《圆》圆的有关性质PPT下载
合集下载
初中圆 ppt课件

作圆的切线
切线的定义
切线是与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的判定
要判定一条直线是否为圆的切线, 可以通过切线的定义进行判定,即 看直线与圆是否只有一个公共点。
切线的作法
在已知圆上任取一点,过这一点作 圆的切线,这样的切线有且只有一 条。
作圆的直径和半径
01
02
03
直径的定义
通过圆心并且两端都在圆 上的线段叫做圆的直径。
详细描述:在几何证明题中,有时需要通过添加辅助线 来构造与圆相关的图形,从而利用圆的性质来证明题目 中的结论。
详细描述:解决与圆相关的几何证明题需要掌握一些解 题技巧,如利用圆的性质进行等量代换、利用切线性质 进行转化等,这些技巧能够简化问题并提高解题效率。
圆与其他几何图形的关系
总结词:相交和相切 总结词:组合图形
详细描述
圆内接四边形定理指出,圆内接 四边形的对角线互相平分。这个 定理是解决与圆内接四边形相关 问题的重要依据。
切线长定理
总结词
切线长定理是关于圆的切线与经过切点的半径之间关系的定 理。
详细描述
切线长定理指出,从圆外一点引出的两条切线,它们的切线 长相等。这个定理在证明其他与圆有关的定理时经常用到, 如垂径定理。
详细描述:圆与其他几何图形如三角形、矩形等 经常出现相交或相切的情况,这些关系涉及到一 些重要的几何定理和性质,如切线长定理、相交 弦定理等。
详细描述:在解决几何问题时,有时需要将圆与 其他几何图形组合起来形成复杂的组合图形,这 些组合图形具有一些特殊的性质和定理,能够为 解题提供重要的思路和方法。
详细描述:圆形具有优美的对称性和流畅的线条,常用 于装饰和艺术设计中,如建筑设计、绘画和雕塑等。
圆的复习课件(共30张PPT).. 共32页

新课标教学网(xkbw)--海量教学 资源欢迎下载!
3.垂径定理与推论的延伸:
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点5:圆心角与圆周角
________
∠ _________________. ACB=90°
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点6:圆内接四边形及其性质
C.115.5°
D.112.5°
【解】D
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第二节 与圆有关的位置关系
知识点1:三角形的外心和内心
1.三角形的外心:三角形外接圆的圆心,是三角形三边垂直平分线 的交点,到 三角形三个顶点 的距离相等. 2.三角形的内心:三角形内切圆的圆心,是三角形 三条角平分线 的交点,到
___∠___D___
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点7:弦、弧、圆心角的关系
1.定理: 同圆 或 等圆 中,相等的圆心角所对的弧 相等 ,所对的弦 相等 .
2.推论:在同圆或等圆中,如果两个圆心角、两条弦和两条弧(同是优弧或劣弧)中有一 组量相等,那么它们对应的其余各组量也分别 相等 .
新课标教学网(xkbw)--海量教学 资源的有关性质 • 第二节 与圆有关的位置关系 • 第三节 正多边形与圆 圆有关的计算
尺规作图
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第六章 圆
第一节 圆的有关性质
知识点1:圆的概念: 圆是平面内到定点的距离等于 定长 的点的集合.
3.切线的判定定理:
经过半径的外端并且 垂直 这条半径的直线是圆的切线.
4.证明直线和圆相切的方法:
(1)当已知直线与圆有公共点时,连半径,证 垂直 .
3.垂径定理与推论的延伸:
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点5:圆心角与圆周角
________
∠ _________________. ACB=90°
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点6:圆内接四边形及其性质
C.115.5°
D.112.5°
【解】D
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第二节 与圆有关的位置关系
知识点1:三角形的外心和内心
1.三角形的外心:三角形外接圆的圆心,是三角形三边垂直平分线 的交点,到 三角形三个顶点 的距离相等. 2.三角形的内心:三角形内切圆的圆心,是三角形 三条角平分线 的交点,到
___∠___D___
新课标教学网(xkbw)--海量教学 资源欢迎下载!
知识点7:弦、弧、圆心角的关系
1.定理: 同圆 或 等圆 中,相等的圆心角所对的弧 相等 ,所对的弦 相等 .
2.推论:在同圆或等圆中,如果两个圆心角、两条弦和两条弧(同是优弧或劣弧)中有一 组量相等,那么它们对应的其余各组量也分别 相等 .
新课标教学网(xkbw)--海量教学 资源的有关性质 • 第二节 与圆有关的位置关系 • 第三节 正多边形与圆 圆有关的计算
尺规作图
新课标教学网(xkbw)--海量教学 资源欢迎下载!
第六章 圆
第一节 圆的有关性质
知识点1:圆的概念: 圆是平面内到定点的距离等于 定长 的点的集合.
3.切线的判定定理:
经过半径的外端并且 垂直 这条半径的直线是圆的切线.
4.证明直线和圆相切的方法:
(1)当已知直线与圆有公共点时,连半径,证 垂直 .
冀教版九年级数学 28.1 圆的概念及性质(学习、上课课件)

感悟新知
又∵点 E 为 AB 的中点,∴ OE= 12AB.
知1-练
同理可得
OF=
1 2
BC,
OG=
1 2
CD,
OH=
1 2
DA.
∴ OE= OF= OG= OH.
∴ 点 E, F, G, H 在以点 O 为圆心, OE 的长
为半径的圆上 .
感悟新知
知1-练
2-1.如图, BD, CE是 △ ABC 的高, M是 BC 的 中 点, 试说明 点 B, C, D, E 在以点 M 为圆心的 同一个圆上 .
感悟新知
知1-练
解:连接 ME,MD.∵BD,CE 是△ ABC 的高, ∴∠BEC=∠BDC=90°. 又∵M 是 BC 的中点, ∴ME=12BC,MD=12BC. ∴ME=MB=MD=MC.∴点 B,C,D,E 在以点 M 为圆心的同一个圆上.
感悟新知
知识点 2 圆的性质
知2-讲
名称
内容
圆的中心 对称性
知2-讲
特别提醒 1. 不能说“圆的对称轴是直径”,而应该说
“圆的对称轴是直径所在的直线”.因为直径 是线段,而对称轴是直线. 2. 一个圆绕圆心旋转任意角度后都能与自身重 合,所以圆具有旋转不变性 .
感悟新知
知2-练
例3 如图 28-1-2,⊙ O 的半径为 1,分别以⊙ O 的直径
AB上的两个四等分点 O1, O2 为圆心,
④以点 P 为圆心,3 cm 长为半径的圆有无数个 .
A. 1 个
B. 2 个
C. 3 个 D. 4 个
感悟新知
解题秘方:紧扣圆的定义的“两要素”进行判断 . 知1-练
解:确定一个圆必须有两个条件,即圆心和半径, 只知一个条件或不知任何一个条件的圆都有无数 个,由此可知①②③正确;圆心和半径都确定, 这样的圆有且只有一个(唯一),由此可知④错误 .
圆的基本概念和性质PPT课件

第14页/共19页
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。
圆的概念与基本性质PPT

在Rt AOE中
2 2
O
·
AO OE AE
2
AO OE 2 AE 2 = 32 +42 =5cm
答:⊙O的半径为5cm.
如图:在直径是20cm的 O 中, 两条半径的 夹角是 60 ,那么弦AB= ,点O到弦AB 的距离OD= 。
O D A B
1.(2010,真14,3分)如图是一条水铺设的直径为 2米的通水管道横截面,其水面宽1.6米,则这条管 道中此时最深为 0.4 米
二、圆的基本性质
1、圆的对称性
圆既是轴对称图形,又是中心对称图形,圆 的对称轴是直径所在的直线,它的对称中心是 圆心.
2、弧弦之间的关系性质
在同圆或等圆中,等弧对等弦,等弦对等弧。
小练习
垂径定理三种语言
• 定理 垂直于弦的直径平分这条弦,并且平分这条弦所 对的两条弧. 。垂径定理是 如图∵ CD是直径, C 圆中一个重 要的结论,三 CD⊥AB, A B M└ 种语言要相 ∴AM=BM, O 互转化,形成 ⌒ ⌒ 整体,才能运 AC =BC, 用自如.
●
D
⌒ ⌒ AD=BD.
想一想
垂径定理三角形
已知:如图,直径CD⊥AB,垂足为E . ⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长. ⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长. ⑶由⑴C、⑵两题的启发,你还能编出什么其他问题?
O E A D B
• 1、熟练地运用垂径定理、勾股定理,并用方程的 思想来解决问题. 2、对于一个圆中的弦长a、圆心到弦的距离d、圆 半径r、弓形高h,这四个量中,只要已知其中任意 两个量,就可以求出另外两个量,如图有:
⑴d + h = r 2 2 a 2 ⑵ r d ( ) 2
圆的有关概念及性质复习课件

可推出
①∠AOB=∠A′O′B′
⌒⌒
②AB=A′B′ ④ OD=O′D′
4、圆周角定理及推论
D
C
C
B
E
●O A
●O
BA
●O
B
A
C
定理:一条弧所对的圆周角等于这弧所对的
圆心角的一半.
推论: 在同圆或等圆中,同弧或等弧所对的圆 周角相等.
90°的圆周角所对的弦是 直径 .
直径所对的圆周角是 直角 .
三、【基本能力练习】
B. O.
.
C
B
.
O C
三角形的外心就是三角形各边垂直平分线的交点. 三角形的内心就是三角形各角平分线的交点.
二. 圆的基本性质
圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
1、垂径定理
垂径定理 : 垂直于弦的直径平分弦,并且
平分这条弦所对的两条弧. C
A
B
M└
若 ① CD是直径
●O
② CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
重视:模型“垂径定理直角三角形”
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
∠BOD=100°, 则∠DAB的度数为( ) A.50°B.80° C.100°D.130°
五、【强化训练 】
5.如图,四边形ABCD为⊙O的内接四边形,点E在 CD的延长线上,
如果∠BOD=120°,那么∠BCE等于( )
圆的有关概念及性质PPT课件
推论3:如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形.
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )
24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
最新人教版九年级上册数学第二十四章《圆》优秀课件(含复习共12课时)
集合定义
圆 弦(直径) 有关 概念 弧 劣弧 半圆 优弧 等弧 能够互相重合的两段弧
同 圆 半径 相等
直径是圆中 最 长 的 弦 半圆是特殊的弧
同圆
等圆
课后作业
见本课时练习
谢谢!
[义务教育教科书]( R J ) 九 上 数 学 课 件
第二十四章 圆
24.1 圆的有关性质
24.1.2 垂直于弦的直径
证明:∵四边形ABCD是矩形, ∴AO=OC,OB=OD.
又∵AC=BD, ∴OA=OB=OC=OD.
A
D
O
B C
∴A、B、C、D在以O为圆心以OA为半径的圆上.
二 圆的有关概念
弦:
连接圆上任意两点的线段(如图中的AC)叫
A
·
B
O
C
做弦. 经过圆心的弦(如图中的AB)叫做直径.
注意 1.弦和直径都是线段.
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.进一步认识圆,了解圆是轴对称图形.
2.理解垂直于弦的直径的性质和推论,并能应用它解决一
些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点)
导入新课
你能通过折叠的方式找到圆形纸片的对称轴吗?
在折的过程中你有何发现? 圆是轴对称图形,任何一条直径所在直线都是 它的对称轴.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦 不一定是直径.
弧:
圆上任意两点间的部分叫做圆弧,简弧. 以A、B为端点的弧记作 AB ,读作“圆弧 AB”或“弧AB”. 半圆 圆的任意一条直径的两个端点把圆分成 两条弧,每一条弧都叫做半圆. A ( O · B
C
《圆的认识》公开课课件
归纳法
通过大量实例和观察,归纳出一般 性的结论。在圆的证明中,有时可 以通过归纳法来证明一些性质。
圆的定理和推论
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的弧。这个定理是圆 的基本性质之一,在圆的证明和
作图中非常有用。
切线长定理
经过圆外一点的切线与切点之间 的线段长等于过切点的直径与该 点的距离。这个定理在解决与切
圆与三角形的相切
当一个三角形与圆相切时,切线 与半径垂直。利用这个性质,我 们可以解决一些几何问题。
圆与其他图形的结合
圆与直线的位置关系
根据圆心到直线的距离,我们可以判 断圆与直线是相交、相切还是相离。 这些位置关系在解决几何问题中非常 有用。
圆与多边形的结合
在一个多边形中,如果所有顶点都在 同一个圆上,则这个多边形称为圆内 接多边形。通过圆内接多边形的性质 ,我们可以研究圆的性质。
圆的面积是指圆所占平面的大小,通常用字母A表示。
圆的面积的计算公式
A = πr^2,其中r表示圆的半径。
圆的面积的应用
通过圆的面积公式,我们可以计算出圆的面积,进而求出圆内接多 边形的面积等。
圆的相关计算
圆的相关计算包括:求圆心角、圆弧长、圆内接多边形的面 积等。这些计算都需要用到圆的半径和直径,以及相关的数 学公式和定理。
圆与圆的关系
内含、相交、外离、同心
内含:一个圆完全位于另 一个圆的内部。
外离:两个圆没有公共的 交点。
相交:两个圆有公共的交
同心:两个圆有共同的圆
•·
点。
心。
圆在生活中的应用
轮胎、餐具、建筑、天文
轮胎:车辆的轮胎设计为 圆形,可以保证平稳滚动 。
建筑:圆形窗户和门框在 建筑中常用于装饰和结构 。
通过大量实例和观察,归纳出一般 性的结论。在圆的证明中,有时可 以通过归纳法来证明一些性质。
圆的定理和推论
垂径定理
垂直于弦的直径平分该弦,并且 平分弦所对的弧。这个定理是圆 的基本性质之一,在圆的证明和
作图中非常有用。
切线长定理
经过圆外一点的切线与切点之间 的线段长等于过切点的直径与该 点的距离。这个定理在解决与切
圆与三角形的相切
当一个三角形与圆相切时,切线 与半径垂直。利用这个性质,我 们可以解决一些几何问题。
圆与其他图形的结合
圆与直线的位置关系
根据圆心到直线的距离,我们可以判 断圆与直线是相交、相切还是相离。 这些位置关系在解决几何问题中非常 有用。
圆与多边形的结合
在一个多边形中,如果所有顶点都在 同一个圆上,则这个多边形称为圆内 接多边形。通过圆内接多边形的性质 ,我们可以研究圆的性质。
圆的面积是指圆所占平面的大小,通常用字母A表示。
圆的面积的计算公式
A = πr^2,其中r表示圆的半径。
圆的面积的应用
通过圆的面积公式,我们可以计算出圆的面积,进而求出圆内接多 边形的面积等。
圆的相关计算
圆的相关计算包括:求圆心角、圆弧长、圆内接多边形的面 积等。这些计算都需要用到圆的半径和直径,以及相关的数 学公式和定理。
圆与圆的关系
内含、相交、外离、同心
内含:一个圆完全位于另 一个圆的内部。
外离:两个圆没有公共的 交点。
相交:两个圆有公共的交
同心:两个圆有共同的圆
•·
点。
心。
圆在生活中的应用
轮胎、餐具、建筑、天文
轮胎:车辆的轮胎设计为 圆形,可以保证平稳滚动 。
建筑:圆形窗户和门框在 建筑中常用于装饰和结构 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆
集合性定义: 圆心为O、半径为r的圆可以看成是所有到定点O
的
的距离等定长r的点的.
基
弦:连接圆上任意两点的线段叫做弦.
本
直径:直径是经过圆心的弦,是圆中最长的弦. 圆弧(弧): 圆上任意两点间的部分叫做圆弧,简称弧.
概 念
与圆有关
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每条弧 都叫做半圆.
四个点在以点O为圆心的圆上。
证明: ∵四边形ABCD为矩形, ∴OA=OC12= AC,OB=OD12 = BD.AC=BD ∴OA=OC=OB=OD ∴ABCD四个点在以点O为圆心,OA 为半径的圆上.
随堂演练
基础巩固
• 1.下列说法正确的是D( )
• A.直径是弦,弦是直径 • B.半圆是弧,弧是半圆 • C.弦是圆上两点之间的部分 • D.半径不是弦,直径是最长的弦
圆的任意一条直径的两个端点把圆分成两条弧,每一条 弧都叫做半圆.
B
O
A
C
劣弧与优弧
小于半圆的弧(如图中的 AC )叫做劣弧. 大于半圆的弧(用三个字母表示,如图中的ABC )叫做优弧.
B
O
A
C
在同圆或等圆中,
能重合的弧叫等弧.
典例解析
• 例1 矩形ABCD的对角线AC,BD相交于点O。求证:A、B、C、D
24.1.1 圆
推进新课
知识点1 圆的定义
圆的概念
如图,在一个平面内,线段 OA 绕它固定的一
个端点 O 旋转一周,另一个端点 A 所形成的图形叫
做圆.
A
固定的端点 O 叫做圆心;
r
线段 OA 叫做半径;
以点 O 为圆心的圆,记作⊙O,
·
O
读作“圆O”.
O
同心圆 圆心相同,半径不同 确定一个圆的两个要素: 一是圆心, 二是半径.
• 2.下列说法中,不正确的是D( )
• A.过圆心的弦是圆的直径 • B.等弧的长度一定相等 • C.周长相等的两个圆是等圆 • D.长度相等的两条弧是等弧
• 3.一个圆的最大弦长是10cm,则此圆的半径5是
cm.
• 4.在同一平面内与已知点A的距离等于5cm的所有点所组成的圆图形
是.
60°
• 5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线
战国时的《墨经》就 有“圆,一中同长也”的 记载.它的意思是圆上各 点到圆心的距离都等于 半径.
知识点2 与圆有关的概念
弦பைடு நூலகம்
半径是弦吗?
连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
弧
圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为
端点的弧记作 AB ,读作“圆弧 AB”或“弧 AB”.
• CD是不同于AB的任意一条弦. • 连接OC、OD,
• 则OA+OB=OC+OD=2r,即AB=OC+OD.
• 在△OCD中,OC+OD>CD,∴AB>CD. • 即直径是圆中最长的弦.
课堂小结
形成性定义: 在一个平面内,线段OA绕它固定的一个端点O旋
圆的定义
转一周,另一个端点A所形成的图形叫做圆.
等圆 半径相同,圆心不同
A O· r
问题1:圆上各点到定点(圆心 O)的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点?
形成性定义(动态):在一个平面内,线段 OA 绕它 固定的一个端点 O 旋转一周,另一个端点 A 所形成的 图形叫做圆.
集合性定义(静态):圆心为 O、半径 为 r 的圆可以看成是所有到定点 O 的距 离等于定长 r 的点的集合.
的概念 等圆、等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,
优弧、劣弧: 能够互相重合的弧叫做等弧. 大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
综合应用
• 7.已知:如图,在△ABC中,∠C=90°,求证:A、B、C三点在同一个圆 上.
• 证明:作AB的中点O,连接OC.
• ∵△ABC是直角三12角形.
• ∴OA=OB=OC= AB.
• ∴A、B、C三点在同一个圆上.
拓展延伸
• 8.求证:直径是圆中最长的弦.
• 证明:如图,在⊙O中,AB是⊙O的直径,半径是r.
相交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是 .
• 6.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且 AC=BD.
• 求证:OC=OD. • 证明:∵OA、OB为⊙O的半径, • ∴OA=OB. • ∴∠A=∠B. • 又∵AC=BD, • ∴△ACO≌△BDO. • ∴OC=OD.