博弈论入门(课堂PPT)

合集下载

博弈论基础PPT精品课程课件全册课件汇总

博弈论基础PPT精品课程课件全册课件汇总

自己处于c还是d。即K缺乏信息。 P
c
E
N
K
L
a
b
P
N
d
K
S
N
R’ K
e N’
0,140
80,0
0,0
40,110 13,120
2 扩展型
参与人对于结果的偏好性。K是否更希望博弈
终止点f而不是h上结束?
我们必须知道参与人关心什么,才能将终止
点根据每个参与人的偏好排列。通常用数字
表述参与人的偏好排序最为简便。这也称为
1 概述
这个理论在许多方面都是有用的。 首先,它提供了一种语言。 其次,它提供了应该框架,能够指导我们建立策略环 境模型。 其三,它有助于我们追朔,对行为假设的逻辑推理过 程。
1 概述
好几百年前,数学家就开 始研究室内游戏,试图构 造最优的游戏策略。
在1713年,沃尔德格雷夫 就某种纸牌游戏的解决方 法,与他的同事德莫特和 贝努利进行交流。沃尔德 格雷夫的解决方法,与现 代理论的结论相一致。
支付(payoff),或者效用(utilities)。
P
c
P
E
N
K
L
a
b
P
N
d
K
S
N
R’ K
e N’
0,140
80,0
0,0
40,110 13,120
2 扩展型
我们引入一些数学符号来考察博弈。
我们来看看一个市场博弈,两个厂商通过选择高价或者低价进行 竞争。
我们用参与人i表示任何一个参与人的数字代码。即在一个有n个 参与人的博弈中,i=1,2,…,n。 在某些博弈中,一个参与人可以在无限多个行动中进行选择。

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论讲义完整PPT课件

博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页

博弈论PPT课件

博弈论PPT课件

第1个数字表示企业1 的收入, 第2个数字表示企业2的收入。
13
7.2.2合作博弈:建立卡特尔 • 合作是避免囚徒困境的有效方法 • 合作博弈与欺骗者
14
7.2.3重复性博弈:怎样对付欺骗者 • 重复性博弈:反复进行多次博弈 • 重复性博弈的最优策略——针锋相对:模仿上一
次博弈中对手的行为 • 针锋相对是最优策略 • 好的博弈四原则 ☞简单,不易误解 ☞针锋相对不是先搞欺骗 ☞不允许欺骗行为,但要给欺骗行为以处罚 ☞针锋相对是宽大的,允许对方恢复合作
可以采取降价策略,使新的进入者不敢贸然进入 • 投资于剩余生产能力的决策:投资引起的当前的
利润损失低于新企业进入而引起的将来的利润损 失
29
7.3.4先发制人:使市场饱和
• 在各地布点,使新的进入者无法利用高运 输成本的机会
N1 E N2
E1
E2
E4
E3
30
7.3.5 市场渗透定价 •通过制定低价抢占市场份额的策略。 •市场渗透定价是网络外部性明显的产业常用策 略。
的违约问题 • 先合作,第N次违约的收入:
30+30+30+30+······+40
• 现实:不知道N是多少→选择合作策略 • 如何在员工工作的最后一天激励员工? • 有结止日期的有限重复博弈等于一次性博弈
17
•市场中的重复博弈的作用 •市场中的一次性博弈使得生产劣质产品的企业有 利 •市场中的重复博弈促使生产者生产高质量产品
15
重复性博弈下的行为选择
• 合作收入:30+30+30+30+······
• 不合作收入:40+20+20+20 +······

第十章 博弈论初步PPT课件

第十章 博弈论初步PPT课件

2020年3月2日星期一
12
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2.条件策略下划线方法的五步法 第一,把整个的支付矩阵分解为甲厂商的支付矩阵和 乙厂商的支付矩阵
2020年3月2日星期一
13
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
2020年3月2日星期一
11
第十章 博弈论初步 第二节 同时博弈:纯策略均衡
五、寻找纳什均衡的方法——条件策略下划线法
1.基本方法 先用下划线法分别表示甲厂商和乙厂商的条件策
略,最后确定博弈的均衡(就是找到在两个数字之下 都划线的单元格即可,与这些单元格相对应的策略组 合就是所要求的均衡策略组合)。
1
第十章 博弈论初步 第一节 博弈论和策略行为
2.博弈的三个基本要素 三个基本要素,即参与人、参与人的策略和参与
人的支付。 所谓参与人(或称局中人),就是在博弈中进行
决策的个体;所谓参与人的策略,指的是一项规则, 根据该规则,参与人在博弈的每一时点上选择如何行 动;所谓参与人的支付则是指,在所有参与人都选择 了各自的策略且博弈已经完成之后,参与人获得的效 用(或期望效用)。
2020年3月2日星期一
2
第十章 博弈论初步 第一节 博弈论和策略行为
3.博弈的简单分类 根据参与人的数量,可以分为二人博弈和多人博
弈;根据参与人的支付情况,可分为零和博弈和非零 和博弈;根据参与人拥有的策略的数量多少,可分为 有限博弈和无限博弈;根据参与人在实施策略上是否 有时间的先后,可分为同时博弈和序贯博弈。
二、支付矩阵
1.支付矩阵 使用支付矩阵来描述和分析只有两人参加且两人

博弈论最全完整-讲解课件

博弈论最全完整-讲解课件
(zero-sum game and non-zero-sum game)
• 如果一个博弈在所有各种对局下全体参与人之 得益总和总是保持为零,这个博弈就叫零和博 弈;
• 相反,如果一个博弈在所有各种对局下全体参 与人之得益总和不总是保持为零,这个博弈就 叫非零和博弈。
• 零和博弈是利益对抗程度最高的博弈。
• 即使决策或行动有先后,但只要局中人在决策 时都还不知道对手的决策或者行动是什么,也 算是静态博弈
学习交流PPT
28
完全信息博弈与不完全信息博弈
(games of complete information and games of incomplete information)
• 按照大家是否清楚对局情况下每个局中人 的得益。
供万无一失的应对办法。
学习交流PPT
5
例1:无谓竞争(The GPA Rat Race)
• 你所注册的一门课程按照比例来给分:无论卷 面分数是多少,只有40%的人能够得优秀,40 %的人能得良好。
• 所有学生达成一个协议,大家都不要太用功, 如何?想法不错,但无法实施!稍加努力即可 胜过他人,诱惑大矣。
• 某些博弈中,由于偶然的外因可以对策略贴标 签,或者参与者之间拥有某些共同的知识体验, 导致了焦点的存在。
• 没有某个这样的暗示,默契的合作就完全不可 能。
学习交流PPT
9
例3:为什么教授如此苛刻?
• 许多教授强硬地规定,不进行补考,不允许迟 交作业或论文。
• 教授们为何如此苛刻?
• 如果允许某种迟交,而且教授又不能辨别真伪, 那么学生就总是会迟交。
• 王则柯、李杰编著,《博弈论教程》,中国人民大学 出版社,2004年版。

博弈论教学课件(全)

博弈论教学课件(全)

二、博弈论的经济学渊源
经济学的一些思想为博弈论提供了基础,其中最 重要的就是所谓的“理性人”。
描述理性人的工具就是所谓的理性偏好。为了方便, 我们又用效用函数(在博弈论中称为收益函数)来 表示偏好。
构成博弈论基础的一个重要的经济定理就是所谓的 理性选择原理:如果决策主体的偏好是理性的,那 么(有限)选择集中就一定存在最优选择,这个选 择可能是唯一的,也可能是多个。
定义2.1 博弈表达的基本式(或策略式)由博弈的参 与者N,策略空间S和收益函数u三个要素组成,即G = {N, S, u}。
这里需要注意的是,完全信息静态博弈在多数情况 下,策略就等同于行动,所以G={ A,u}。但严格来 讲,策略并不是行动。
我们可以通过一个例子来加以说明。
[例1] 进攻与防守
对称博弈和对称均衡能够大大节省工作量,这也是博弈论中所举例子通常为对 称博弈的原因。
对称博弈通俗说就是代表参与者身份的下标,在分析中可以省略掉而没有关系。
四、混合策略
博弈论里面最根本的问题是什么?就是均衡 的存在性。如果均衡不存在,所有的工作都 成了无用功,之所以引入混合策略,意义就 在这里,因为如果仅仅限制在纯策略的范围 内讨论博弈的话,均衡有可能是不存在的。
双方争夺一个据点,有两条进攻路线X和Y,攻方有 两个军,而防守方也有两个军,只有当守方的兵力 不少于攻方时,才能击退进攻,否则据点将会失守。
首先可知守方的防守方案(即策略)为(0,2),(1,1),(2,0),即在X线路和Y线路驻扎 军队数,同样可以到的攻方的进攻方案(0,2),(1,1)和(2,0)。容易看出,行动并非策 略,策略是行动方案。
需要注意的几个问题:
(1)表达同一个偏好的收益函数不唯一,但在 单调变换下却是唯一的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共同价值和赢者的诅咒
• 两家代理:1个积极估价,1个消极估价
prob(v/s)11//22
vs2 vs2
• v均匀分布
• 出价b=?(一家和两家出价时有不同吗)
• 考察b=s-1这样一个对称策略
• 德士古公司的例子
15
几种常见的拍卖形式
• 英式公开叫价拍卖 • 荷式公开叫价拍卖 • 一价密封拍卖 • 二价密封拍卖
• 通过改革,陪审团制度在美国得到了比英国更 好的发展。
22
投票程序
23
• 每个陪审员在陪审之前已经有一个大体 的判断
• 他们的类型 • 非专业性——从众行为
– 如果评判有罪的人数多于无罪,则投有罪 – 如果评判无罪的人数多于有罪,则投无罪 – 如果双方人数相等,则依照自己的评判结果
投票
24
• 陪1:假设投有罪 • 陪2:若评判有罪,则投有罪;若评判无
• 在被问及对最终的价格是否感到意外时 ,Frija抛下一个“不”字,随即离开了
11
简化的暗标拍卖
密封递交标书 统一时间公正开标 标价最高者以所报标价中标 中标博弈方的得益不仅取决于标价,还取决于他对拍
卖标的物的带有很大主观性的估计 每个博弈方的估价通常是自己的私人信息
12
0.6
0.4
• 考虑这样一个对称策略:给定其他两个 委员采取相同策略,以及对于其他成员 拥有哪个政策更好的知识的信念,不论 这个参与者什么类型,采取这个策略都 使他收益最大。
19
• 自然决定四项:哪个政策更好,以及三 个委员的类型。
• 当一个委员了解新政策时:投票给自己 认为更好的策略是一个弱占优策略。
– 当另外两位投票相同时 – 当另外两位投票分歧时
罪,则投无罪 • 陪3:若陪1和陪2投票不同,陪3根据自
己的评判结果投;若陪1和陪2投票相同 ,则陪3投相同票。 • ……
25
羊群行为(sheeple)
• 假设审判结束,10个陪审员认为无罪,2 个认为有罪。
• 投票结果取决于最开始的投票结果
26
5. 信号传递
27
5.1 劳动力市场博弈
• 50%高能力,50%低能力 • 高能力生产率200,低能力生产率100 • 假设经理雇佣时依据大学文凭对能力进
20
若委员不知道哪个政策更好 …… (投票,弃权?)
• 三种对称策略组合: 1. 当委员了解新政策时,选自己认为更好的;
当不了解时,选现政策。
当委员1不了解,同时委员2、3有分歧时,委员1将做出错误决策。
2. 当委员不了解时,反对现政策;当了解时, 投票最好的策略。
3. 当委员不了解时,弃权;当了解时,选择最 好的策略。
16
我校的某次人大投票
17
4. 委员会和陪审团的投票
• 4.1 弃权票策略 • 每个委员有两个类型:了解新政策和不
了解新政策。 • 一个委员了解新政策的概率为q,即其类
型为“了解新政”的概率为q • 如果不了解新政策,就不能确定哪个政
策更好。现政策更好的概率为p (1/2<p<1)
18
• 当一个委员了解新政策时,是否投票, 如何投票?当不了解时又是否投票,如 何投票?
估价50
估价100
0.6
估价50
0.4
估价100
两种估价:50,100,概率分别为0.6和0.4 。出价以10为单位递增。
一个对称的简单策略:若估价50就出价40, 若估价100就出价60
13
• 出价40时的期望收益: 0.6*0.5*(50-40)+0.4*0=3
• 若估价50,出价40最优吗? • 出价60时的期望收益:
1
黑暗中的舞者
1. 慕尼黑协定 2. 贝叶斯均衡:三步转换 3. 当所有人都拥有私人信息时 4. 委员会和陪审团的投票 5. 信号传递 6. 说谎及说谎者的信息
2
1. 慕尼黑协定
3
4
5
60%
40%
6
2. 贝叶斯均衡:三步转换
1. 在一个不完全信息博弈中,这个参与者 是谁?
– 参与者所拥有的私人信息成为参与者的类型 – 所有类型的集合成为类型空间 – 不同类型对应不同的收益
开枪
开枪
5,2Βιβλιοθήκη 僵持6,3僵持 4,1 8,4
9
10
3. 当所有人都拥有私人信息时
• 2012年5月3日,1.19亿$《呐喊》 ,12 分钟惊心动魄的争夺战
• 这幅名画引发了长达12分钟的竞价大战 ,最终被一位匿名电话竞买人拍下。4 千万起拍,1百万为单位递增
• 参与角逐的至少有四位藏家,其中有中 国、美国的藏家,以及奥斯陆 K画廊交 易商 Ben Frija,他在拍卖大厅内一直 压着所有的电话竞买人,但在7,300万 这道坎上放弃了。
• 前两个都不是贝叶斯纳什均衡!
21
陪审团制度
• 现代之后,美国对陪审团制度进行了一系列的 改革。
– 首先是在陪审团组成人员上,逐渐对妇女和黑人开 放,对性别和种族的排斥度降低。
– 其次,历史上陪审团的人数是12人,改革之后组成 人数可以根据各州的情况在6-12人间组成。
– 再次,陪审团裁决原则上的变化。传统的陪审团裁 决是全体一致通过原则,现在开始应用多数主义。
行认定 • 高能力接受教育的成本40,低能力120 • 低能力的人选择读大学还是放弃?
2. 确定每个参与者的类型,引入“自然” 3. 定义策略集。策略和自然,哪个先?
7
狂野西部枪战
• 1875年某个非同寻常的一天,警长马歇 尔﹒怀特﹒厄普去维持秩序,突然一个 陌生人拉住他的手,好像要开枪……
8
枪战博弈
厄普
陌生人(熟练枪手)
开枪
开枪
2,3
僵持
1,4
僵持 3,1 8,2
厄普
陌生人(普通牛仔)
0.6*(100-60)+0.4*0.5*(100-60)=32 • 若估价100,出价60最优吗?
– 40: 0.6*0.5*(100-40)+0.4*0=18 – 50: 0.6*(100-50)+0.4*0=30 – 70: 0.6*(100-70)+0.4*(100-70)=30
隐藏你的出价 14
第五章 不完全信息博弈
本章讨论至少有一个博弈方不完全清楚其 他某些博弈方的得益的不完全信息博弈,也称 “贝叶斯博弈”。得益信息不充分和博弈进程 信息不充分是有差异的,因此不完全信心博弈 与不完美信息博弈有不同的表示和分析方法。 但不完全信息与不完美信息也有很强的内在联 系,可通过一定的方式统一起来,因此不完全 信息博弈和不完美信息博弈也可以用相同的方 法进行研究。
相关文档
最新文档