公式法:把乘法公式的等号两边 互换位置 ,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.(二)课堂展示探究一 剖析完全平方公式活动1 剖析完全平方公式问题 :我们将形如222a ab b ++和222a ab b -+的式子叫完全平方式.完全平方式有哪些特点呢?学生思考后分小组讨论,再归纳总结:完全平方式的特点是:①完全平方式是一个二次三项式;②首末两项是两个数(或整式)的 平方,而且符号相同,中间相是这两个数(或整式)的积的2倍 ,符号正负均可. 口诀:首平方,末平方,首末积的2倍中间放.追问:平方差公式中的a 、b 可代表多项式,类似地,完全平方公式中的a 、b 是否也可以代表一个多项式呢?【设计意图】类比平方差公式分解因式的学习过程,剖析完全平方式的特点,为熟练运用完全平方公式分解因式奠定基础.●活动2 辨析完全平方公式问题 :下列多项式中,哪些是完全平方式?若是完全平方式,请指出谁相当于公式中的a 、b .(1)224129x xy y ++ ;(2)244x x -++ ;(3)2269x xy y -+- ;(4)221x x +- 学生独立思考后,集体订正.【设计意图】通过辨析完全平方式,为运用完全平方式分解因式作准备.尤其是对于(2)、(3)这种形式的完全平方式,学生辨析较困难,关键是掌握:完全平方式首末两项是两个数(或整式)的平方,而且符号相同,各项的位置是可以调换的,为本节课突破难点奠定基础.探究二 直接运用完全平方公式因式分解●活动1 公式中的a 、b 代表单项式的因式分解例1 分解因式:(1)216249x x ++ ;(2)2244x xy y -+- 【知识点】运用完全平方公式分解因式【解题过程】解:(1)222216249(4)2433(43)x x x x x ++=++=+;(2)222222244(44)22(2)(2)x xy y x xy y x x y y x y ⎡⎤-+-=--+=--+=--⎣⎦ 【思路点拨】(1)先将原多项式变形为22(4)2433x x ++,认清谁是公式中的a 、b ,再进行因式分解 ;(2)可将负号提出是本题的关键,变形为2222(44)22(2)x xy y x x y y ⎡⎤--+=--+⎣⎦,再因式分解. 【答案】 (1)2(43)x +;(2)2(2)x y --.练习:因式分解(1)2242025x xy y -+ (2)221294xy x y -- 【知识点】运用完全平方公式分解因式【解题过程】解:(1)2222242025(2)225(5)(25)x xy y x x y y x y -+=-+=-;(2)22222221294(9124)(3)232(2)(32)xy x y x xy y x x y y x y ⎡⎤--=--+=--+=--⎣⎦【思路点拨】(1)先将原多项式变形为22(2)225(5)x x y y -+,辨析公式中的a 、b ,再进行因式分解 ;(2)将负号提出是本题的关键,变形为22(3)232(2)x x y y ⎡⎤--+⎣⎦,再因式分解.【答案】 (1)2(25)x y -;(2)2(32)x y --.●活动2 公式中的a 、b 代表多项式的因式分解例2 分解因式:(1)2()12()36a b a b +-++ ;(2)22()4()4m n m m n m +-++ . 【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)2222()12()36()2()66(6)a b a b a b a b a b +-++=+-++=+-;(2)222222()4()4()2()2(2)(2)()m n m m n m m n m n m m m n m n m +-++=+-++=+-=-.【思路点拨】此类题的关键是整体思想的运用,(1)中将a+b 看成一个整体,设a+b =m ,则原多项式就化为21236m m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后有同类项还需合并同类项.【答案】 (1)2(6)a b +-;(2)2()n m -.练习:因式分解(1)222()()a a b c b c -+++ ;(2)2222(1)4(1)4x x x x ++++【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)[]22222()()()()a a b c b c a b c a b c -+++=-+=--; (2)22222222224(1)4(1)4(1)2(21)(1)(1)x x x x x x x x x x ⎡⎤⎡⎤++++=++=++=+=+⎣⎦⎣⎦. 【思路点拨】解此类题的关键是整体思想的运用,(1)中将b+c 看成一个整体,设b+c =m ,则原多项式就化为222a am m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后还需继续利用完全平方公式分解彻底.【答案】 (1)2()a b c --;(2)4(1)x +.探究三 综合应用●活动1例3 分解因式: 22363ax axy ay ++ ;【知识点】运用提公因式法、公式法分解因式【解题过程】解:222223633(2)3()ax axy ay a x xy y a x y ++=++=+;3. 课堂总结知识梳理(学生自己总结梳理)(1)完全平方式:形如222a ab b ++和222a ab b -+的式子叫完全平方式.(2)用完全平方公式分解因式:文字语言:两个数的平方和加上或减去这两个数的积的2倍,等于这两个数的和(或差)的平方.符号语言:2222()a ab b a b ++=+;2222()a ab b a b -+=-.(3)公式法:把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.重难点归纳(1)完全平方公式使用的条件是:①多项式是一个二次三项式;②首末两项是两个数(或整式)的平方,而且符号相同,中间项是这两个数(或整式)的积2倍,符号正负均可.(2)分解因式的一般步骤:一提,二套,三检查①观察多项式的各项是否有公因式,若有,应先提公因式;②再观察多项式是否可以用平方差公式或完全平方公式进行分解因式;③检查每个多项式是否分解彻底,每个多项式都不能分解时,分解因式就结束了.(3)有时多项式既不能提公因式,也不能运用平方差或完全平方公式分解,则需根据多项式的特点作适当变形后再进行因式分解.(三)课后作业基础型 自主突破1.下列多项式是完全平方式的是( )A .244a a --B .23216a a -+C .224a a ++D .2816a a -+2.已知224x mx -+ 是完全平方式,则m 的值为( )A .1B .2C .±1D .±23. 计算x =156,y =144,则221122x xy y ++ 的值是( ) A .150 B .450 C .45000 D .900004.分解因式2(1)2(1)1a a ---+ 的结果是( )A .(1)(2)a a --B .2(1)a -C .2(1)a +D .2(2)a -5. 计算:222172173417-⨯+ =_____________.能力型 师生共研7. 若224222()8()160x y x y +-++= ,则22x y + 的值为( ).A .4B .2C .± 2D .± 48. 已知△ABC 三边a 、b 、c 满足等式2220a ab b bc c ac -+-+-=,则△ABC 是 三角形.学情分析两班共有学生110人,两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意。
因式分解公式法教案

因式分解公式法教案教案题目:因式分解公式法教学目标:1. 能够掌握因式分解公式法的原理和基础知识2. 能够运用因式分解公式法解决简单的数学问题3. 能够理解因式分解公式法在数学实际问题中的作用教学内容:1. 因式分解的定义与形式2. 因式分解的基本原理3. 因式分解的基本公式教学过程:一、引入(5分钟)1. 引出本堂课的主题——因式分解公式法2. 通过学生平时的生活经验,询问学生是否有听说过因式分解以及它的作用二、讲解(30分钟)1. 因式分解的定义与形式因式分解指将一个整式分成若干个因式的乘积的过程。
在形式上,可以表示为:Ax^2+Bx+C = A(x-x_1)(x-x_2)式子中A,B,C,x_1,x_2都是常数。
2. 因式分解的基本原理因式分解要求将一个整式使用质因数或代数因式相乘的形式,展开成简单整式的乘积。
它的基本原理就是质因数分解和代数因式分解。
3. 因式分解的基本公式本节课所讲的因式分解公式有以下几个:(1)差的平方公式:a^2-b^2=(a-b)(a+b)(2)完全平方公式:a^2+2ab+b^2 = (a+b)^2及a^2-2ab+b^2 = (a-b)^2(3)二次三项式ax^2+bx+c=(mx+p)(nx+q)三、练习(15分钟)1. 练习应用差的平方公式、完全平方公式等进行因式分解的例题2. 练习应用二次三项式应用因式分解公式法解决实际问题四、总结(10分钟)1. 总结本节课所学的内容2. 阐述因式分解公式法在实际生活和数学问题中的作用五、作业布置(5分钟)1. 布置因式分解相关的题目作为课后作业2. 鼓励学生使用因式分解公式法解决生活中的有关问题教学方法:1. 讲授法2. 案例法3. 情景模拟法教学辅助手段:1. PowerPoint2. 黑板3. 教学视频教学评价:1. 学生的理解情况是否清晰2. 学生在练习过程中的解题能力是否提高3. 学生是否能够将所学知识运用到实际问题中去。
14.3.2《因式分解--公式法--完全平方公式》教案

学科:数学授课教师:年级:八年级总第课时课题14.3.2《因式分解--公式法--完全平方公式》课时教学目标知识与技能用完全平方公式分解因式过程与方法1.理解完全平方公式的特点.2.能较熟悉地运用完全平方公式分解因式.3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.情感价值观通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法创设情境-主体探究-合作交流-应用提高媒体资源多媒体投影教学过程教学流程教学活动学生活动设计意图复习提问1、分解因式:(1)-a2+b2(2)2a-8a22、把下列各式分解因式.(1)a2+2ab+b2 (2)a2-2ab+b2思考解答复习引入完全平方公式1、把整式乘法的完全平方公式:(a+b)2=a2+2a b+b2(a-b)2=a2-2a b+b2反过来,得到:a2+2a b+b2=(a+b)2a2-2a b+b2=(a-b)2注:(1)形如a2±2a b+b2的式子叫做完全平方式,说出它们的特点。
(2)利用完全平方公式可以把形如完全平方式的多项式因式分解。
(3)上面两个公式用语言叙述为:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
尝试独立完成然后与同伴交流总结掌握完全平方公式分解因式特点例题练习1、分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y22、练习:P119页:练习:1、2:(1)--(4)3、分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+364、练习:P119页:练习:2:(5)(6)5下列多项式是不是完全平方式?为什么?(1)a2-2a+1 (2)a2-4a+4 (3)a2+2ab-b 2(4)a2+ab+b2(5)9a2-6a+1 (6)a2+a+1/4 思考动手板演归纳总结巩固知识因式分解的一般步骤1、把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?(1)44yx-;(2)33abba-;(3)22363ayaxyax++;(4)22)()(qxpx+-+;(5)4x2+20(x-x2)+25(1-x)22、分解因式的一般步骤:(1)先提公因式(有的话);(2)利用公式(可以的话);(3)分解因式时要分解到每个多项式因式不能再分解为止.3、练一练:把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(3)2a2-a3-a;课堂小结1、完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
(完整版)因式分解——公式法教案

因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
所以分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
所以,因式分解的学习是数学学习的重要内容。
依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。
所以公式法是分解因式的重要方法之一,是现阶段的学习要点。
三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。
(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。
3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.4.2 公式法1
【课题】:公式法1
【教学时间】:
【学情分析】:(适合于特色班)学生已经在前面学习了完全平方公式,并作了大量的练习,已经对公式的运用较为熟悉,要注意让学生明确用公式法因式分解与用公式作乘法运算是互逆的。
【教学目标】:
(一)教学知识点
运用平方差公式分解因式.
(二)能力训练要求
1.能说出平方差公式的特点.
2.能较熟练地应用平方差公式分解因式.
3.初步会用提公因式法与公式法分解因式.•并能说出提公因式在这类因式分解中的作用.4.知道因式分解的要求:把多项式的每一个因式都分解到不能再分解.
(三)情感与价值观要求
培养学生的观察、联想能力,进一步了解换元的思想方法.
【教学重点】:应用平方差公式分解因式.
【教学难点】:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
【教学突破点】:观察理解分解因式与整式乘法的关系,让学生了解事物间的因果联系.
【教法、学法设计】:自主合作探究式分层次教学,讲授、练习相结合。
【课前准备】:课件
【教学过程设计】:。