复变函数-柯西积分定理

合集下载

复变函数_柯西积分公式

复变函数_柯西积分公式

lim
z 0
f
'( z0
z) z
f
'(z0 )
2!
f (z)

2 i
C (z z0 )3 dz.
依次类推,用数学归纳法可得
f
(n)(z0 )

n!
2 i
f (z) C (z z0 )n1 dz.
18
例6 计算I
C
1 z3(z
1)
dz, 其中C为
|
16
f (z)在C上解析, f (z)在C上连续,
则M ,使得
f
(z)

M,d

min zC
z

z0
11
z z0
d, z z0
. d
取 z 1 d ,则有 2
d
1
2
z z0 z
I z
z z0
ML
d 3
z , 2 z z0 z
( L — C的 长 度 )

d
.
显 然 ,lim I 0,从 而 有 z 0
f '(z0 )
lim
z 0
f (z0
z) z
f (z0 )

1
2
i
f (z) C (z z0 )2 dz.
(*)
17
再利用()式及推导()的方法可证n 2的情形.
f
''(z0 )
f (z) dz 将接近于 f (z0 ) dz. ( 减小)
C z z0
C z z0
f (z0 ) dz
C z z0

复变函数第3章

复变函数第3章

z 1 2 所以
z 1 2 2 2 f ( z) 2, z 1 2 由估值不等式有
z 1 C z 1 dz 8 .
3.1.3 复变函数的积分的计算问题
定理3.1 设C为光滑曲线, 若 f z ux, y ivx, y
沿曲线C连续,则 f ( z )沿C可积,且
1 1 f ( z) = 1. Re z 1+3t
而L之长为3,故
dz L Re z 3.
例4
计算积分

其中积分路径为
C
z dz
2
(1) 连接0到1+i的直线段 (2) 连接0到1的直线段及连接1到1+i的直 线段所成的折线. 解 方程为 (1) 连接0到1+i的直线段的参数
z (1 i)t (0 t 1).
y
B
那么B到A就是曲线L的负向,
记为 L .
o
A
x
关于曲线方向的说明: 在今后的讨论中,常把两个端点中的一个作 为起点, 另一个作为终点, 除特殊声明外, 正方 向总是指从起点到终点的方向. 简单闭曲线正向的定义: 简单闭曲线L的正向是 P 指当曲线上的点P顺此方向 前进时, 邻近P点的曲线的 o 内部始终位于P点的左方. 与之相反的方向就是曲线的负方向.
0 0 1 1
1
1
1 tdt i dt i. 0 0 2
(此例说明:积分路径不同, 积分结果可能不 同)
作业:P45.T1;T3.
1. 柯西积分定理 2. 复合闭路定理 3. 解析函数的原函数
由定理3.1,复积分可转化为实二元函数 的第二型曲线积分.那么,复积分在什么情况 下与路径无关? 1 2 比较 f ( z ) z , f ( z ) Re z , f ( z ) za 可能与被积函数的解析性及解析区域有关

第三章 复变函数的积分 第一节、柯西定理

第三章 复变函数的积分 第一节、柯西定理

第三章复变函数的积分(Integration of function of thecomplex variable)第一讲授课题目:§3.1复积分的概念§3.2柯西积分定理教学内容:复变函数的积分的定义、复变函数积分的计算问题、复变函数积分的基本性质、柯西积分定理.学时安排:2学时教学目标:1、了解复变函数积分的定义和性质,会求复变函数在曲线上的积分2、会用柯西积分定理和复合闭路定理计算积分,了解不定积分的概念教学重点:复变函数积分的计算问题教学难点:柯西积分定理教学方式:多媒体与板书相结合P思考题:1、2、习题三:1-10作业布置:7576板书设计:一、复变函数积分的计算问题二、柯西积分定理三、举例参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月.4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月.课后记事:1、会求复变函数在曲线上的积分2、用柯西积分定理和复合闭路定理计算积分计算方法掌握不理想3、利用课余时间多和学生交流教学过程:§3.1 复积分的概念(The conception of complex integration)一、复变函数的积分的定义(Complex function of theintegral definition )定义(Definition )3.1设在复平面上有一条连接A 及B 两点的光滑简单曲线C 设),(),()(y x iv y x u z f +=是在C 上的连续函数.其中),(y x u 及),(y x v 是)(z f 的实部及虚部.把曲线C 用分点B z z z z z A n n ==-,...,,,1210分成n 个小弧段,其中),...,2,1,0(n k y x z k k k =+=在每个狐段上任取一点k k k ηξς+=,作和式))((11-=-∑k n k k k z z f ς(1) 令|}{|max 11-≤≤-=k k n k z z λ,当0→λ时,若(1)式的极限存在,且此极限值不依赖于k k k ηξς+=的选择,也不依赖于曲线C 的分法,则就称此极限值为)(z f 沿曲线C 的积分.记作=⎰C z z f d )())((lim 110-=→-∑k nk k k z z f ςλ当)(z f 沿曲线C 的负方向(从B 到A )积分,记作⎰-C z z f d )(当)(z f 沿闭曲线C 的积分,记作()dz z f C⎰ 定理(Theorem)3.1 若),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,则)(z f 沿C 可积,且,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f CC C ++-=⎰⎰⎰(2) 证明:))((11-=-∑k n k k k z z f ς)]())][(,(),([111k k nk k k k k k k y y i x x iv u -+-+=+=+∑ηξηξ],))(,())(,([))(,())(,(1111111111∑∑∑∑-=+=+-=+=+-+-+---=n k k k k k n k k k k k n k k k k k n k k k k k y y u x x v i y y v x x u ηξηξηξηξ由),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,可知),(),,(y x v y x u 沿光滑简单曲线C 也连续,当0→λ时,有0|}{|max 11→--≤≤k k n k x x 0|}{|max 11→--≤≤k k nk y y 于是上式右端的极限存在,且有,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f CC C ++-=⎰⎰⎰ 二、复变函数积分的计算(Complex integration of computational problems) 设有光滑曲线C : ()()()t iy t x t z z +== ()βα≤≤t ,即()t z '在[]βα,上连续且有不为零的导数()()()t y i t x t z '+'='.又设()z f 沿C 连续.由公式(2)我们有[()()()()()()()()]dtt y t y t x v t x t y t x u y y x u x y x v i y y x v x y x u z z f CC C '-'=++-=⎰⎰⎰⎰βα,,),(),(),(),()(d d d d d [()()()()()()()()]dt t y t y t x u t x t y t x v i '+'+⎰βα,,即()()[](),dt t z t z f dz z f c '⎰=⎰βα (3) 或 ()Re βα⎰=⎰dz z f c ()[]{()}()[]{()}dt t z t z f i dt t z t z f '⎰+'Im βα (4)用公式(3)或(4)计算复变函数的积分,是从积分路径C 的参数方程着手,称为参数方程法.注:当是分段光滑简单曲线时,我们仍然可以得到这些结论. 例1 计算dz z C⎰,其中C 是 (1) 从点1到i 的直线段1C ;(2) 从点1到0的直线段2C ,再从点0到i 得直线段3C 所连接成的折线段32C C C +=.解:(1))()(;1011≤≤+-==t it t t z C C ,有:⎰⎰⎰⎰=+-=+---=101010)12()1)(1(i dt i dt t dt i it t dz z c (2)).10()(:),10(1)(:2312≤≤=≤≤-=t it t z C t t t z C ,有:⎰⎰⎰⎰⎰=+--=+=10100)1(32tdt dt t dz z dz z dz z c c c例2 计算dz z ii I ⎰-=其中C 是 (1)连接i i 到-的直线段;(2)连接i i 到-的单位圆的左半圆(3)连接i i 到-的单位圆的右半圆解: i t i tdt i idt it dz z i i I t it z i =⋅==-=-=≤≤-=-⎰⎰⎰1221201211,11,)1( 于是程为:到i的直线段的参数方 ie de idt e e dz z i i I ,t e z it it it it it 2232232223,)2(223===⋅=-==⎰⎰⎰ππππππππ于是到从方程为单位圆的左半圆的参数 i e e d e dz z I ,t e z it it it i i it 2)(20,)3(2222=====---⎰⎰πππππ到从方程为单位圆的右半圆的参数上述二例说明:复变函数的积分与积分路径有关例3()0n Cdz z z -⎰,其中n 为任意整数,C 为以0z 为中心,r 为半径的圆周.解 C 的参数方程为0,02i z z re θθπ=+≤≤,由公式得()22(1)1000221100cos(1)sin(1)2,1,0, 1.i i n n n in n Cn n dz ire i d e d r e r z z i i n d n d r ri n n θππθθππθθθθθθπ-----==-=-+-=⎧=⎨≠⎩⎰⎰⎰⎰⎰ 此例的结果很重要,以后经常要用到.以上结果与积分路径圆周的中心和半径没有关系,应记住这一特点.例4 计算Czdz ⎰,其中C 为从原点到点34i +的直线段. 解: 此直线方程可写作3,4,01x t y t t ==≤≤ 或 34,01z t i t t =+≤≤. 在C 上,(34),(34)z i t dz i dt =+=+,于是()()()112220013434342C zdz i tdt i tdt i =+=+=+⎰⎰⎰. 因()()C CC C zdz x iy dx idy xdx ydy i ydx xdy =++=-++⎰⎰⎰⎰易验证,右边两个线积分都与路线C 无关,所以C zdz ⎰的值,不论是对怎样的连接原点到34i +的曲线,都等于()21342i +. 例5 设C 是圆ρα=-||z ,其中α是一个复数,ρ是一个正数,则按逆时针方向所取的积分i z dz C πα2=-⎰ 证明:令 θραi e z =-,于是 θρθd d i ie z =,从而 i id z dz Cπθαπ220⎰⎰==- 三、复变函数积分的基本性质(Complex integration of the basic nature)设)(z f 及)(z g 在简单曲线C 上连续,则有(1)是一个复常数其中k z z f k z z kf C C,d )(d )(⎰⎰= (2);d )(d )(d )]()([⎰⎰⎰±=±C C C z z g z z f z z g z f(3)⎰⎰⎰⎰+++=n C C C C z z f z z f z z f z z f d )(...d )(d )(d )(21其中曲线C 是有光滑的曲线n C C C ,...,,21连接而成;(4)⎰⎰-=-C C z z f z z f d )(d )( 定理3.2(积分估值) 如果在曲线C 上,()M z f ≤,而L 是曲线C 的长度,其中M 及L 都是有限的正数,那么有()ML dz z f z z f CC ≤≤⎰⎰|d )(|, (5) 证明:因为ML z z M z z f k n k k k n k k k ≤-≤-∑∑-=+-=+|||))((|111111ζ两边取极限即可得:()ML dz z f z z f CC ≤≤⎰⎰|d )(| 例6 试证:⎰=→=+r z r dz z z 01lim 230 证:不妨设1<r ,我们用估值不等式(5)式估计积分的模,因为在r z =上,⎰⎰==-≤+≤+r z r z r r dz z z dz z z 24232312||1|1π上式右端当0→r 时极限为0,故左端极限也为0,所以⎰=→=+r z r dz z z 01lim 230 本节重点掌握: (1)复变函数积分的计算;(2)复变函数积分的基本性质§3.2 柯西积分定理(Cauchy integral theorem)下面讨论复变函数积分与路径无关问题定理(Theorem)3.3设)(z f 是在单连通区域D 内的解析函数,则)(z f 在D 内沿任意一条闭曲线C 的积分0d )(=⎰C z z f ,在这里沿C 的积分是按反时针方向取的.此定理是1825年Cauchy 给出的.1851年Riemann 在)(z f '连续的假设下给出了简单证明如下 证明:已知)(z f 在单连通区域D 内解析,所以)(z f '存在,设)(z f '在区域D 内连续,可知u 、v 的一阶偏导数在区域D 内连续,有0d )(=⎰Cz z f ⎰⎰⎰++-=⊂∀C C c udyvdx i vdy udx dz )z (f D C ,,又⎰⎰⎰⎰⎰⎰=-=+=--=-Dy x c D y x c dxdy v u udy vdx dxdy u v vdy udx Green 0)(,0)(公式由注1: 此定理证明假设“)(z f '在区域D 内连续”,失去定理的真实性,法国数学家古萨(E.Goursat )在1900年给出了真实证明,但比较麻烦.注2: 若C 是区域D 的边界,)(z f 在单连通区域D 内解析,在D 上连续,则定理仍成立.定理(Theorem)3.4若)(z f 是在单连通区域D 内的解析函数,1C 、1C 是在D 内连接0z 及z 两点的任意两条简单曲线,则=⎰1)(C dz z f ⎰2)(C dz z f证明:由柯西积分定理-⎰1)(C dz z f ⎰2)(C dz z f ()021==⎰+dz z f C C将柯西积分定理推广到多连通区域上定理(Theorem)3.5(复合围线积分定理)设有n +1条简单闭曲线,,...,,n C C C 1曲线n C C ,...,1中每一条都在其余曲线的外区域内,而且所有这些曲线都在的C 内区域,n C C C ,...,,1围成一个有界多连通区域D ,D 及其边界构成一个闭区域D .设f (z )在D 上解析,那么令Γ表示D 的全部边界,我们有0=⎰Γdz z f )(其中积分是沿Γ按关于区域D 的正向取的.即沿C 按逆时针方向,沿n C C ,...,1按顺时针方向取积分;或者说当点沿着C 按所选定取积分的方向一同运动时,区域D 总在它的左侧.因此0 1=+++=⎰⎰⎰⎰--ΓnC C Cdz z f dz z f dz z f dz z f )()()()(即 ⎰⎰⎰++=nC C Cdz z f dz z f dz z f )(...)()(1例7 计算dz z z e zz ⎰-=)1(23,其中C 是包含0与1、-1的简单闭曲线.解:作互不相交的互不包含的三个小圆周321,,c c c 分别包含0,1,-1,且都在3=z 内,应用复合围线积分定理,有)2()22(21)1(1)1(11)1()1()1()1(111222223321321-+=++=+⋅-+-⋅++⋅-=-+-+-=---=⎰⎰⎰⎰⎰⎰⎰e e i e e e i z dzz z e z dz z z e z dz z dz z z e dz z z e dz z z e dz z z e z cz c c zc z c z c z z ππ由柯西积分定理可知:若)(z f 是在单连通区域D 内的解析函数,则沿着区域D 内的简单闭曲线C 的积分⎰Cd f ςς)(与路径无关,只与起点0z 及终点z 有关,此时也可写成⎰zz d f 0)(ζζ在单连通区域D 内固定0z ,当z 在区域D 内变动时,⎰zz d f 0)(ζζ确定了上限z 的一个函数,记作⎰=z z d f z F 0)()(ζζ定理(Theorem)3.6 设)(z f 是单连通区域D 的解析函数,则⎰=zz d f z F 0)()(ζζ也是区域D 内的解析函数,且)()('z f z F =证明: D z z ∈∆+∀,得⎰zz d f 0)(ζζ与路径无关,则⎰⎰-=-∆+∆+z z zz z d f d f z F z z F 0)()()()(ζζζζ=⎰∆+zz zd f ζζ)(其中积分路径取z 到z z ∆+得直线段,有()()()zz f z z F z z F ∆=-∆-∆+1(())⎰∆+-zz zd x f f ζζ)(因)(z f 在D 内连续,δδε<∆>∃>∀z ,0,0,有()()()ε<-∆-∆+z f zz F z z F即)()('z f z F =定义(Definition)3.2设在是单连通区域D 内,有)()('z f z F =,则称()z F 是)(z f 的原函数.定理(Theorem)3.7若)(z f 是在单连通区域D 内的解析函数,()z F 是)(z f 的一个原函数.则⎰=zz dz z f 0)(()z F -()0z F其中D z D z ∈∈,0注3: 此定理说明,如果某一个区域内的连续函数有原函数,那么它沿这个区域内曲线的积分可以用原函数来计算,这是数学分析中牛顿-莱布尼茨公式的推广. 例8 ( 重要积分)) 试证明:⎩⎨⎧Z ∈≠==-⎰n n n i a z dzc n ,1012)(π 这里 C 表示绕行a 一周的简单闭曲线.证明: 作圆周 1C : |z-a | = ρ, 使得 C 在 1C 的内区域中. 则有=-⎰c n a z dz )(⎰-1)(c n a z dz由例5结果即得证.例9 计算⎰+cdz z )1ln(,其中C 是从-i 到i 的直线段解 因为)1ln(z +是在全平面除去负实轴上一段1-≤x 的区域D 内为(单值)解析,又因为区域D 是单连通的,在D 内有[]ii i i i i i i z z i i i i dzzi i i i dzzzz z dz z iii i ii ii c )22ln 2()1ln()1ln(2)1ln()1ln()1ln()1ln()1ln()111()1ln()1ln(1|)1ln()1ln(π++-=--++--++=+---++=+---++=+-+=+----⎰⎰⎰本节重点掌握:1、柯西积分定理 2、柯西积分定理的推广 内容小结:1、复变函数的积分的定义2、复变函数积分的计算问题()()[](),dt t z t z f dz z f c '⎰=⎰βα3、复变函数积分的基本性质4、柯西积分定理5、柯西积分定理的推广2 1§3.3柯西积分公式§3.4解析函数的高阶导数柯西积分公式、解析函数的无穷可微性、柯西不等式与刘维尔定理、莫勒拉定理.1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、理解刘维尔定理与莫勒拉定理柯西积分公式解析函数的无穷可微性讲授法多媒体与板书相结合P思考题:1、2、习题三:11-157576一、柯西积分公式二、解析函数的无穷可微性三、举例[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008.1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、解析函数的无穷可微性理解很好3、利用课余时间对学生进行答疑第二讲授课题目:§3.3柯西积分公式§3.4解析函数的高阶导数教学内容:柯西积分公式、解析函数的无穷可微性、柯西不等式与刘维尔定理、莫勒拉定理.学时安排:2学时教学目标:1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、理解刘维尔定理与莫勒拉定理教学重点:柯西积分公式教学难点:解析函数的无穷可微性教学方式:多媒体与板书相结合作业布置:习题三:11-15板书设计:一、柯西积分公式二、解析函数的无穷可微性三、举例参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版).4、《积分变换》,南京工学院数学教研室,高等教育出版社.课后记事:1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、解析函数的无穷可微性理解很好3、利用课余时间对学生进行答疑教学过程:§3.3 柯西积分公式 (Cauchy integral formula )柯西积分公式(Cauchy integral formula )设)(z f 在以圆)0(|:|000+∞<<=-ρρz z C 为边界的闭圆盘上连续,C 的内部D 上解析,由柯西积分定理0d )(=⎰Cz z f 考虑⎰-C d z f ζζζ)(设D z ∈,显然函数在zf -ζζ)(满足z D ≠∈ζζ,的点ζ处解析. 以z 为心,作一个包含在D 内的圆盘,设其半径为ρ,边界为圆ρC .在D 上,挖去以ρC 为边界的圆盘,余下的点集是一个闭区域ρD .在ρD 上,函数)(ζf 以及zf -ζζ)(解析,所以有 ⎰⎰-=-ρζζζζζζC C d z f d z f )()(于是又如下定理定理(Theorem)3.8设)(z f 在在简单闭曲线C 所围成的区域D 内解析在C D D ⋃=上连续,0z 是区域D 内任一点,则有dzz z z f i z f C ⎰-=0)(21)(π (1)其中,沿曲线C 的积分是按反时针方向取的,(1)式就是柯西积分公式.它是解析函数的积分表达式,因而是今后我们研究解析函数的重要工具. 说明:1、有界闭区域上的解析函数,它在区域内任一点所取的值可以用它在边界上的值表示出来.2、柯西公式是解析函数的最基本的性质之一,可以帮助我们研究解析函数的许多重要性质.推论1(平均值公式)设)(z f 在)(z f R z z C <-|:|0内解析,在R z z C =-|:|0上连续,则π21)(0=z f ⎰+πθθ200)Re (d z f i推论 2 设)(z f 在由简单闭曲线1C 、2C 围成的二连通区域D 内解析,并在曲线1C 、2C 上连续,2C 在1C 的内部,0z 为区域D 内一点,则⎰-=100)(21)(C dz z z z f i z f π⎰--20)(21C dz z z z f i π例1 求下列积分的值(1)()⎰⎰==+-222.))(9(2;sin z z dz i z z zdz zz 解:(1)0|sin 2sin 02====⎰z z z i dz zzπ (2)⎰⎰=-===-=---=+-2122225|92)(9))(9(z z z z z i dz i z z z dz i z z z ππ 由平均值公式还可以推出解析函数的一个重要性质,即解析函数的最大模原理.解析函数的最大模原理,是解析函数的一个非常兆耀的原理,它说明了一个解析函数的模,在区域内部的任何一点都达不到最大值,除非这个函数恒等于常数.定理(Theorem)3.9(最大模原理) 设)(z f 在区域D 内解析,)(z f 不是常数,则在区域D 内()z f 没有最大值. 推论1在区域D 内的解析函数,若其模在区域D 内达到最大值,则此函数必恒等于常数推论2设)(z f 在有界区域D 内解析,在D 上连续,则()z f 必在区域D 的边界上达到最大值.证明:若)(z f 在区域D 内为常数,显然成立,若)(z f 在区域D 内不恒为常数,有连续函数的性质及本定理即可得证. 本节重点掌握:柯西积分公式§3.4 解析函数的高阶导数(The higher order derivative of analytic function) 一、解析函数的无穷可微性(Analytic functions ofinfinitely differentiable)定理(Theorem)3.10 设函数)(z f 在简单闭曲线C 所围成的区域D 内解析,在D 上连续,则)(z f 的各阶导数均在区域D 内解析,对区域D 内任一点z ,有,...)3,2,1( )()(2!)(1)(=-=⎰+n d z f i n z f C n n ζζζπ,证明:先证明1=n 时的情形.对区域D 内任一点z ,设D h z ∈+.⎰---=Cd z h z f ih ζζζζπ2))(()(2 现在估计上式右边的积分.设以z 为心,以δ2为半径的圆盘完全在D 内,并且在这个圆盘内取h z +,使得δ<<h 0,那么当D ∈ζ时,,||,||δζδζ>-->-h z z设()z f 在C 上的最大值是M ,并且设C 的长度是L ,于是由积分估值定理有,2|||))(()(2|22δπζζζζπMLh d z h z f i hC ⋅≤---⎰ ])()(2)(21)(21[1)()(21)()(22⎰⎰⎰⎰------=---+C C C C d z f i h d z f i d h z f i h d z f i h z f h z f ζζζπζζζπζζζπζζζπ这就证明了当h 趋近于0时,积分⎰---Cd z h z f i hζζζζπ2))(()(2趋于0.即当1=n 时定理成立.设k n =时定理成立.当1+=k n 时,对区域D 内任一点z ,设D h z ∈+.仿1=n 时的证明方法,可推得定理成立.证毕例2 计算下列各积分)())()()⎰⎰⎰>==>=-+-1223221511121cos 1r z z zr z dzz z dzze dzz zπ解:)()()()()⎰>=-==-=-1545121cos !1521cos 1r z i z z i dz z zππππ)()()()()()⎰⎰⎰+-+-+=+>=12222212212CCzzr z zdz i z i z e dz i z i z e dz z e()()⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+='⎪⎪⎭⎫ ⎝⎛+=41sin 2222πππi i z i z e i z i z e i z z3)被积函数22)1(1-z z 有两个奇点:01=z 和12=z ,都在2=z 内,2)1(1-z 在31=z 内解析,21z在311=-z 内解析,作圆周3113121=-=z c z c :,:,利用复合围线积分定理, ⎰⎰⎰⎰⎰=-==-==-+--=-+-=-311233132311233123223)1(1)0()1(1)1()1()1(z z z z z dz z z dz z z z z dz z z dz z z dz由高阶导数公式,得()0661!1211!22)1(1302223=-='⎪⎭⎫ ⎝⎛+"⎪⎪⎭⎫ ⎝⎛-=-===⎰i i z i z i z z dzz z z ππππ应用上述定理可得出解析函数的无穷可微性定理(Theorem)3.11 设函数)(z f 在区域D 内解析,那么)(z f 在D 内有任意阶导数.并且它们也在区域D 内解析注3: 任意阶导数公式是柯西公式的直接推论;二、柯西不等式与刘维尔定理(Cauchy inequality and Liouville's theorem)柯西不等式(Cauchy inequality ) 设函数)(z f 在以R z z <-||0内解析,在以R z z <-||0内()M z f ≤,则,...)2,1,0(!!|)(|0)(=≤n RMn n z fn n 证明:令1R C 是圆)0(||110R R R z z <<=-,)(z f 在以10||R z z ≤-上解析,由高阶导数公式,有,2,1,0!22|)()(2!||)(|1111100)(1==⋅⋅≤-=++⎰n R M n R R M n!dz z z z f in z fnn C n n R πππ令R R →1,得 ,2,1,0!|)(|10)(=≤n R Mn z fn n上述的不等式称为柯西不等式.如果函数)(z f 在整个复平面上解析,那么就称)(z f 为一个整函数,例如z e z z ,cos ,sin 都是整函数.关于整函数,我们有下面的刘维尔定理:定理3.12(刘维尔Liouvlle 定理) 有界整函数一定恒等常数.证明:设)(z f 是有界整函数,即存在),0(+∞∈M ,使得M z f z <∈∀|)(|C,.),0(,C 0+∞∈∀∈∀R z ,)(z f 在R z z <-||0内解析.由柯西公式,有RM z f ≤|)('|0, 令+∞→R , 0)(',C 00=∈∀z f z ,由此可知)(z f 在C 上恒等于常数.三、莫勒拉定理(Mole La Theorem):应用解析函数有任意阶导数,可以证明柯西定理的逆定理,称为莫勒拉定理.定理(Theorem)3.13如果函数)(z f 在区域D 内连续,并且对于D 内的任一条简单闭曲线C ,我们有0)(=⎰Cdz z f那么)(z f 在区域D 内解析.本节重点掌握:(1) 解析函数的无穷可微性;(2)柯西不等式 内容小结: 1、柯西积分公式 2、解析函数的无穷可微性3、柯西不等式与刘维尔定理4、莫勒拉定理5、柯西定理的逆定理。

复变函数的积分 柯西定理

复变函数的积分 柯西定理

第三章 复变函数的积分§3-1复变函数的积分【刘连寿、王正清编著《数学物理方法》P 29-31】复变函数积分的定义:设C 为复平面上以0z 为起点,而以z 为终点的一段路径(即一根曲线),在C 上取一系列分点011,,,,n n z z z z z -=把C 分为n 段,在每一小段[1k k z z -]上任取一点k ξ作和数:()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑, 其中1k k k z z z -∆=-如果当n →∞且每一小段的长度(1||||k k k z z z -∆=-)趋于零时, 和式()1nk kk f z ξ=∆∑的极限存在,并且其值与k z 及k ξ的选取方式无关,则称这一极限为()f z 沿路径C 由0z 到z 的积分:()()1limlim nn k k Cn n k fz dz S f z ξ→∞→∞===∆∑⎰,C 称为积分路径(()f z 在C 上取值,即z 在C 上变化)。

若C 为围线(闭的曲线),则积分记为: ()Cf z dz ⎰. (围道积分)几点说明:1. 复变函数的积分不仅与积分端点有关,还与积分路径有关。

(与我们以前在高等数学中学过的实变函数的线积分类似。

)2.因为 z x iy =+,dz dx idy =+,()()(),,f z u x y iv x y =+,于是()()()(),,CCf z dz u x y iv x y dx idy =++⎡⎤⎣⎦⎰⎰()()()(),,,,C C u x y dx v x y dy i v x y dx u x y dy ⎡⎤⎡⎤=-++⎣⎦⎣⎦⎰⎰,所以复变函数的积分可以归结为两个实变函数的线积分,它们分别是复变函数积分的实部和虚部。

3.从复变函数积分的定义出发,可以直接得出复变函数的积分具有如下简单性质:(1)0C dz z z =-⎰,z 、0z 分别为C 之起点、终点。

柯西重复积分公式

柯西重复积分公式

柯西重复积分公式柯西重复积分公式,也称柯西积分公式,是微积分中的重要定理之一。

它是将两个函数的积分与一个函数的积分的乘积进行比较的方法。

柯西重复积分公式是由法国数学家奥古斯丁·路易·柯西在19世纪提出的。

这个公式在复变函数论中有着广泛的应用。

它不仅可以用来计算一维函数的积分,还可以推广到多维情况下。

柯西重复积分公式的一般形式可以表示为:∮C f(z)dz = 2πi∑(res(f, zi))其中,∮C f(z)dz表示沿着曲线C的积分,f(z)表示被积函数,res(f, zi)表示f(z)在zi处的留数。

这个公式的推导过程比较复杂,需要用到复变函数的一些基本性质和定理。

但是,我们可以通过一个简单的例子来理解柯西重复积分公式的应用。

假设我们要计算函数f(z) = z/(z - 1)在单位圆内的积分。

根据柯西重复积分公式,我们可以将这个积分转化为计算函数f(z)的留数。

我们找出函数f(z)的奇点。

由于分母(z - 1)在z = 1处为零,所以z = 1是函数f(z)的一个奇点。

然后,我们计算函数f(z)在z = 1处的留数。

根据留数定理,留数等于函数在奇点处的极限值。

在这个例子中,留数等于lim(z→1) (z - 1)f(z)。

将函数f(z)代入计算,我们可以得到留数等于1。

根据柯西重复积分公式,我们可以得到∮C f(z)dz = 2πi乘以函数f(z)在z = 1处的留数。

由于留数等于1,所以积分的结果为2πi。

这个例子说明了柯西重复积分公式在计算积分时的重要性。

通过将积分转化为计算留数,我们可以简化计算过程,并得到准确的结果。

总结一下,柯西重复积分公式是微积分中的一个重要定理,它可以将两个函数的积分与一个函数的积分的乘积进行比较。

这个公式在复变函数论中有广泛的应用,可以简化积分的计算过程。

通过计算留数,我们可以得到准确的积分结果。

复变函数积分中柯西定理的推广

复变函数积分中柯西定理的推广

复变函数积分中柯西定理的推广姓名:刘亚宁学号: 20161102541专业:物理学班级: 16级物理学院系:物理与电子信息学院内容摘要数学物理方法作为物理学专业普通物理与理论物理的纽带,其重要性不言而喻。

复变函数理论的相关知识是基础并且重要的。

其中,对于复变函数的积分,有一个重要的定理——单、复通区域的柯西定理,包括单、复通区域柯西定理的使用条件和最后结论。

并且,柯西定理还可以进行推广,将使用条件进一步简化,减少局限性,使得柯西定理的应用更加广泛。

本篇将阐述柯西定理的推广过程及结论。

关键词:连续解析柯西定理积分路径复变函数积分中柯西定理的推广单、复通区域的柯西定理的证明过程,在众多教材中已经给出。

而对于柯西定理的推广,只给出了相关结论。

现结合现有知识以及相关文献,以单通区域为例,对柯西定理的推广进行证明。

1.相关知识(1)单通区域柯西定理:如果函数f (z)在闭单连通区域B上解析,则沿B上任一分段光滑闭合曲线l(也可以是B的边界),有⎰f(z)dz=0l(2)单通区域柯西定理的推广:如果函数f (z)在单连通区域B上解析,在闭单连通区域B上连续,则沿B上任一分段光滑闭合曲线l(也可以是B的边界),有⎰f(z)dz=0l2.具体证明首先,我们可以将柯西定理的推广整理成以下形式:假如D是一个可求长度的曲线C的内部区域,函数f(z)是D内的解析函数,并且f(z)在闭区域B上连续,则⎰f(z)dz=0C假定c是一个无论怎样小的正数。

按照假设的条件,f(z)在D上一致连续。

因此存在这样一个数δ(0<δ<1)使得对于区域D上满足条件|z1-z2| < 2δ的任意两点z1与z2,不等式|f (z1)-f(z2)|<c都成立。

即|z1-z2|< 2δ⇒|f (z1)-f(z2)|<c①如图,可求长度的曲线C在复平面内,其内部区域为D。

选取常数α与相应的常数β,使得在每一条直线x=α+mδ与y=β+mδ(m=0,±1,±2,……)上都有曲线的有限多个点。

复变函数-柯西积分定理

复变函数-柯西积分定理

显然, F(z)
z
f ( )d
是 f (z)的一个原函数。
z0
利用原函数的概念, 可以得出复积分的牛顿— 莱布 尼兹公式 :
定理 设 f (z) 在单连通区域D 内解析, F (z) 是 f (z) 的 一个原函数, 则对 a, b D, 有
b a
f
( z )dz
F(z)
b a
F(b)
F (a)
注:
(1) 本公式只用于计算与积分路径无关的积分;
(2) 在求原函数时, 实函数的换元积分法和分步 积分法仍成立。
例 计算积分 24i z 2dz 1 i
解:
z2
在 整 个 复 平 面 上 解 析, 且
1
z3
z2
3
24i z2dz 1 z3 24i 1 (86 18i)
1 i
3 1i
§3.2 柯西积分定理
问题 : f (z) 在什么条件下, C f (z)dz 仅与积分路径的起点
和终点有关, 而与积分路径无关呢?
定理(柯西积分定理) 若 f (z) 在单连通域 D 内处处解析, 那么 函数 f (z) 沿 D 内任意一条闭曲线C 的积分为零, 即
C f (z)dz 0
推论 如果 f (z) 在单连通域 D 内处处解析, 则 C f (z)dz
f (z0 ) 2i
dz or C z z0
1 f ( )
f (z)
d
2 i C z
称之为柯西积分公式。
说明: (1) 通过柯西积分公式, 可以把函数在C 内部任 一点z 的值用它在边界C 上的值通过积分来表示;
(2) 给出了解析函数的一个积分表达式:
C

复变函数-柯西定理

复变函数-柯西定理

数学物理方法(I)高飞2014-2015年秋季大连理工大学物理与光电工程学院sxwlff_gf@Password:sxwlff2014§1.4 解析函数解析函数的定义解析函数与函数可导、C-R条件之间的关系;以及解析函数的充分必要条件调和函数-满足二维拉普拉斯方程已知解析函数的实部(或虚部)求解析函数;§1.5 几种简单的解析函数幂函数 指数函数 三角函数()nf z z=()zf z e= 双曲函数§1.6 多值函数第二章复变函数的积分§2.1 复变函数的积分§2.2 柯西定理§2.3 柯西公式§2.4 泊松积分公式一般:曲线C 的正方向总是指从起点到终点的方向。

那么终点到起点的方向就是曲线C 的负向,写为C -曲线方向的说明闭曲线:正方向和边界线的正方向一致——左侧A(起点)B(终点)CC1.定义设l 为复平面上的一条分段光滑的曲线c (A →B ),复变函数f(z)在该曲线上有定义。

()111()()nnkkk k kk k f zz f z ττ-==-=∆∑∑a)任意分割n 段b) 求和曲线积分012111,,,...,,,...,k k k n nz z z z z z z z -+-τkAB1lim ()()nk k cn k S f z f z dzτ→∞==∆≡∑⎰由于[][]()(,)(,)(,)(,)cccS f z dz u x y dx v x y dy i v x y dx u x y dy ==-++⎰⎰⎰c) 取极限,0n z →∞∆→,()(,)(,)dz dx idy f z u x y iv x y =+=+极限值S 为函数f(z)沿曲线c 的积分1lim ()nk kn k S f z τ→∞==∆∑则τkAB被积函数积分路径()CS f z dz=⎰复变积分存在的条件: c 是分段光滑曲线 若曲线C 是闭曲线,记为 如果存在,一般不能写成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


C
f ( z )dz f ( z )dz f ( z )dz
C1 C2
3z 1 3z 1 dz dz C( C 1 2 ( z 1)( z 3) z 1)(z 3)
3z 1 3z 1 z 3 dz z 1 dz C2 z 3 z 1
C1 : | z | r1 C2 : | z 1 | r2
由复合闭路定理 , 得到:

C
1 1 1 dz 2 dz 2 dz 2 C C 1 z 2 z z z z z
C
1 1 1 1 由于 2 z z ( z 1) z z 1 z
于是, 得到

C
f ( z )dz 0
C
推论 如果 f ( z ) 在单连通域 D 内处处解析, 则 f ( z )dz 与路线 C 无关,仅由路线 C 的起点及终点来确定。
说明: (1) 曲线C D ;
(2) 若 C D, f ( z) 在 D 及 C 解析, 则

C
f ( z )dz 0
§3.2 柯西积分定理
问 题: f ( z ) 在 什 么 条 件 下 , f ( z )dz 仅 与 积 分 路 径 的 起 点
C
和终点有关 , 而与积分路径无关呢 ?
定理(柯西积分定理) 若 f ( z ) 在单连通域 D 内处处解析, 那么 函数 f ( z ) 沿 D 内任意一条闭曲线C 的积分为零, 即
解 :由柯西积分公式知 , 当 z 在 C 内时,
f ( z ) 2i ( 3 2 7 1) z 2i ( 3 z 2 7 z 1)
f ( z ) 2i (6z 7)
而 z 1 i 在 C 内 所以 f (1 i ) 2 (6 13i )
C1
C2
1 1 1 1 1 dz C1 dz C1 dz C 2 dz C 2 dz C 2 z 1 z z 1 z z z
0 2i 2i 0 0
§3.4 柯西积分公式
一、 柯西积分公式
定理 若 f ( z ) 在区域 D 内处处解析, 在 C D 连续, C 为正向简单闭曲线 , 对z0 D , 则有 1 f (z) 1 f ( z0 ) dz or f ( z ) 2i C z z0 2 i
(1) 本公式只用于计算与积 分路径无关的积分 ;
( 2) 在 求 原 函 数 时 , 实 函 数 的 换 元 积 分 法分 和步 积分法仍成立。
例 计算积分

2 4 i
1 i
z 2dz
1 解 : z2 在 整 个 复 平 面 上 解 析 , 且 z3 z2 3


C
z sin zdz z sin zdz z cos z 0 cos zdz
i 0 0
i
i
i (cosi i sini ) ie 1
§3.3 复合闭路定理
复合闭路定理 : 多连通域 D 由简单闭曲线 C 的内部以及 C1 , C2 ,..., Cn 的外部围成,C1 , C2 ,..., Cn 全包含在 C 的内部, 并且它们互不包含互不相交.f ( z ) 在D 内解析,在其边界 连续,则
说明: (1) C 可以是含于 D 内任何包含 z0 的简单正向 闭曲线 ;
(2) 上述公式不在于通过积分来求导数, 而在于通过 通过求导数来求积分, 即
f (z) 2i ( n ) C ( z z0 )n1 dz n! f ( z0 )
例 求下列积分值 :
sinz (1) dz, C 为 任 一 包 含 i 的简单正向闭曲线 C ( z i )3
二、 高阶求导公式
定理 设 f ( z ) 在 D 内解析, 在 C D 连续, C 为简单 正向闭曲线, 则 f ( z ) 的各阶导函数在 D 内仍解析, 且
f
( n)
n! f (z) ( z0 ) dz, z0 D, n 1,2,... n 1 C 2i ( z z0 )
( 2)
由于 f ( z ) 在 | z | 1 所包围的区域解析 , 所以积分为 0。
二. 变上限积分与原函数
F ( z ) f ( )d
z0 z
( z0 , z D, z0 固定)
称为变上限积分。
定理 若 f ( z ) 在单连通区域 D 内解析
则函数F ( z ) fz ) 解 : cosz 解析 C ( z 1)5 4!

5i
12
ez (3) 2 dz, C :| z | r 1 C ( z 1) 2 ez 解 : z i 为 2 的奇点 2 ( z 1)
i
i
2 4 i
1 i
1 1 z 2dz z 3 (86 18i ) 3 1 i 3
2 4 i
例 计算积分

C
z sin zdz, 其中 C 是由原点
i 1 沿 | z | 右半圆周到点 i 的曲线。 2 2
解 :由于 z sinz 在复平面内处处解析 , 因而积分与 路径无关。 于是用分部积分法 , 可得
所以 , 由柯西积分公式得到 :
上式 2i 2 2i 6i
1
3 4
3z 1 解 法 二: f ( z ) 在 C 内有两个奇点 z 1,3 ( z 1)(z 3)
以 z 1, z 3 作两个互不相交的圆 C1、C2 {| z | 4}
由复合闭路定理 , 得到

C
f ( z )dz

C1
f ( z )dz
C2

C2
f ( z )dz
C1
C


Cn
f ( z )dz
例 设 C 是复平面包含 z0 的任一简单闭曲线 , 证明
1, n 0 1 1 dz n 1 2i C ( z z0 ) 0, n 0
证 : 在 C 内部作一个以 z0 为圆心 , r 为半径的正向圆周 Cr
围 成, 则
例 计算下列积分 ( 沿圆周正向 ) 值:
(1) 1 cos z 3z 1 dz ( 2 ) dz | z| 4 ( z 1)(z 3) 2i |z|4 z
解 : (1) f ( z ) cos z 在 | z | 4 内解析
1 cos z 1 cos z dz dz | z | 4 | z | 4 2i z 2i z0
以 z i 和 i 分别为圆心作两个互不 相交互不包含的圆周 C1、C2
ez 则 2 在 C C1 C 2 所围区域解析 2 ( z 1)
特别地 , 若定理中区域 D 为 圆 周C : z z0 re i
1 f (z) 1 2 f ( z0 re i ) i f ( z0 ) dz re id i C 0 2i z z0 2i re 1 2 i f ( z re )d 0 0 2 ------ 一个解析函数在圆心处的值等于 它在圆周上的平均值.
cos z z 0 1
( 2)
3z 1 1 2 ( z 1)(z 3) z 1 z 3
3z 1 1 2 |z|4 ( z 1)(z 3) dz |z|4 z 1 dz |z|4 z 3 dz
由于 z 1, z 3 包含在| z | 4 内
1 1 1 1 1 C dz C dz C dz z 2 zi 2 zi
2i 0 0 2i
| z |
1 2
| z i |
1 2
1 1 1 1 1 ( 2) I dz dz dz C z 2 C zi 2 C zi
2 0 0 i i 2
f ( ) C z d
称之为柯西积分公式。
说明: (1) 通过柯西积分公式 , 可以把函数在 C 内部任 一点 z 的值用它在边界 C 上的值通过积分来表示 ;
(2) 给出了解析函数的一个 积分表达式 : f (z) C z z0 dz 2if ( z0 )
(3) 积分曲线 C 可以是解析区域 D 内部的包含 z0 的任意正向简单闭曲线
1 dz, C 为 包 含 圆 盘 | z | 1 在 其 内 部 2 C z z 的 任 何 正 向 简 单 闭 曲。 线 例 计算
1 在复平面内除 z 0、z 1 两 个 奇 点 外 2 z z 处处解析。 解 : f (z)
C1 C2
C
以 z 0, z 1 为圆心作两个互不相交 的圆周 :
由于
2i , n 0 1 Cr ( z z0 )n1 dz 0, n 0
由复合闭路定理 ,得
1 1 1 1 1, n 0 dz dz C C r n 1 n 1 2i ( z z 0 ) 2i ( z z 0 ) 0, n 0

C1
C1
1
C2
3 4
3z 1 3z 1 2i 2i z 3 z 1 z 1 z 3
2i 4i 6i
3 2 7 1 例 设 f (z) d , C 为 正 向 圆 周 x2 y2 3 C z 求 f (1 i )
(3) 若 C D, f ( z) 在 D 内解析, 在 C上 连续, 则

C
f ( z )dz 0
注意: 应用柯西定理时 , 一定要注意定理的条件 :
f ( z ) 解析, D 单连通
当 f ( z ) 有奇点时, 不能直接应用该定理。
例 计算
相关文档
最新文档