_浙江省嘉兴市2018-2019学年七年级下学期数学期末考试试卷_ (1(含答案解析)

合集下载

{3套试卷汇总}2018年嘉兴市七年级下学期期末综合测试数学试题

{3套试卷汇总}2018年嘉兴市七年级下学期期末综合测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.设甲数为x,乙数为y,则“甲数的3倍比乙数的一半多1”列成方程是()A.1322x y+=B.1312x y-=C.1312y x-=D.1232y x+=【答案】B【解析】根据甲数的3倍比乙数的一半多1,可列成方程1312x y-=.【详解】解:设甲数为x,乙数为y,则可列方程为:1312x y-=.故选:B.【点睛】此题考查了由实际问题抽象出二元一次方程,比较容易,理解题意就可以列出方程.2.如图,在一张半透明的纸上画一条直线l,在直线l外任取一点A,折出过点A且与直线l垂直的直线,这样的直线只能折出一条,理由是( )A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.两点之间线段最短C.在平面内,过一点有且只有一条直线与已知直线垂直D.经过直线外一点有且只有一条直线与已知直线平行【答案】C【解析】根据垂线的性质解答即可.【详解】这样的直线只能折出一条,理由是:在平面内,过一点有且只有一条直线与已知直线垂直.故选C.【点睛】本题考查了垂线的性质,熟练掌握垂线的性质是解答本题的关键.经过一点有且只有一条直线与已知直线垂直,连接直线外一点与直线上各点的所有线段中,垂线段最短.3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A .20米B .15米C .10米D .5米【答案】D 【解析】∵5<AB<25,∴A 、B 间的距离不可能是5,故选D.4.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .【答案】B【解析】由PB+PC=BC 和PA+PC=BC 易得PA=PB ,根据线段垂直平分线定理的逆定理可得点P 在AB 的垂直平分线上,于是可判断D 选项正确.故选B .考点:作图—复杂作图5.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1-S 2=( )A .8B .6C .4D .2 【答案】B【解析】ADF BEF ABD ABE S S S S ∆∆-=- ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1-S 2的值.【详解】解:∵点D 是AC 的中点, ∴12AD AC = 36ABC S ∆=11361822ABD ABC S S ∆∆∴==⨯= 2,36ABC EC BE S ∆==11361233ABE ABC S S ∆∆∴==⨯= ()().ABD ABE ADF ABF ABF BEF ADF BEF S S S S S S S S ∆∆∆-=+-+==-即:..18126ADF BEF ABD ABE S S S S ∆∆∆∆-=-=-=即:S 1-S 2=6故答案为:B.【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.6.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ).A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【答案】C 【解析】根据羊价不变即可列出方程组.【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C. 【点睛】本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.7.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.8.在0,3,-1,13这四个数中,最大的数是()A.-1B.0C.13D.3【答案】D【解析】分析:根据正数大于0、0大于负数解答可得.详解:∵正数大于0、0大于负数,∴这4个数中较大为是3和13,而3>133,是4个数中最大的.故选D.点睛:本题主要考查实数的大小比较,解题的关键是熟练掌握正数大于0、0大于负数.9.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°【答案】D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.下列运算正确的是( )A.a2+a4=a6B.3(a-b)=3a-b C.(a2)4=a6D.a2-2a2=-a2【答案】D【解析】根据合并同类项法则、单项式乘多项式法则和幂的乘方计算法则进行计算后,再进行判断.【详解】A选项:不是同类项,不能直接相加,故错误;B选项:3(a-b)=3a-3b,故错误;C选项:(a2)4=a8,故错误;D选项:a2-2a2=(1-2)a2=-a2,故正确;故选:D.【点睛】考查了幂的乘方和合并同类项,掌握运算法则是解答本题的关键.二、填空题题11.在数学课上,老师提出如下问题:小菲用两块形状、大小相同的三角尺完成了该题的作图,作法如下:如图,(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB.所以,直线AB即为所求.老师说:“小菲的作法正确.”请回答:小菲的作图依据是________________.【答案】内错角相等,两条直线平行【解析】根据平行线的判定方法分析即可.【详解】由作法可知,∠1与∠2是一对内错角,且∠1=∠2,∴小菲的作图依据是:内错角相等,两条直线平行.故答案为:内错角相等,两条直线平行【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.12.如图,要使CF ∥BG ,你认为应该添加的一个..条件是______.【答案】答案不唯一,如∠C=∠GDE【解析】根据平行线的判定方法添加即可.【详解】根据同位角相等,两直线平行可添加∠C=∠GDE (答案不唯一).故答案为:∠C=∠GDE .【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.13.己知关于,x y 的方程组4723x y m x y m +=-⎧⎨-=+⎩的解满足0x >,0y >.则m 的取值范围是______. 【答案】5m >【解析】用加减消元法解关于,x y 的二元一次方程组;根据0x >,0y >,解关于m 的不等式组,可得m的解集.【详解】4732235x y m x m x y m y m +=-=-⎧⎧⇒⎨⎨-=+=-⎩⎩∵0x >,0y >, ∴232053505m m m m m ⎧->>⎧⎪⇒⇒>⎨⎨->⎩⎪>⎩ 故答案为:5m >.【点睛】本题考查解二元一次方程组和一元一次不等式组,关键是先求出含m 的x 和y ,再根据题意列不等式组求解.14.如图为正方形网格中的一片树叶,点E 、F 、G 均在格点上,若点E 的坐标为()1,1-,点F 的坐标为()2,1-,则点G 的坐标为______.【答案】()2,2【解析】根据题意可知,本题考查直角坐标系点的位置关系,根据图形的已知点的坐标信息,确定坐标原点之后,建立平面直角坐标系,以直接观察的方式进行分析推断.【详解】解:如图所示原点O 的位置,则点G 的坐标可以通过观察得到为(2,2)【点睛】本题解题关键:找准坐标原点,建立平面直角坐标系.15.若P(4,﹣3),则点P 到x 轴的距离是_____.【答案】1【解析】求得P 的纵坐标绝对值即可求得P 点到x 轴的距离.【详解】解:∵|﹣1|=1,∴P点到x轴的距离是1,故答案为1.【点睛】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.16.已知12xy=-⎧⎨=⎩是二元一次方程组321x y mnx y+=⎧⎨-=⎩的解,则m-n的值是______.【答案】1【解析】把x与y的值代入方程组求出m与n的值,即可求出m-n的值.【详解】把12xy=-⎧⎨=⎩代入方程得:3421mn-+⎧⎨--⎩==,解得:m=1,n=-3,则m-n=1-(-3)=1+3=1.故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.如图,已知△ABC中,AB=AC=16cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动,当以B、P、D为顶点的三角形与以C、Q、P为顶点的三角形全等时,点Q的速度可能为_____.【答案】2或3.2厘米/秒.【解析】因为AB=AC,所以有∠B=∠C,故三角形BDP与三角形CQP中,B点和C点为对应点,DP与PQ 对应,所以分成两种情况进行讨论:①BP=CQ,BD=CQ;②BP=CP,BD=CQ,设运动时间为t,然后建立方程解出即可【详解】因为AB=AC,所以有∠B=∠C,故三角形BDP与三角形CQP中,B点和C点为对应点,DP与PQ对应,所以以B、P、D为顶点的三角形与以C、Q、P为顶点的三角形全等有两种情况BP=CQ,BD=CQ时,则Q的运动速度与P的运动速度相等,为2cm/s②BP=CP,BD=CQ时,设运动时间为t,∵BC=10,∴2t=10-2t,解出t=5 2∵AB=16,D为AB中点∴BD=8∴CQ=88÷52=165所以Q的运动速度可能是2cm/s或者3.2cm/s【点睛】本题考查动点问题中全等三角形存在性问题,本题的关键在于能够对三角形全等进行分情况讨论三、解答题18.某课外活动小组为了了解本校学生上网目的,随机调查了本校的部分学生,根据调查结果,统计整理并制作了如下尚不完整的统计图,根据以上信息解答下列问题:(1)参与本次调查的学生共有_____人;(2)在扇形统计图中,m的值为_____;圆心角α=_____度.(3)补全条形统计图;(4)中学生上网玩游戏、聊天交友已经对正常的学习产生较多负面影响,为此学校计划开展一次“合理上网”专题讲座,每班随机抽取15名学生参加,小明所在的班级有50名学生,他被抽到听讲座的概率是多少?【答案】(1)300;(2)25,108;(3)见解析;(4)3 10.【解析】(1)利用对应条形统计图每组数量÷百分比=总人数,进而求出答案;(2)利用扇形统计图所求得出m的值,进而利用所占百分比进而得出圆心角α;(3)首先求出查资料的人数进而得出答案;(4)直接利用概率公式求出答案.【详解】解:(1)参与本次调查的学生共有:39÷13%=300(人),故答案为:300;(2)75100%25%300⨯=, ∴在扇形统计图中,m 的值为:25,α=360°×30%=108°;故答案为:25,108;(3)如图:300×20%=60(人),;(4)小明被抽到听讲座的概率是:1535010=. 【点睛】 此题主要考查了概率公式以及条形统计图以及扇形统计图等知识,正确利用统计图得出正确信息是解题关键.19.分解因式:32312x xy -.【答案】3(2)(2)x x y x y +-【解析】先提取公因式3x 后,再运用平方差公式计算即可.【详解】原式()2234x x y =-()()322x x y x y =+-.【点睛】考查了提取公因式法与公式法的综合运用,以及因式分解-分组分解法,熟练掌握公式及运算法则是解本题的关键.20.已知:在ABC ∆中,100A ∠=︒,点D 在ABC ∆的内部,连接BD CD ,,且ABD CBD ∠=∠,ACD BCD ∠=∠.(1)如图1,求BDC ∠的度数;(2)如图2,延长BD 交AC 于点E ,延长CD 交AB 于点F ,若12AED AFD ∠-∠=︒,求ACF ∠的度数.【答案】(1) 140BDC ∠=︒;(2)26ACF =︒∠【解析】(1) 根据三角形内角和和∠A=100°,解得80ABC ACB ∠+∠=︒,又因为ABD CBD ACD BCD ∠=∠∠=∠,可得1122CBD ABC BCD ACB ∠=∠∠=∠, 在△BDC 中,根据三角形内角和定理即可解答;(2)设ACF α∠=,所以40BCD ABD CBD αα∠=∠=∠=︒-,,又因为AFD ABD BDF AED ACF CDE BDF CDE ∠=∠+∠∠=∠+∠∠=∠,所以()4012AED AFD ACF ABD αα∠-∠=∠-∠=-︒-=︒,从而解得26α=︒ ,即26ACF =︒∠【详解】解:(1)如图1 ∵180100A ABC ACB A ∠+∠+∠=∠=︒︒ ∴80ABC ACB ∠+∠=︒∵ABD CBDACD BCD ∠=∠∠=∠ ∴1122CBD ABC BCD ACB ∠=∠∠=∠ ∴()1402CBD BCD ABC ACB ︒∠+∠=∠+∠= ∵180CBD BCD BDC ∠+∠+∠=︒∴18040140BDC ∠=︒-︒=︒(2)如图2 令ACF α∠=,则40BCD ABD CBD αα∠=∠=∠=︒-,∵AFD ABD BDF AED ACF CDE BDF CDE ∠=∠+∠∠=∠+∠∠=∠∴()4012AED AFD ACF ABD αα∠-∠=∠-∠=-︒-=︒解得26α=︒∴26ACF =︒∠【点睛】本题考查三角形内角和定理,外角性质,角平分线分得的两角相等.21.如图,平面宜角坐标系中,已知点(3,3), (5,1), (2,0), (, )A B C P a b ---是ABC ∆的边AC 上任意一点,ABC ∆经过平移后得到111A B C ∆,点P 的对应点为()16,2P a b +-.(1)直接写出点111A B C ,,的空标;(2)在图中画出111A B C ∆;(3)写出ABC ∆的面积.【答案】(1)111(3,1),(1,1),(4,2)A B C --;(2)详见解析;(3)1【解析】(1)根据点P (a ,b )的对应点为P 1(a+6,b-2),据此将各点的横坐标加6、纵坐标减2可得点A 1,B 1,C 1的坐标;(2)顺次连接点A 1,B 1,C 1即可得△A 1B 1C 1;(3)利用割补法求解可得△ABC 的面积.【详解】解:(1)111(3,1),(1,1),(4,2)A B C --(2)111A B C ∆如图所示:(3)△ABC的面积=3×3-12×2×2-12×1×3×2=1.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.求不等式组()21421123xx x⎧+≤⎪⎨--⎪⎩,<的非负整数解.【答案】-2<x≤1,非负整数解为:0,1【解析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【详解】() 214?211 23xx x⎧+≤⎪⎨--⎪⎩①<②解不等式①,得x≤1.解不等式②,得x>-2.所以不等式组的解集为:-2<x≤1.所以不等式组的非负整数解为:0,1 .【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.【答案】(1)A(2,-1)、B(4,3);(2)如图所示:(3)A′(1, 1)、B′(3,5)、C′(0,4);(4)5【解析】(1)根据图可直接写出答案;(2)根据平移的方向作图即可;(3)根据所画的图形写出坐标即可;(4)利用长方形的面积减去四周三角形的面积可得答案.【详解】(1)A(2,-1)、B(4,3);(2)如图所示:(3)A′(1, 1)、B′(3,5)、C′(0,4);(4)△ABC的面积:11134-13-24-13=5⨯⨯⨯⨯⨯⨯⨯222【点睛】本题考查了作图-平移变换,确定平移的方向和平移的距离,通过关键点作出平移后的图形.24.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (n >10,且n 为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【答案】(1)一个水瓶40元,一个水杯是8元;(2)当10<n <25时,选择乙商场购买更合算.当n >25时,选择甲商场购买更合算.【解析】(1)设一个水瓶x 元,表示出一个水杯为(48﹣x )元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x 元,表示出一个水杯为(48﹣x )元,根据题意得:3x+4(48﹣x )=152,解得:x =40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n )×80%=160+6.4n乙商场所需费用为5×40+(n ﹣5×2)×8=120+8n则∵n >10,且n 为整数,∴160+6.4n ﹣(120+8n )=40﹣1.6n讨论:当10<n <25时,40﹣1.6n >0,160+0.64n >120+8n ,∴选择乙商场购买更合算.当n >25时,40﹣1.6n <0,即 160+0.64n <120+8n ,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.25.解不等式:()()32417x x +≥-+,并把解集在数轴上表示出来.【答案】3x ≤,见解析.【解析】利用不等式的基本性质,求出不等式的解集,然后在数轴上表示出来即可.【详解】解:3(2)4(1)7x x +≥-+去括号得36447x x +≥-+,移项得34476x x -≥-+-,解得3x ≤解集在数轴上表示如图:.【点睛】本题考查了解不等式,解不等式主要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.将一副三角板按如图放置,则下列结论中,正确的有()①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠CA.①②③B.①②④C.③④D.①②③④【答案】B【解析】根据同角的余角相等判断①;根据平行线的判定定理判断②;根据平行线的判定定理判断③;根据②的结论和平行线的性质定理判断④.【详解】解:∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,①正确;∵∠2=30°,∴∠1=60°,又∵∠E=60°,∴∠1=∠E,∴AC∥DE,②正确;∵∠2=30°,∴∠1+∠2+∠3=150°,又∵∠C=45°,∴BC与AD不平行,③错误;∵∠2=30°∴AC∥DE,∴∠4=∠C,④正确.故选:B.【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.2.若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【答案】B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.3.如图,AB ∥CD,CB ∥DE ,若∠B=72︒,则∠D 的度数为( )A .36︒B .72︒C .108︒D .118︒【答案】C 【解析】由平行线的性质得出∠C =∠B =72°,∠D +∠C =180°,即可求出结果.【详解】∵AB ∥CD ,CB ∥DE ,∠B =72°,∴∠C =∠B =72°,∠D +∠C =180°,∴∠D =180°−72°=108°;故选:C .【点睛】本题主要考查平行线的性质;熟练掌握平行线的性质是解决问题的关键.4.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与 点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM=x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致 是( )A .B .C .D .【答案】B【解析】不妨设BC=2a ,∠B=∠C=α,BM=x ,则CN=a-x ,根据二次函数即可解决问题.【详解】不妨设BC=2a ,∠B=∠C=α,BM=m ,则CN=a −x ,则有S 阴=y=12⋅x ⋅xtanα+12(a −x)⋅(a −x)tanα=12tanα(m2+a2−2ax+x2)=12tanα(2x2−2ax+a2)∴S阴的值先变小后变大,故选:B【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.5.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)【答案】B【解析】由A(﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B点变化后的坐标.【详解】解:∵A(﹣2,3)平移后坐标变为(﹣3,2),∴可知点A向左平移1个单位,向下平移1个单位,∴B点坐标可变为(1,0).故选:B.【点睛】本题运用了坐标的平移变化规律,由分析A点的坐标变化规律可求B点变化后坐标.6.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩【答案】D【解析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.7.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=A.70°B.80°C.90°D.100°【答案】C【解析】由AB∥CD可以推出∠EFB=∠C=115°,又因为∠A=25°,所以∠E=∠EFB-∠A,就可以求出∠E.【详解】∵AB∥CD,∴∠EFB=∠C=115°,∵∠A=25°,∴∠E=∠EFB−∠A=115°−25°=90°.故选C.【点睛】考查了平行线的性质以及三角形外角的性质,掌握两直线平行同位角相等是解题的关键.8.根据某市中考的改革方案,考生可以根据自己的强项选考三科,分数按照从高到低,分别按100%、80%、60%的比例折算,以实现考生间的同分不同质.例如,表格中的4位同学,他们的选考科目原始总分虽相同,但折算总分有差异.其中折算总分最高的是()A.小明B.小红C.小刚D.小丽【答案】D【解析】根据加权平均数公式分别求出4位同学的加权平均数,然后比较即可得出答案.【详解】80×100%+80×80%+80×60%=192(分);100×100%+80×80%+60×60%=200(分);90×100%+80×80%+70×60%=196(分);100×100%+90×80%+50×60%=202(分);∵192<196<200<202,∴折算总分最高的是小丽.故选D.【点睛】 本题考查了加权平均数的计算,加权平均数:1122......n n x x w x w x w =+++(其中w 1、w 2、……、w n 分别为x 1、x 2、……、x n 的权). 数据的权能反映数据的相对“重要程度”,对于同样的一组数据,若权重不同,则加权平均数很可能是不同的.9.不等式组5234x x -≤-⎧⎨-+<⎩的解集表示在数轴上为( ) A .B .C .D .【答案】B 【解析】根据题意先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【详解】解:解不等式52x -≤-,得x ≤3,解不等式34x -+<,得x >-1,∴原不等式组的解集是-1<x ≤3.故选B .【点睛】本题考查不等式组的解法和解集在数轴上的表示法,注意掌握如果是表>或<号的点要用空心,如果是表示>等于或<等于号的点用实心.10.下列调查中,比较适合用全面调查(普查)方式的是( )A .了解某班同学立定跳远的情况B .了解某种品牌奶粉中含三聚氰胺的百分比C .了解一批炮弹的杀伤半径D .了解全国青少年喜欢的电视节目【答案】A【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据定义判断即可得到答案.【详解】A 、了解某班同学立定跳远的情况,适合全面调查;B 、了解某种品牌奶粉中含三聚氰胺的百分比,具有破坏性,适合抽样调查;C 、了解一批炮弹的杀伤半径,具有破坏性,适合抽样调查;D 、了解全国青少年喜欢的电视节目,任务量过大,适合抽样调查;故选择:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题题11.某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米,数据“0.0000963”用科学记数法可表示为________.【答案】59.6310-⨯【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000963用科学记数法可表示为:0.0000963=9.63×510-;故答案为:9.63×510-.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10n -,其中1≤|a|<10,n 由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,一副三角尺△ABC 与△ADE 的两条斜边在一条直线上,直尺的一边GF ∥AC ,则∠DFG 的度数为_____________.【答案】105°【解析】解法一:利用平行线的性质定理∠CFG=180°-∠C =90°,利用等角的余角相等得出∠CFD=∠CAD=15°,它们之和即为∠DFG ;解法二:利用平行线的性质定理可求出∠FGE=∠CAB=60°,再利用三角形的外角和可求出∠FGE=∠FGE+∠DEA=105°.【详解】解法一:∵GF ∥AC ,∠C=90°,∴∠CFG=180°-90°=90°,又∵AD ,CF 交于一点,∠C=∠D ,∴∠CAD=∠CFD=60°-45°=15°,∴∠DFG=∠CFD+∠CFG=15°+90°=105°.解法二:∵GF ∥AC ,∠CAB=60°,∴∠FGE=60°,又∵∠DFG 是△EFG 的外角,∠FEG=45°,∴∠DFG=∠FGE+∠FEG=60°+45°=105°,故答案为:105°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补. 13.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可.详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.14.已知关于x ,y 的二元一次方程组 的解互为相反数,则k 的值是_________.【答案】-1【解析】∵关于x ,y 的二元一次方程组 的解互为相反数,∴x=-y ③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k ,即k=-1.故答案为-115.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________.【答案】6174【解析】任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234, 4321- 1234= 3087,8730-378= 8352 ,8532一2358= 6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467= 6174) 这个在数学上被称之为卡普耶卡(Kaprekar)猜想.【详解】任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234,4321-1234 =3087,8730 -378 = 8352,8532-2358= 6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想,故答案为:6174.【点睛】此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键.16.如果22(1)25x m x +-+是一个完全平方式,那么m 的值为________.【答案】6或−4.【解析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵多项式()22125x m x +-+是一个完全平方式, ∴2(15)2,m -=开方得:m−1=5或m−1=−5,解得:m=6或−4,故答案为6或−4.【点睛】考查完全平方公式,熟练掌握完全平方公式是解题的关键.17.自来水公司为某小区A 改造供水系统,如图沿路线AO 铺设管道和BO 主管道衔接(AO ⊥BO ),路线最短,工程造价最低,根据是_____.【答案】垂线段最短【解析】根据垂线段的性质解答即可.【详解】解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.故答案为垂线段最短.【点睛】本题考点:垂线段的性质.三、解答题18.教科书中这样写道:“我们把多项式222a ab b ++及322a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项使式子中出现完全平方式,再减去这个项,使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求化数式最大值.最小值等.例如:分解因式()()()()()222()2321414121231x x x x x x x x x +-=++-=+-=+++-=+-;例如求代数式2246x x +-的最小值.()()222246223218x x x x x +-=+-=+-.可知当1x =-时,2246x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)分解因式:245m m --= _____(2)当,a b 为何值时,多项式22468a b a b +-++有最小值,并求出这个最小值.(3)当,a b 为何值时.多项式22222427a ab b a b -+--+有最小值并求出这个最小值【答案】(1)()()51m m -+;(2)2,3a b ==-时,最小值为-5;(3)4,3a b ==,最小值为17【解析】(1)根据阅读材料,先将m 2−4m−5变形为m 2−4m +4−9,再根据完全平方公式写成(m−2)2−9,然后利用平方差公式分解即可;(2)利用配方法将多项式22468a b a b +-++转化为()()22235a b ++--,然后利用非负数的性质进行解答;(3)利用配方法将多项式22222427a ab b a b -+--+转化为22(1)(3)17a b b --+-+,然后利用非负数的性质进行解答.【详解】(1)m 2−4m−5=m 2−4m +4−9。

2018-2019学年度七年级下学期期末试卷数学试题卷

2018-2019学年度七年级下学期期末试卷数学试题卷

2018-2019学年度七年级下学期期末试卷数学试题卷一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算正确的是()A.a2+a2=2a4B.3a3﹣a=2a2C.﹣a3•2a4=﹣2a12 D.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直4.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm5.如图,AD和BE是△ABC的两条中线,设△ABD的面积为S1,△BCE的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D.不能确定6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C二.填空题(本大题共6小题,每小题3分,共18分)7.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.8.若x2+mx+16是完全平方式,则m的值是.9.如图,直线AB、CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=131°,则∠EOC=°.10.过去的一年里中国的精准脱贫推进有力,农村贫困人口减少1386万.其中数据13860000用科学记数法表示为.11.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.12.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②D是AC的中点;③AD=BD=BC;④△BDC的周长等于AB+BC,其中正确的序号是三.(本大题共5小题,每小题6分,共30分)13.(1)|﹣3|+(﹣1)2013×(π﹣3)0﹣(﹣)﹣3(2)a3•a3+(2a3)2+(﹣a2)3.14.先化简再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.15.如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.试说明:DE∥AC.16.如图是7×6的正方形网格,点A、B、C在格点上,在图中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(三个图形各不相同).17.一个不透明袋中有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍.已知从袋中摸出一个球是红球的概率为.(1)求绿球的个数;(2)若从袋中拿出4个黄球,求从袋中随机摸出一个球是黄球的概率.四.(本大题共3小题,每小题8分,共24分)18.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车邮箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠C>∠B,试探求∠DAE、∠B、∠C之间的数量关系.20.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由;(2)求∠3的度数.五.(本大题共2小题,每小题9分,共18分)21.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.22.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)试说明:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.六.(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.2018-2019学年度七年级下学期期末试卷数学试题卷参考答案与试题解析一.选择题(共6小题)1.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.【解答】解:(A)原式=2a2,故A错误;(B)原式=3a3﹣a,故B错误;(C)原式=﹣2a7,故C错误;故选:D.3.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.4.【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.5.【解答】解:如图,∵AD和BE是△ABC的两条中线,∴△ABD面积=△ACD面积,△BCE面积=△ABE面积,即S1+S4=S2+S3①,S2+S4=S1+S3②,①﹣②得:S1﹣S2=S2﹣S1,∴S1=S2.故选:B.6.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.二.填空题(共6小题)7.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.8.【解答】解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.9.【解答】解:∵∠AOD=131°,∴∠COB=131°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=131°﹣90°=41°,故答案为:41.10.【解答】解:数据1386 0000用科学记数法表示为1.386×107.故答案为:1.386×107.11.【解答】解:(2a+b)×(3a+2b)=6a2+7ab+2b2,则需要C类卡片7张.故答案为:7.12.【解答】解:∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠CBD=∠ABD=36°,即BD平分∠ABC;故①正确;∴∠BDC=∠C=72°,∴BC=BD,∴BC=BD=AD,故③正确;∴△BDC的周长为:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故④正确;∵CD<BD,∴CD<AD,∴D不是AC中点.故②错误.故答案为:①③④三.解答题(共11小题)13.【解答】解:(1)原式=3+(﹣1)×1﹣(﹣2)3=3﹣1+8=10;(2)原式=a6+4a6﹣a6,=4a6.14.【解答】解:原式=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=1时,原式=3﹣1=2.15.【解答】证明:∵∠BDE=60°,∠ADC=70°.∴∠CDE=180°﹣60°﹣70°=50°,∵∠C=50°,∴∠C=∠CDE,∴AC∥DE.16.【解答】解:如图所示,点D即为所求.17.【解答】解:(1)∵从袋中摸出一个球是红球的概率为,∴红球的个数是:36×=12(个),设绿球的个数为x个,根据题意得:x+2x=36﹣12=24,解得:x=8,答:绿球的个数是8个;(2)根据题意得:黄球的个数是:2×8﹣4=12(个),则从袋中随机摸出一个球是黄球的概率为:=.18.【解答】解:(3)由(2)可知:Q=100﹣6t故答案为:(1)t;Q(2)100;619.【解答】解:(1)∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°;(2)∠DAE=(∠C﹣∠B),如图:∠BAC=180°﹣∠B﹣∠C,∵AE是∠BAC平分线,∴∠EAC=(180°﹣∠B﹣∠C),又∵Rt△ACD中,∠DAC=90°﹣∠C,∴∠DAE=∠EAC﹣∠DAC=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B).20.【解答】解:(1)结论:BF∥CD.理由如下:在三角形ABC中,∠B+∠1+∠2=180°,∴42°+∠2+∠2+10°=180°,∴∠2=64°,又∵∠ACD=64°,∴∠2=∠ACD,∴BF∥CD.(2)∵∠ACD=64°,CE平分∠ACD,∴∠DCE=×64°=32°,由(1)知BF∥CD,∴∠3=180°﹣∠DCE=148°.21.【解答】解:(1)2、2.(2)23.(3)∵a2﹣3a+1=0两边同除a得:a﹣3+=0,移向得:a+=3,∴a2+=(a+)2﹣2=7.22.【解答】(1)证明:∵△ACB和△DCE都是等腰直角三角形,∴CD=CE,CA=CB,∵∠ACB=90°,∠DCE=90°,∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:∵△ACD≌△BCE,∴AD=BE,∵DB=AB=3cm,∴BE=2×3cm=6cm;(3)解:BE与AD垂直.理由如下:∵△ACD≌△BCE,∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.23.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。

嘉兴市七年级下学期数学期末考试试卷

嘉兴市七年级下学期数学期末考试试卷

嘉兴市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,满分30分) (共10题;共29分)1. (3分)(2019·泸西模拟) 下列计算正确的是()A . a2•a3=a6B . (﹣2a)3=﹣6a3C .D . (3.14﹣π)0=02. (3分) (2018七下·松北期末) 以下列各组线段为边,能构成三角形的是()A . 2,3,6B . 3,4,5C . 2,7,9D . ,3,3. (3分)(2018·聊城模拟) 将0.000 102用科学记数法表示为()A . 1.02×10﹣4B . 1.02×I0﹣5C . 1.02×10﹣6D . 102×10﹣34. (3分) (2018七上·伍家岗期末) 已知和关系一定成立的是()A . 互余B . 互补C .D .5. (3分) (2018七上·武昌期中) 近似数0.13是精确到()A . 十分位B . 百分位C . 千分位D . 百位6. (3分)在四边形ABCD中,AD∥BC,当满足条件()时,四边形ABCD是平行四边形.A . ∠A+∠C=180°B . ∠B+∠D=180°C . ∠A+∠B=180°D . ∠A+∠D=180°7. (3分)下图为用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请仔细观察,根据所学的知识,以下能说明∠A′O′B′=∠AOB的依据是()A . “SSS”B . “SAS”C . “AAS”D . “ASA”8. (3分)如图,△ABC是等边三角形,若在它边上的一点与这边所对角的顶点的连线恰好将△ABC分成两个全等三角形,则这样的点共有()A . 1个B . 3个C . 6个D . 9个9. (2分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是A .B .C .D .10. (3分) (2018八上·前郭期中) 如图,在△ABC中AB=AC,D,E两点分别在AC,BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CD E的周长是()A . 13cmB . 11cmC . 9cmD . 7cm二、填空题 (共6题;共22分)11. (4分) (2019七上·焦作期末) 单项式- 的系数是________.12. (4分)如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第n个图形中火柴棒的根数是________13. (4分)如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x=________.14. (4分)如图,能判定EB∥AC的条件可以是________,也可以是________.15. (2分) (2019八上·延边期末) 工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的________性.16. (4分) (2020八上·奉化期末) 若等腰三角形的顶角为α,则一腰上的高线与另一腰的夹角是________(用α的代数式表示)三、解答题(共3小题,满分18分) (共3题;共18分)17. (6分)当x=3,y=﹣时,求(x+y)(x2﹣xy+y2)﹣(x3﹣y3)的值.18. (6分) (2019七下·淮滨月考) 如图,已知直线a∥b且被直线l所截,∠2=85°,求∠1的度数.请在横线上补全求解的过程或依据.19. (6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.四、简答题(每小题7分,共21分) (共3题;共21分)20. (7分)(2017·天河模拟) 如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠D CB.21. (7分) (2016七下·毕节期中) 如图,在一块大的三角板ABC上,截一个三角形ADE使得∠EDA=∠B(尺规作图,不写作法,留下作图痕迹),那么DE与BC的位置关系是什么?22. (7.0分)(2018·云南) 将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.五、简答題(每小题9分,共27分) (共3题;共20分)23. (2分)如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?请你用基本图形经过旋转、平移和轴对称设计一个美丽的图案.24. (9.0分) (2017七下·山西期末) 星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?25. (9.0分) (2017八下·金牛期中) 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.参考答案一、选择题(共10小题,每小题3分,满分30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共22分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共3小题,满分18分) (共3题;共18分)17-1、18-1、19-1、四、简答题(每小题7分,共21分) (共3题;共21分) 20-1、21-1、22-1、22-2、五、简答題(每小题9分,共27分) (共3题;共20分)23-1、24-1、24-2、24-3、24-4、25-1、25-2、25-3、第11 页共11 页。

嘉兴市七年级下学期数学期末考试试卷

嘉兴市七年级下学期数学期末考试试卷

嘉兴市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题,每小题2分,共24分) (共12题;共24分)1. (2分) (2019七上·泰兴期中) 关于的代数式的值与的取值无关,则的值为()A . 0B . ﹣1C . 1D . 32. (2分)(2020·吕梁模拟) 数轴上点 A , B 表示的数分别是5,-2,它们之间的距离可以表示为()A .B .C .D .3. (2分) (2016八上·无锡期末) 下列说法:①有理数和数轴上的点一一对应;②成轴对称的两个图形是全等图形;③- 是17的平方根;④等腰三角形的高线、中线及角平分线重合.其中正确的有()A . 0个B . 1C . 2个D . 3个4. (2分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k5. (2分) (2019七下·桂林期末) 如图,对于图中标记的各角,下列条件不能够推理得到a∥b的是()A . ∠1=∠2B . ∠2=∠3C . ∠1=∠3D . ∠1+∠4=180°6. (2分) (2019七下·桂林期末) 将多项式2a2-4ab因式分解应提取的公因式是()A . aB . 2aC . 2abD . 4a2b7. (2分) (2019七下·桂林期末) 如果(2x+1)(x-2)=2x2+mx-2,那么m的值是()A . -1B . 1C . -3D . 38. (2分) (2019七下·桂林期末) 下列多项式中,能用平方差公式分解因式的是()A . a2+(-b)2B . 5m2-20mnC . -x2-y2D . -x2+259. (2分) (2019七下·桂林期末) 下列计算正确的是()A . (a3)4=a12B . x·3x3=3x3C . -b·b3=b4D . (m+3)2=m2+910. (2分) (2019七下·桂林期末) 如图,直线a∥b,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为()A .B .C .D .11. (2分) (2019七下·桂林期末) 已知(a+b)2=36,(a-b)2=16,则代数式a2+b2的值为()A . 36B . 26C . 20D . 1612. (2分) (2019七下·桂林期末) 如图,AB∥CD,∠EAF=3∠BAF,∠ECF=3∠DCF,则∠E与∠F的数量关系是()A . ∠E+∠F=180°B . ∠E=3∠FC . ∠E-∠F=90°D . ∠E=4∠F二、填空题(共6小题,每小题3分,共18分) (共6题;共18分)13. (3分)(2018·铁西模拟) 如图,△ABC的三个顶点和它内部的点P1 ,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2 ,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3 ,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P2017 ,把△ABC分成________个互不重叠的小三角形.14. (3分) (2018九上·阜宁期末) 在△ABC中,(tanC-1)2 +∣ -2cosB∣=0,则∠A=________15. (3分) (2015八下·灌阳期中) 若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为________.(结果保留根号)16. (3分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.17. (3分) (2019七下·桂林期末) 如图,三角形ABC的面积为1,将三角形ABC沿着过AB的中点D的直线折叠,使点A落在BC边上的A1处,折痕为DE,若此时点E是AC的中点,则图中阴影部分的面积为 ________。

{3套试卷汇总}2018年嘉兴市七年级下学期数学期末学业水平测试试题

{3套试卷汇总}2018年嘉兴市七年级下学期数学期末学业水平测试试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.【答案】D【解析】试题分析:根据一元一次不等式的解法解不等式x+1≤0,得x≤﹣1.表示在数轴上为:.故选D考点:不等式的解集2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.3.若三角形的两边长分别为3和8,则下列长度的四条线段中能作为第三边的是()A.3 B.5 C.8 D.12【答案】C【解析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得:第三边大于两边之差,即8-3=5,而小于两边之和,即3+8=11,即5<第三边<11,∴只有8符合条件,故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 三角形任意两边之和大于第三边,任意两边之差小于第三边.4.如图,O为直线AB上一点,∠DOC为直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论:①∠AOE与∠BOG互余②∠EOF与∠GOF互补③∠DOE与∠DOG互补④∠AOC﹣∠BOD=90°,其中正确的有()个.A.4 B.3 C.2 D.1【答案】B【解析】根据余角和补角的定义以及角平分线的定义计算出各选项的结果判断即可.【详解】解:①∵∠AOC+∠BOC=180°,OE平分∠AOC,OG平分∠BOC,∴∠AOE=12∠AOC,∠GOB=12∠BOC,∴∠AOE+∠BOG=12(∠AOC+∠BOC)=90°,∴∠AOE与∠BOG互余,故正确;②∵∠DOC=90°,OG平分∠BOC,OF平分∠BOD,∴∠BOG+∠BOF=12∠BOC+12∠BOD=12∠COD=45°,∴∠EOF+∠GOF=∠EOG+∠GOF+∠GOF=90°+45°+45°=180°,∴∠EOF与∠GOF互补,故正确;③∵∠DOE+∠DOG=∠EOF+∠DOF+∠FOG+∠DOF,∵∠EOF+∠GOF=180°,∴∠DOE+∠DOG=180°+2∠DOF,∴∠DOE与∠DOG不互补,故错误;④∵∠AOC+∠BOC=180°,∠BOC=90°﹣∠BOD,∴∠AOC﹣∠BOD=90°,故正确,故选:B.【点睛】本题考查余角和补角的定义及性质,角平分线定义,角的和差计算,准确识图是解题的关键.5.若k90k+1(k是整数),则k=()A.6 B.7 C.8 D.9【答案】D【解析】找到10左右两边相邻的两个平方数,即可估算90的值.【详解】∵81<10<100,∴81<90<100,即1<90<10,则k=1.【点睛】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.6.如图在△ABC中,BC=8,AB、AC的垂直平分线与BC分别交于E、F两点,则△AEF的周长为( )A.2 B.4 C.8 D.不能确定【答案】C【解析】直接根据线段垂直平分线的性质即可得出结论.【详解】解:∵AB、AC的垂直平分线分别交BC于点E、F,∴AE=BE,AF=CF,∴BC=BE+EF+CF=AE+EF+AF,∵BC=8,∴△AEF的周长=BC=8故选:C.【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.已知M(2,-3),N(-2,-3),则直线MN 与x 轴和y 轴的位置关系分别为()。

┃精选3套试卷┃2018届嘉兴市七年级下学期期末统考数学试题

┃精选3套试卷┃2018届嘉兴市七年级下学期期末统考数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.依据国家实行的《国家学生体质健康标准》,对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理项建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150175x << 范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表;根据统计图表提供的信息,下列说法中①抽取男生的样本中,身高155165x << 之间的学生有18人;②初一学生中女生的身高的中位数在B 组;③抽取的样本中抽取女生的样本容量是38;④初一学生身高在160170x << 之间的学生约有800人.其中合理的是( )A .①②B .①④C .②④D .③④ 【答案】B【解析】根据频数分布直方图和中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;用男女生身高的样本中160cm 至170cm 所占比例乘以男女生总人数可判断④.【详解】解:由直方图可知,抽取男生的样本中,身高在155≤x <165之间的学生有8+10=18人,故①正确;由A 与B 的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C 组,故②错误; ∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵女生身高在160cm 至170cm (不含170cm )的学生有40×(30%+15%)=18人,∴身高在160cm 至170cm (不含170cm )的学生有(840+800)×22184240++=800(人),故④正确; 故选B .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.方程组 3455792x y x y +=⎧⎪⎨-+=-⎪⎩的解是( ) A .214x y =⎧⎪⎨=⎪⎩B .1524x y ⎧=⎪⎨⎪=⎩C .112x y =⎧⎪⎨=⎪⎩D .112x y =-⎧⎪⎨=⎪⎩【答案】C【解析】利用加减消元法消去x ,求出y 的值,再代入求出x 的值. 【详解】解:3455792x y x y +=⎧⎪⎨-+=-⎪⎩①②, ①×7得,21x+28y=35③,②×3得,-21x+27y=-152④, ③+④得,55y=552, 则y=12, 将y=12代入①得,3x+2=5, 则x=1, ∴方程组的解为:112x y =⎧⎪⎨=⎪⎩. 故选:C.【点睛】本题考查了二元一次方程组的解法,熟练掌握消元法是解题关键.3.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式.故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键. 4.将四个数π、2、5和10表示在数轴上,位于图中表示的解集中的数是( )A .πB 5C 2D 10 【答案】B 【解析】根据题意可知,本题考查的是判断无理数在数轴上的表示的大概范围,根据找准无理数所处前后两个整数之间的方法,进行分析判断.【详解】因为3 <π< 4 2< 2 5 10< 4故应选B【点睛】 10,可以从10开始,在10的左右两边找出最近的可以开方的整数,10往左边是9,右边是16109163和4之间. 5.若m n <,则下列结论不一定成立的是( )A .11m n -<-B .22m n <C .33m n ->-D .22m n < 【答案】D【解析】本题主要考查不等式的基本性质.基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.【详解】A :不等式两边同时减去1,不等式成立,即m-1<n-1B :不等式两边同时乘2,不等式成立,即2m<2nC :不等式两边同时乘以13-,不等号方向改变,即33m n ->- D :当m<n ,且m n >时,22m n >,故22m n <不成立故正确答案为D【点睛】此题主要考查不等式的基本性质,基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变.6.小颖有两根长度为6cm和9cm 的木条,桌上有下列长度的几根木条,从中选出一根使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为( )的木条A.2cm B.3cm C.12cm D.15cm【答案】C【解析】根据两边之和大于第三边,两边之差小于第三边,可得第三边的长度的取值范围是.【详解】设木条的长度为lcm,则9-6<l<9+6,即3<l<1.故选C【点睛】考核知识点:三角形三边关系.7.已知方程组42x yx y m-=⎧⎨+=⎩中的x,y互为相反数,则m的值为()A.2B.﹣2C.0D.4 【答案】A【解析】∵x与y互为相反数,∴x+y=0,y=-x,又∵42x yx y m-=⎧⎨+=⎩,∴x=m,x-(-x)=4,∴m=x=2.故选A.8.下列各图案中,是由一个基本图形通过平移得到的是( )A.B.C.D.【答案】D【解析】因为平移不改变图形的大小和形状,只改变图形的位置,所以图案D是由一个基本图形通过平移得到的,故选D.9.下列说法中错误的是()A.三角形的中线、角平分线、高都是线段B.任意三角形的内角和都是180°C.多边形的外角和等于360°D.三角形的一个外角大于任何一个内角【答案】D【解析】根据三角形的角平分线、中线和高的定义可对A 进行判断;根据三角形内角和定理可对B 进行判断;根据多边形和三角形外角的性质可对C 、D 进行判断.【详解】解:A 、三角形的中线、角平分线、高线都是线段,所以A 选项的说法正确;B 、三角形的内角和为180°,所以B 选项的说法正确;C 、多边形的外角和等于 360°,所以D 选项的说法正确;D 、三角形的一个外角大于任何一个不相邻的内角,所以C 选项的说法错误.故选D .【点睛】本题考查了三角形内角和定理:三角形的内角和为180°.也考查了三角形的角平分线、中线和高以及三角形外角的性质.10.如图,∠AOB=120°,OP 平分∠AOB ,且OP=2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D 【解析】试解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.∵OP 平分∠AOB ,∴∠EOP=∠POF=60°,∵OP=OE=OF ,∴△OPE ,△OPF 是等边三角形,∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN ,在△PEM 和△PON 中,PEM PON PE PO EPM OPN ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△PEM ≌△PON .∴PM=PN ,∵∠MPN=60°,∴△PNM 是等边三角形,∴只要∠MPN=60°,△PMN 就是等边三角形,故这样的三角形有无数个.故选D .二、填空题题11.已知一组数据有50个,其中最大值是142,最小值是1.若取组距为5,则可分为_____组.【答案】2.【解析】可根据数据的最大最小值求得极差,再除以组距即为所求.【详解】∵极差为1429844-=,∴可分组数为4459÷≈,故答案为:2.【点睛】本题考查数据的处理,关键是根据极差和组距求得组数,需要注意的是得到的结果不是四舍五入,而是进一.12.如图,等边DEF 的顶点分别在等边ABC 各边上,且DE BC ⊥于E ,若6AB =,则DE =_____.【答案】3【解析】首先利用“AAS ”证明△BED 与△ADF 及△CFE 彼此全等,则AD=BE ,然后再利用30°角所对的直角边等于斜边的一半求出BE=12BD ,据此进一步求出BD=4,BE=2,最后利用勾股定理加以求解即可. 【详解】∵△ABC 与△DEF 为等边三角形,∴∠A=∠B=∠C=∠EDF=∠DFE=∠FED=60°,AB=AC=BC ,DE=DF=EF ,∵DE BC ⊥,∴∠BDE=90°−60°=30°,∴∠ADF=180°−30°−60°=90°,同理可得:∠EFC=90°,∴△BED ≅△ADF ≅△CFE (AAS ),∴AD=BE=CF ,在Rt △BDE 中,∵∠BDE=30°,∴BE=12 BD,∵AB=BD+AD=BD+BE=32BD=6,∴BD=4,∴BE=AD=2,∴在Rt△BDE中,DE==,故答案为:【点睛】本题主要考查了等边三角形性质与全等三角形性质及判定和勾股定理的综合运用,熟练掌握相关概念是解题关键.13.点P(3,-2)关于y轴对称的点的坐标为.【答案】(-3,-2).【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点P(3,-2)关于y轴对称的点的坐标为(-3,-2).故答案为:(-3,-2).考点:关于x轴、y轴对称的点的坐标.14.二元一次方程组24x yx y+=⎧⎨-=⎩的解为_____________________。

【精选3份合集】2018-2019年嘉兴市七年级下学期期末复习能力测试数学试题

【精选3份合集】2018-2019年嘉兴市七年级下学期期末复习能力测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式组104xx x+≥⎧⎨->⎩的所有整数解的和是()A.0B.1C.2D.3【答案】A【解析】分别求出各不等式的解集,再求出其公共解集即为此不等式组的解集,在此解集范围内得出符合条件的x的整数值即可.【详解】解:104xx x+≥⎧⎨->⎩①②,解不等式①得x≥-1.解不等式②得x<2,所以原不等式组的解集为-1≤x<2,所以原不等式组的整数解为:-1,0,1,则所有整数解的和=-1+0+1=0.【点睛】本题考查的是解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2.下列等式由左边到右边的变形中,属于因式分解的是()A.(a﹣2)(a+2)=a2﹣4B.8x2y=8×x2yC.m2﹣1+n2=(m+1)(m﹣1)+n2D.x2+2x﹣3=(x﹣1)(x+3)【答案】D【解析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.不是乘积的形式,错误;B.等号左边的式子不是多项式,不符合因式分解的定义,错误;C.不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.3.下列说法正确的个数有()(1)过一点,有且只有一条直线与已知直线平行;(2)一条直线有且只有一条垂线;(3)不相交的两条直线叫做平行线;(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离;(5)在同一平面内,垂直于同一条直线的两条直线互相平行;(6)两条直线被第三条直线所截,同位角相等.A.0个B.1个C.2个D.3个【答案】B【解析】根据平行公理,垂线的性质,平行线的定义,点到直线的距离,平行线的判定与性质对各项进行一一判段.【详解】(1)过直线外一点,有且只有一条直线与已知直线平行,错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;(3)在同一平面内,不相交的两条直线叫做平行线,错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,错误;(5)在同一平面内,垂直于同一条直线的两条直线互相平行,正确;(6)两条直线被第三条直线所截,两直线平行,同位角相等,错误.共1个正确,故选B.【点睛】本题考查平行公理,垂线的性质,平行线的定义,点到直线的距离,平行线的判定与性质,熟练掌握其定义与性质是解题的关键.4.在中,已知,,是腰上的高,则的长()A.B.C.D.【答案】B【解析】过点C作CD⊥AB于D,根据等腰三角形的性质,三角形的内角与外角的关系得到∠DAC=10°.在直角△ACD中,根据10°角所对的直角边等于斜边的一半解得CD的长.【详解】解:∵AB=AC=6,∴∠C=∠ABC=15°,∴∠DAC=10°,∵AB=AC=2a,∴在直角△ACD 中,CD=AC=1.故选:B .【点睛】本题主要考查了等腰三角形的性质:等边对等角.三角形的内角与外角的关系以及直角三角形中10度所对的直角边等于斜边的一半.5.下列事件中,属于不确定事件的是( )A .在ABC ∆中,180ABC ∠+∠+∠=︒B .如果a 、b 为有理数,那么+=+a b b aC .两个负数的和是正数D .若=αβ∠∠,则α∠和β∠是一对对顶角【答案】D【解析】不确定事件就是一定条件下可能发生也可能不发生的事件.依据定义即可解决.【详解】A 、在△ABC 中,∠A+∠B+∠C=180°是必然事件;B 、如果a 、b 为有理数,那么a+b=b+a 是必然事件;C 、两个负数的和是正数是不可能事件;D 、若∠α=∠β,则∠α和∠β是一对对顶角是不确定事件,故选:D .【点睛】此题考查三角形内角和定理,随机事件,解题关键在于需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.若方程组31331x y ax y a +=+⎧+=-⎨⎩的解满足0x y +>,则a 的取值范围是( ) A .1a <-B .1a <C .1a >-D .1a > 【答案】C 【解析】根据原方程组的特点,由方程组中两个方程相加可得1122x y a +=+,这样结合0x y +>即可列出关于a 的不等式,解此不等式即可求得a 的取值范围.【详解】把原方程组中两个方程相加可得: 4422x y a +=+,∴1122x y a +=+, 又∵0x y +>, ∴11022a +>,解得:1a >-. 故选C.【点睛】本题考查了解二元一次方程组和一元一次不等式的应用,能得出关于a 的不等式11022a +>是解答本题的关键.7.若关于x 的一元一次不等式组2351x x m ->⎧⎨-<⎩,有且只有两个整数解,则m 取值范围是( ) A .56m <<B .56m ≤≤C .56m ≤<D .56m <≤ 【答案】D【解析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m 的不等式组,求出即可.【详解】2351x x m ->⎧⎨-<⎩①②解不等式①得:x >4,解不等式②得:x <m+1,∴不等式组的解集为4<x <m+1,∵不等式组只有两个整数解,∴6<m+1≤7,解得:5<m≤6,故选D .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m 的不等式组,难度适中.8.如果关于x 的不等式 (a+2016)x>a+2016的解集为x <1,那么a 的取值范围是( )A .a>-2016B .a <-2016C .a>2016D .a<2016【答案】B【解析】根据已知不等式的解集,确定出a+2016为负数,求出a 的范围即可.【详解】∵关于x 的不等式 (a+2016)x >a+2016的解集为x <1,∴a+2016<0,解得:a <-2016,故选B【点睛】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.9.如果a >b ,则下列不等式中不正确的是( )A .a+2>b+2B .a ﹣2>b ﹣2C .﹣2a >﹣2bD .1122a b > 【答案】C【解析】解:根据不等式的基本性质可得,选项A 、B 、D 正确;选项C,在不等式a >b 的两边同乘以-2,不等号的方向发生改变,即﹣2a <﹣2b ,选项C 错误, 故答案选C .10.图中为王强同学的答卷,他的得分应是( )A .20分B .40分C .60分D .80分【答案】A 【解析】利用整数指数幂的运算法则进行逐一判断.【详解】①236()a a -=-②3332x x x +=③()25342a a a ÷=④()00.0911-=⑤50.000012 1.210-=⨯∴王强回答正确的有⑤,得分为20分.故选A【点睛】此题主要考查整式乘法的运算法则,熟记并灵活运用整式乘法的运算公式是解题的关键.二、填空题题11.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;【答案】62.0510-⨯【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大12.点(2,3)M -关于原点对称的点的坐标是___________.【答案】()2,3-【解析】根据“关于原点对称的点的坐标的横坐标与纵坐标都变为相反数”解答.【详解】解:∵(2,3)M -,∴点(2,3)M -关于原点对称的点的坐标是()2,3-故答案为:()2,3-【点睛】本题考查了关于原点对称的点的坐标,关于x 轴、y 轴对称的点的坐标,规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.如图,直线a ∥b ,直线c ,d 与直线b 相交于点A ,∠3=∠4,设∠1为α度,则∠2=________度(用含有α的代数式表示).【答案】1902a ︒- 【解析】根据平行线的性质得和已知条件得∠2=∠4=∠3,∠1=∠5.再由∠5+∠3+∠4=180°得2∠2+α=180°,化简即可得出答案.【详解】∵a ∥b ,∴∠2=∠4,∠1=∠5∵∠1=α,∠3=∠4∴∠5=α,∠2=∠4=∠3,∵∠5+∠3+∠4=180°,∴2∠2+α=180°,∴∠2=90°-12α.故答案为90°-1 2α.【点睛】本题考查的是平行线的性质及平角的定义,掌握平行线的性质是关键.14.在平面直角坐标系中,已知点Q在第三象限内,且点Q的横坐标与纵坐标的和为-3,写出一个满足上述条件的点Q的坐标_____.【答案】(-1,-2)【解析】第一象限(+,+)即x>0,y>0;第二象限(-,+)即x<0,y>0;第三象限(-,-)即x<0,y<0;第四象限(+,-)即x>0,y<0.反之亦成立.根据第三象限内点的坐标特征即可得到点Q的横坐标和纵坐标均小于0.【详解】解:根据第三象限内点的坐标特征可知点Q的横坐标和纵坐标均小于0.故(-1,-2)满足题意.故答案为(-1,-2)【点睛】此题考查象限内点坐标的特征,解题关键在于掌握其性质特点.15.如图,直线a∥b,∠1=85°,∠2=35°,则∠3为________.【答案】50°【解析】分析:先利用三角形的外角性质,求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.详解:如图:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°−35°=50°,∵a∥b,∴∠3=∠4=50°,故答案为50°.点睛:本题考查了平行线的性质,三角形的外角性质.16.如图,点A,C,F,B 在同一直线上,CD 平分∠ECB,FG∥CD.若∠ECA 为α 度,则∠GFB为________度(用关于α 的代数式表示).【答案】90°﹣2α【解析】∵∠ECA=α,∴∠ECB=180°-α,∵CD平分∠ECB,∴∠DCB=12∠ECB=12(180°-α)=90°-12α,又∵FG∥CD∴∠GFB=∠DCB=90°-12α.17.下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是__________(填写所有符合题意的序号).【答案】①④【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】①、3+2=5>4,能构成三角形,故①符合题意;②、3+2=5,不能构成三角形,故②不符合题意;③、3+2=5<7,不能构成三角形,故③不符合题意;④、3+3>3,能构成三角形,故④符合题意.故答案为:①④.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.三、解答题18.如图,已知AF分别与BD、CE交于点G、H,∠1=52°,∠2=128°.(1)求证:BD∥CE;(2)若∠C=∠D,探索∠A与∠F的数量关系,并证明你的结论.【答案】(1)证明见解析;(2) ∠A=∠F.证明见解析【解析】(1)根据对顶角相等得出∠DGH的度数,再由平行线的判定定理即可得出结论;(2)先根据BD∥CE得出∠D=∠CEF,再由∠C=∠D得出AC∥DF,据此可得出结论.【详解】(1)证明:∵∠1=∠DGH=52°,∠2=128°,∴∠DGH+∠2=180°,∴BD∥CE;(2)解:∠A=∠F.理由:∵BD∥CE,∴∠D=∠CEF.∵∠C=∠D,∴∠C=∠CEF∴AC∥DF,∴∠A=∠F.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.19.某商厦分别用600元购进甲、乙两种糖果,因为甲糖果的进价是乙糖果进价的1.2倍,所以进回的甲糖果的重量比乙糖果少10kg.(1)甲、乙两种糖果的进价分别是多少?(2)若两种糖果的销售利润率均为10%,则两种糖果的售价分别是多少?(3)如果将两种糖果混合在一起销售,总利润不变,那么混合后的糖果单价应定为多少元?【答案】(1)甲糖果的进价为1元/千克,乙糖果的进价为10/千克;(2)甲糖果的售价为13.2元/千克,乙糖果的售价为11元/千克;(3)混合后的糖果单价应定为1元.【解析】(1)设乙糖果的进价为x元,甲糖果的进价为1.2x元,列出分式方程即可;(2)根据售价=进价+利润即可;(3)用总售价÷总量即可.【详解】解:(1)设乙糖果的进价为x元,甲糖果的进价为1.2x元.根据题意得:6006001.2x x=10,解得:x=10,1.2x=1.2×10=1.所以甲糖果的进价为1元/千克,乙糖果的进价为10/千克.(2)甲糖果的售价=1×(1+10%)=13.2元/千克,乙糖果的售价为=10×(1+10%)=11元/千克. 所以甲糖果的售价为13.2元/千克,乙糖果的售价为11元/千克.(3)合后的糖果单价=100×(1+10%)÷(6006001210+)=1(元). 答:混合后的糖果单价应定为1元.【点睛】本题考查的是分式方程的实际应用,熟练掌握分式方程是解题的关键.20.某家商店的账目记录显示,某天卖出6件甲商品和3件乙商品,收入108元;另一天,以同样价格卖出5件甲商品和1件乙商品,收入84元.问每件甲商品和乙商品的售价各是多少元?【答案】每件甲商品的售价为16元,每件乙商品的售价为4元.【解析】分析:设甲种商品每件进价是x 元,乙种商品每件进价是y 元,根据“卖出6件甲商品和3件乙商品,收入108元;同样价格卖出5件甲商品和1件乙商品,收入84元”列出方程组解答即可; 详解:设每件甲商品的售价为x 元,每件乙商品的售价为y 元. 根据题意,得63108584.x y x y +=⎧⎨+=⎩, 解得16,4.x y =⎧⎨=⎩ 答:每件甲商品的售价为16元,每件乙商品的售价为4元.点睛:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.如图,AB ∥CD ,∠A=∠D ,判断AF 与ED 的位置关系,并说明理由.【答案】见解析【解析】试题分析:AB ∥CD ,根据两直线平行,内错角相等,可以得出,A AFC ∠=∠ 又因为,A D ∠=∠ 根据等量代换得出,AFC D ∠=∠ 根据同位角相等,两直线平行可以证明.试题解析:AF ∥ED ,∵AB ∥CD ,,A AFC ∴∠=∠,A D ∠=∠,D AFC ∴∠=∠AF ∴∥.ED22.新知学习,若一条线段把一个平面图形分成面积相等的两部分,我们把这条段线做该平面图形的二分线解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是_______②如图1,已知△ABC 中,AD 是BC 边上的中线,点E ,F 分别在AB ,DC 上,连接EF ,与AD 交于点G ,若AEG DGF S S =三角形三角形则EF _____(填“是”或“不是”)△ABC 的一条二分线。

2018-2019学年七年级下学期期末考试数学试卷含答案解析

2018-2019学年七年级下学期期末考试数学试卷含答案解析
19、计算(5 分)0.04 3 27 1 4
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………内…………○…………装…………○…………订…………○…………线…………○…………
浙江省嘉兴市2018-2019学年七年级下学期数学期末考试试

考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 一 二 三 四 五 总分 核分人
得分
注意
事项:
1、









2B




2、提前 15 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
评卷人 得分
一、单选题(共10题)
1. (x 2y)3的结果是( )
A . x 5y 3
B . x 6y
C . 3x 2y
D . x 6y 3
2. 如图,在网格中,每个小方格的边长均为1个单位,将图形E 平移到另一个位置后能与图形F 组合成一个正方形,下面平移步骤正确的是( )
A . 先把图形E 向右平移4个单位,再向上平移3个单位
B . 先把图形E 向右平移5个单位,再向上平移2个单位
C . 先把图形E 向右平移5个单位,再向上平移3个单位
D . 先把图形
E 向右平移6个单位,再向上平移2个单位
3. 某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生( )名.
答案第2页,总16页
…○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…○…………内…………○…………装…………○…………订…………○…………线…………○…………
4. A ,B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .
B .
C .
D .
5. 如图,若
,则
,判断依据是( )
A . 两直线平行,同位角相等
B . 两直线平行,内错角相等
C . 同位角相等,两直线平行
D . 内错角相等,两直线平行
6. 下面式子从左边到右边的变形中是因式分解的是( ) A .
B .
C .
D .
7. 若 是
的因式,则 为( ) A . B .
C . 8
D . 2
8. 计算: 的结果是( )
A .
B .
C .
D .
9. 根据2010~2014年杭州市实现地区生产总值(简称 ,单位:亿元)统计图所提供的信息(如图所示),
下列判断正确的是( )
…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………内…………○…………装…………○…………订…………○…………线…………○…………
A . 2010~2014年杭州市每年 增长率相同
B . 2014年杭州市的 比2010年翻一番
C . 2010年杭州市的 未达到5400亿元
D . 2010~2014年杭州市的
逐年增长
10. 已知关于 , 的方程组 ,则下列结论中:①当 时,方程组的解是 ;②当 , 的值互为相反数时, ;③不存在一个实数 使得
;④若
,则

确的个数有( )
A . 1个
B . 2个
C . 3个
D . 4个
第Ⅱ卷 主观题
第Ⅱ卷的注释
评卷人 得分
一、填空题(共10题)
1. 计算 的结果是 .
2. 某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.
3. 禽流感病毒的直径约为0.000002 05 cm ,用科学记数法表示为 cm ;
4. 若方程 有增根,则m 的值为 .
5. 如图,若

,则
.
6. 计算:

.
7. 因式分解: = .
8. 在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为 .
9. 在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项
,因式分解的结果是 ,若取

时,则各个因式的值是:

, ,于是就可以把“180162”作为一个六位数的密码,对于多项
答案第4页,总16页
…○…………外…………○…………装…………○…………订…………○…………线…………○…………
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…○…………内…………○…………装…………○…………订…………○…………线…………○…………
10. 已知 是方程组 的解,则 .
评卷人
得分
二、计算题(共1题)
11. 解方程(组):
(1)
(2)
评卷人
得分
三、解答题(共1题)

,求
.
评卷人
得分
四、综合题(共4题)
乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对
…………外…………○…………装…………○…………订…………○…………线…………○…………
姓名:____________班级:____________学号:___________
…………内…………○…………装…………○…………订…………○…………线…………○…………
乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?
14. 在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:
(1)小龙共抽取 名学生。

(2)补全条形统计图;
(3)在扇形统计图中,“其他”部分对应的圆心角的度数是 ;
(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数. 15. 某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;
②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金. 16. 阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x +(P+q)+pq 得 x +(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子x +3+2分解因式。

分析:这个式子的常数项2=1×2,一次项系数3=1+2所以。

相关文档
最新文档