最新中考数学押题预测密卷 有答案 最新题必考题必考题型
2024年山东省中考数学模拟押题预测卷及答案

2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。
第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。
考试时间为120分钟。
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。
所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。
第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。
最新中考数学押题预测密卷 有答题卡有答案 最新题必考题必考题型

最新中考数学押题预测密卷 有答案 最新题必考题必考题型第Ⅰ卷 (选择题,共30分)一、选择题(共10小题,每小题3分,共30分) 1. 下列数中,绝对值最大的是( )A .2B .0.C .-2.D .-1. 2. 函数y =2-x 中,自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .全体实数 3. 下列计算正确的是( )A .(﹣4)+6=-2 B.9 =±3 C .-6-9=﹣15 D .8 + 3 =8+3 4. 某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周阅读课外书的时间进行了统计,统计结果如下:由上表知,这50名学生一周阅读课外书时间的极差和中位数分别为( )A .4,13B .15,19C .15,3D .4,2 5. 下列运算正确的是( ) A .x 2+x 3=x 5 B .2x 2-x 2=1 C .x 2•x 3=x 6 D .x 6÷x 3=x 36. 如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,点A 的坐标为(1,0),则E 点的坐标为( ) A .)0,2(- B .)23,23(--C .)2,2(--D .)2,2(-- 7. 由若干个大小相同的小正方体组成的几何体的三视图如图所示, 则这个几何体只能是( )A B C D8. 为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。
已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:x根据图表提供的信息,样本中,请身高在160≤x <170之间的女学生人数为( ) A .8 B .6 C .14 D .16.9. 如图是经典手机游戏“俄罗斯方块”中的图案, 图1 中有8个矩形, 图2中有11个矩形, 图3中有15个矩形, 根据此规律, 图5中共有( )个矩形A. 19B. 25C. 26D. 3110. 在平面直角坐标系xoy 中,以原点O 为圆心的圆过点A (0,53),直线y=kx -3k +4与⊙O 交于点B 、C 两点,则弦BC 长的最小值为 A .5B .52C .53D .54第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11. 因式分解:2a 2-4ab +2b 2=12. 近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为13. 小明是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小明报到奇数的概率是14. 因长期干旱,甲水库水量降到了正常水位的最低值a ,为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h 后,乙水库停止供水,甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲书库蓄水量Q (万m 3)与时间t (h )之间的函数关系,则乙水库停止供水后,经过 小时后甲书库蓄水量又降到了正常水位的最低值. 15. 如图,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B ,C 的横坐标都是3,且BC=2,点D 在AC 上,且横坐标为1,若反比例函数y =xk(x >0)的图象经过点B ,D ,则k= 16. 如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形ABCD 的一边于点R ,且满足AP=BR ,则QRBQ=.第14题图 第15题图 第16题图图1图2图3三、解答题(共9小题,共72分)17. 解方程:5113--=-x xx 18. 已知一次函数2+=kx y 的图象经过A (-3, 1), 求不等式2kx +1≥0的解集19. 如图,AB=AE ,∠1=∠2,∠C=∠D .求证:△ABC ≌△AED .20. 在直角坐标系中, △ABC 的顶点坐标是A (-1, 2), B (-3, 1), C (0, -1).将ABC △向右平移2个单位,向下平移3个单位得到△A 1B 1C 1,将 △A 1B 1C 1绕O 点旋转90度得到△A 2B 2C 2. (1)画出三角形△A 2B 2C 2. (2)直接写出C 2的坐标. (3)求B 1运动的路径长21. 某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A 组发言的学生中恰有1位女生,E 组发言的学生中有2位男生.现从A 组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.22. 如图,⊙O 的半径r=25,四边形ABCD 内接圆⊙O ,AC ⊥BD 于点H ,P 为CA 延长线上的一点,且∠PDA=∠ABD . (1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若tan ∠ADB=43,PA=3334-AH ,求BD 的长; 23. 某书店以每本20元的价格购进一批畅销书《莫言精品集》.销售过程中发现,每月销售量y(本)与销售单价x(元)(1)每月销售量y 反比例函数和二次函数)关系中的一种.试求出y 与x 之间的函数关系式,不要求写出自变量x 的取值范围. (2)销售单价在什么范围时,书店不亏损?每本进价×销售量)24. 我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.请你利用重心的概念完成如下问题:(1)如图1,若O 是△ABC 的重心(),连结AO 并延长交BC 于D ,证明:AD AO =32(2)如图2,若O 是△ABC 的重心,若AB =5,点G 从A 出发,在AB 边上以每秒一个单位的速度向B 运动,运动时间为t 秒,连GO ,直线GO 交直线AC 与H 点(G 、H 均不与△ABC 的顶点重合). ①求OHGO(用含有t 的式子表示) ③若G 、H 分别在边AB 、AC 上,S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,直接写出AGHBCHG S S △四边形的最大值.图1 图225. 如图1,点A 为抛物线21122c y x x =-的顶点,点B 的坐标为(3,0),直线AB 交抛物线C 1于另一点D 。
2024年中考数学考前押题密卷+全解全析(山西卷)

2024年中考数学考前押题密卷(山西卷)全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2024年5月3日17时27分,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度零上126C ︒,记作+126C ︒,夜间平均温度零下150C ︒,应记作( ) A .+150C ︒ B .150C −︒C .+276C ︒D .276C −︒【答案】B【分析】根据正负数表示相反意义的量,平均温度零上表示正,平均温度零下表示负即可求解. 【详解】解:平均温度零上126C ︒,记作+126C ︒,夜间平均温度零下150C ︒,应记作150C −︒, 故选:B .2.博物馆作为文明交流的载体,是一个国家、一座城市宣传文明成就的重要窗口.如今,越来越多的人们走进博物馆近距离感受中国文化.下面是我省几家著名博物馆的图标,其文字上方的图案是轴对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了轴对称图形,根据轴对称图形的定义即可求解,熟练掌握基础知识是解题的关键.【详解】解:是轴对称图形的是,故选B .3.下面是某同学在作业中的计算摘录:①01a =,②235 a a a ⋅=,③2124−=−,④()323963()27x y xy x y −⋅=−,⑤2222x x x +=,⑥()3223a b a b =⋅,⑦4222()()bc bc b c −÷−=,其中计算正确的是( ) A .①②③④ B .①③⑤⑦C .②③④⑥D .②④⑤⑦【答案】D【分析】根据零指数幂的运算法则判断①,根据同底数幂的乘法运算法则判断②,根据负整数指数幂的运算法则判断③,根据幂的乘方与积的乘方,单项式乘单项式的运算法则判断④,根据合并同类项的运算法则判断⑤,根据幂的乘方与积的乘方运算法则判断⑥,根据积的乘方,同底数幂的除法运算法则判断⑦.【详解】解:①()010a a =≠,原计算错误;②235 a a a ⋅=,原计算正确;③2211224−==,原计算错误; ④()3236333963()2727x y xy x y x y x y −⋅=−⋅=−,原计算正确; ⑤2222x x x +=,原计算正确; ⑥()3263a b a b =,原计算错误;⑦42222()()()bc bc bc b c −÷−=−=,原计算正确; 其中计算正确的是:②④⑤⑦.4.鲁班锁也叫八卦锁、孔明锁,是中国古代传统的土木建筑固定结合器,也是广泛流传于中国民间的智力玩具.如图1是拼装后的三通鲁班锁,如图2是拆解后的三通鲁班锁中的一块,则图2中木块的主视图是( )A .B .C .D .【答案】A【分析】本题考查判断简单几何体的三视图,根据主视图是从正面看到的图形,即可得答案,掌握主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形是解题关键. 【详解】观察可知,图2中木块的主视图如下:,故选:A .5.电动曲臂式高空作业车在高空作业时只需一个人就可操作机器连续完成升降、前进、后退、转向等动作,极大地减少了操作人员的数量和劳动强度.如图所示是一辆正在工作的电动曲臂式高空作业车,其中AB CD EF ∥∥,B C E D ∥.若60ABC ∠=︒,则DEF ∠的度数为( )A .100︒B .120︒C .140︒D .160︒【答案】B【分析】本题考查平行线的性质、邻补角的定义,延长AB 交DE 于点G ,由平行线的性质得到60A BGD BC ∠=︒∠=,根据邻补角的定义得180120BGE BGD ∠︒=︒−∠=,最后根据平行线的性质可得结论.解题的关键是掌握:两直线平行,同位角相等;两直线平行,内错角相等. 【详解】解:延长AB 交DE 于点G , ∵B C E D ∥,60ABC ∠=︒, ∴60A BGD BC ∠=︒∠=,∴60102180018BGE BGD ∠︒=︒==︒−∠︒−, ∵AB EF ∥,∴120DEF BGE ︒∠=∠=. 故选:B .6.太原地铁“一号线”正在进行修建,预计2024年年底通车试运营,标志色为梦想蓝.现有大量的残土需要运输,某车队有载重量为8吨的卡车5辆,载重量为10吨的卡车7辆.该车队需要一次运输残土不低于166吨,为了完成任务,该车队准备新购进这两种卡车共6辆.若购进载重量为8吨的卡车a 辆,则a 需要满足的不等式为( )A .8(5)10(76)166a a +++−≥B .8(5)10(76)166a a +++−≤C .810(6)166a a +−≥D .810(6)166a a +−≤【答案】A【分析】本题考查了列一元一次不等式,根据购进载重量为8吨的卡车a 辆,因为共6辆,所以载重量为10吨的卡车为()6a −辆,再结合“载重量为8吨的卡车5辆,载重量为10吨的卡车7辆,该车队需要一次运输残土不低于166吨”,进行列式,即可作答. 【详解】解:该车队需要一次运输残土不低于166吨 ∵该车队准备新购进这两种卡车共6辆. ∴载重量为10吨的卡车为()6a −辆,∵该车队需要一次运输残土不低于166吨,且载重量为8吨的卡车5辆,载重量为10吨的卡车7辆 ∴则a 需要满足的不等式为8(5)10(76)166a a +++−≥ 故选:A7.如图,甲所示的是一款酒精浓度监测仪的简化电路图,其电源电压保持不变,0R 为定值电阻,R 为酒精气体浓度传感器(气敏电阻),R 的阻值与酒精浓度的关系如图乙所示,当接通电源时,下列说法正确的是( )A .当酒精浓度增大时,R 的阻值增大B .当酒精浓度增大时,电压表的示数与电流表的示数的比值不变C .当酒精浓度增大时,电流表的示数变小D .当酒精浓度增大时,电压表的示数变小 【答案】B【分析】由图甲知定值电阻于传感电阻串联,电压表测量的是定值电阻的电压,根据图乙知,当酒精浓度增大时,传感R 的阻值减小,由欧姆定律可得电流中的变化,定值电阻两端电压的变化,再由串联电路的特点可得传感电阻两端电压的变化.本题主要考查了物理知识与反比例函数的综合应用,根据反比例函数的图象弄清传感器电阻于酒精浓度的关系是解决问题的关键.【详解】解:.A 由图乙知R 的阻值与酒精浓度是反比例函数,且图像在第一象限,R ∴的阻值随酒精浓度增大而减小,∴当酒精浓度增大时,R 的阻值减小,故本选项不符合题意;B.由图甲可知,定值电阻R 与气敏电阻串联,电压表测量定值电阻R 两端电压, ∴电压表的示数与电流表的示数的比值是定值电阻R 的值,故本选项符合题意;C.当酒精浓度增大时,R 的阻值减小,根据欧姆定律知,电路电流增大,电流表示数增大,故本选项不符合题意;D.当酒精浓度增大时,电路电流增大,电流表示数增大,据欧姆定律知,定值电阻R 两端电压增大,故本选项不符合题意. 故选:B .8.如图1,一长方体容器,放置在水平桌面上,里面盛有水,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘.图2是此时的示意图,若6cm BC =,16cm AB =,水面BF 离桌面的高度为9.6cm ,则此时点C 离桌面的高度为( )A .10cmB .13.2cmC .14.4cmD .16cm【答案】C【分析】本题考查了矩形的性质,勾股定理,相似三角形的判定和性质,过点C 作桌面的垂线CM ,垂足为点M ,交BF 于点N ;过点B 作桌面的垂线BP ,垂足为点P ;根据题意易得9.6cm BP MN ==,通过证明CNB APB ∽,求出 3.6BN =,再根据勾股定理求出 4.8CN ==,最后根据CM CN MN =+,即可求解.【详解】解:过点C 作桌面的垂线CM ,垂足为点M ,交BF 于点N ;过点B 作桌面的垂线BP ,垂足为点P ,∵水面BF 离桌面的高度为9.6cm , ∴9.6cm BP MN ==, ∵,BF AP CM AP ⊥∥, ∴CN BF ⊥,∵90CBN ABF ABP ABF ∠+∠=∠+∠=︒, ∴CBN ABP ∠=∠, 又∵CNB APB ∠=∠, ∴CNB APB ∽, ∴BN BC BP AB =,即69.616BN =, 解得: 3.6BN =,根据勾股定理可得: 4.8CN =, ∴ 4.89.614.4cm CM CN MN =+=+=, 即此时点C 离桌面的高度为14.4cm . 故选:C .9.某项目化学习小组的同学在水中掺入酒精,充分混合后,放入冰箱冷冻室.根据实验数据作出混合液温度y (℃)随时间t (min )变化而变化的图象.下列说法不正确的是( )A .在这个变化过程中,自变量是时间,因变量是混合液的温度.B .混合液的温度随着时间的增大而下降.C .当时间为19min 时,混合液的温度为7−℃D .当1018t <<时,混合液的温度保持不变 【答案】B【分析】观察函数图象,通过函数图象中的信息对每一项判断即可解答.【详解】解:根据图象可知:在这个变化过程中,自变量是时间,因变量是混合液的温度, ∴A 项的说法正确, 故A 项不符合题意;根据图象可知:混合液的温度0~10小时之间随着时间的增大而下降,在10~18小时之间随着时间的增大混合液的温度保持不变,在18~20小时之间随着时间的增大混合液的温度减小, ∴B 项的说法不正确, 故B 项符合题意;根据图象可知:当时间为19min 时,混合液的温度为7−℃, ∴C 项的说法正确, ∴C 项不符合题意;根据图象可知:当1018t <<时,混合液的温度保持不变, ∴D 项的说法正确, 故D 项不符合题意; 故选B .10.现在很多家庭都使用折叠型餐桌来节省空间,两边翻开后成为圆形桌面如图①,餐桌两边AD 和BC 平行且相等,AB AD ⊥如图②,小华用皮尺量得 1.2m AC =,0.6m AB =,那么桌面翻成圆桌后,桌子面积会增加( )A .26m 25π⎛ ⎝B .26m 25π⎛ ⎝C .23m 25π⎛ ⎝D .26m 25π⎛ ⎝ 【答案】D【分析】将圆形补全,设圆心为O ,连接DO ,过点O 作OE AD ⊥于点E ,进而得出AD ,EO 的长以及CAD ∠,AOD ∠的度数,进而勾股定理求得AE ,根据AODAD AOD S S S=−弓形扇形,即可求解.【详解】解:将圆形补全,设圆心为O ,连接DO ,过点O 作OE AD ⊥于点E ,由题意可得出:90DAB ABC ∠=∠=︒,AC ∴是O 的直径,1.2AC =,0.6AB =,∴1sin 2AB ACB AC ∠== 30ACB ∴∠=︒,餐桌两边AB 和CD 30ACB DAC ∴∠=∠=︒,10.32EO AO ∴==,AE ∴=2AD AE ∴==, 30CAD D ∠=∠=︒, 120AOD ∴∠=︒,AODAD AOD S S S∴=−弓形扇形1200.60.610.33602π⨯⨯=−,325π=,∴桌面翻成圆桌后,桌子面积会增加625π⎛ ⎝⎭平方米. 故选:D .第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.的计算结果为 .【答案】33【分析】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.根据二次根式的乘法分配律计算即可.【详解】解:原式=3=故答案为:312.如图是由大小相同的正方形组成,第①个图形中有5个涂有阴影的正方形,第②个图形中有9个涂有阴影的正方形,第③个图形中有13个涂有阴影的正方形,…,按此规律摆下去,第n 个图形中共有 个涂有阴影的正方形.【答案】14n +/41n +【分析】本题主要考查了图形与数字的变化规律,通过分析图案个数与涂有阴影的小正方形的个数之间的关系即可得出结论. 【详解】解:由图形可知:第一个图案有涂有阴影的小正方形的个数为:1415+⨯=, 第二个图案有涂有阴影的小正方形的个数为:1429+⨯=, 第三个图案有涂有阴影的小正方形的个数为:14313+⨯=, ∴第四个图案有涂有阴影的小正方形的个数为:14521+⨯=,第n 个图案有涂有阴影的小正方形的个数为:14n +, 故答案为:14n +.13.如图,现有4张卡片,正面书写不同类型的变化,除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片呈现的变化都是物理变化的概率是 .【答案】16【分析】本题主要考查的是用列表法或树状图法求概率,列表法可以重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率等于所求情况数与总情况数之比.画树状图得出所有等可能的结果数,再从中找到符合条件的结果数,然后再用概率公式求解即可.【详解】解:把4张卡片从左向右分别记为A B C D 、、、, 画树状图如下:共有12种等可能的结果,其中两张卡片呈现的变化都是物理变化的结果有2种,即AC 、CA , ∴两张卡片呈现的变化都是物理变化的概率是21126=. 14.如图,在ABCD Y 中,60D ∠=︒.以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点,A E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OFOE的值为 .【分析】本题考查了平行四边形的性质,角平分线的定义,尺规作图—作角平分线,等边三角形的判定和性质,正切函数的定义.证明BO AE ⊥,AO OE =,60BAO FAO ∠=∠=︒,再利用正切函数的定义求解即可.【详解】解:∵在ABCD Y 中,60D ∠=︒, ∴60ABC ∠=︒,AD BC ∥,由作图知BP 平分ABC ∠,BA BE =,∴ABE 是等边三角形,1302ABF EBF ABC ∠=∠=∠=︒, ∴BO AE ⊥,AO OE =, ∵AD BC ∥,∴30AFB EBF ∠=∠=︒, ∴30AFB ABF ∠=∠=︒, ∴AB AF =, ∵BO AE ⊥, ∴()11803030602BAO FAO ∠=∠=︒−︒−︒=︒,∴tan tan 60OF OFFAO OE AO==∠=︒=15.如图,在菱形ABCD 中,60ABC ∠=︒,4BC =+P 为线段AB 上一动点,以PC 为折痕将四边形APCD 折叠得到四边形''A PCD ,''A D 与BC 交于点Q ,当'CQD 为直角三角形时,折痕PC 的长为 .【答案】【分析】当90CQD '∠=︒时,过点P 作PM BC ⊥交于M ,可得45PCB ∠=︒,则PM CM =,再由4BC BM CM PM =++=+求出PM ,即可求PC ;当90QCD '∠=︒时,连接AC ,过点P 作PN AC ⊥交于点N ,可得45PCA ∠=︒,则PN NC =,再由4AC AN NC PN =++=+PN =求PC .【详解】解:由折叠可知,PCD DCP '∠=∠,D D '∠=∠,60ABC ∠=︒,60D D '∴∠=∠=︒,四边形ABCD 是菱形, BC CD AD ∴==,如图1,当90CQD '∠=︒时,过点P 作PM BC ⊥交于M ,30QCD '∴∠=︒,1203075DCD '∴∠=︒+︒=︒,753045PCB ∴∠=︒−︒=︒,PM CM ∴=,在Rt PBM △ 中,=60B ∠︒,BM ∴,4BC BM CM PM =++=+PM ∴=PC ∴=当90QCD '∠=︒时,如图2,当90QCD '∠=︒时,连接AC ,过点P 作PN AC ⊥交于点N ,AB BC =,60ABC ∠=︒,ABC ∴是等边三角形,4AC BC ∴==+120BCD ∠=︒,12090210DCD '∴∠=︒+︒=︒, 1056045PCA ∴∠=︒−︒=︒,PN NC ∴=,在Rt APN 中,60PAN ∠=︒,AN ∴=,4AC AN NC PN ∴=++=+PN ∴=PC ∴=综上所述:PC 的长为,故答案为:三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1(20113−⎛⎫−−−−− ⎪⎝⎭;(2)下面是王亮同学解方程2358224x x x +=−+−的过程,请阅读并完成相应任务.任务一:①以上求解过程中,第一步的依据是______;②王亮同学的求解过程从第______步开始出现错误,整个解答过程. 从前一步到后一步的变形共出现______处错误: ③分式方程检验的目的是______.任务二:请你直接写出这个方程的正确解______. 【答案】(1)10−(2)任务一:①等式的性质;②二,3;③判定解是否是增根 任务二:32x =【分析】(1)先计算乘方与开方,并去绝对符号,再计算加减即可; (2)先去分母,将分式方程转化成整式方程求解,然后检验即可.【详解】解:(1(2113−⎛⎫−−− ⎪⎝⎭91=−10=−;(2)任务一:①方程两边同乘以24x −,得()()32528x x ++−=,依据是等式的性质; ②第二步,()()32528x x ++−=,漏乘了项,应为365108x x ++−= ∴王亮同学的求解过程从第二步开始出现错误, 第三步,左边35x x +应为8x 不是2x , 第四步,计算错误,应为2x =不是6x =,∴整个解答过程,从前一步到后一步的变形第二步、第三步、第四步共出现3处错误; ③分式方程检验的目的是判定解是否是增根. 任务二:解:方程两边同乘以24x −,得()()32528x x ++−=,365108x x ++−=., 88106x =+−,32x =, 经检验:32x =是原方程的解. ∴原方程的解是32x =. 17.(8分)五四青年节前夕,某校开展了主题为“扬五四精神·展青春风采”的教育主题活动.为了解七、八年级学生的学习情况,从七、八年级中各随机抽取10名学生进行测试,成绩(百分制)统计如下: 七年级:98 96 86 85 84 94 77 69 59 94 八年级:99 96 73 82 96 79 65 96 55 96请根据以上数据,按要求补全数据描述、数据分析,并进行结论推断.(1)数据整理:根据上面得到的两组数据,分别绘制了如图所示的频数分布直方图,请补全八年级成绩的频数分布直方图.(2)数据分析:两组数据的平均数、中位数、方差如下表所示.表格中a的值为________,b的值为________.(3)结论推断:根据以上信息,对七、八两个年级各抽取的10名学生的测试成绩作出评价.(从“平均数”“中位数”“方差”这三个统计量中选择两个统计量进行评价)【答案】(1)见解析(2)84.2,89(3)见解析【分析】本题考查了补全频数分布直方图、平均数、中位数、方差,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由成绩统计可得:八年级成绩在6070之间的有1人,在7080之间的有2人,由此补全八年级频数分布直方图即可;(2)根据平均数和中位数的定义计算即可;(3)根据平均数、中位数以及方差分析即可得出答案.【详解】(1)解:由成绩统计可得:八年级成绩在6070之间的有1人,在7080之间的有2人,补全八年级频数分布直方图如答图所示:(2)解:由题意得:9896868584947769599484.210a +++++++++==,8296892b +==, 故答案为:84.2,89;(3)解:答案不唯一,合理即可,从平均数来看:七年级抽取的10名学生成绩的平均数高于八年级抽取的10名学生成绩的平均数; 从中位数来看:八年级抽取的10名学生成绩的中位数高于七年级抽取的10名学生成绩的中位数; 从方差来看:七年级抽取的10名学生成绩的方差小于八年级抽取的10名学生成绩的方差, 说明七年级抽取的10名学生成绩波动小. 18.(9分)根据素材,完成活动任务:现木材市场的这种规格的围栏材料每根长为40dm ,价格为了深度参与学校蔬菜基地的建立,项目化小组打算自己购买材料,制作搭建蔬菜基地的围栏同时为了【答案】任务一:5 3 1;任务二:8根,1根,费用450元;任务三:5【分析】根据围栏材料不同裁剪方法,分别计算出需要的竖杠或横杠;利用方法②与方法③列出方程组求解即可;利用在单位时间内可以安装m 根竖杠或()7m −根横杠,所用的时间相同,建立分式方程,求解即可.【详解】任务一:5840=÷(根)方法①:当只裁剪8dm 长的竖杠时,最多可裁剪5根.()14015838−÷=, 方法②:当先裁剪下1根15dm 长的横杠时,余下部分最多能裁剪8dm 长的竖杠3根.()140215814−⨯÷=, 方法③:当先裁剪下2根15dm 长的横杠时,余下部分最多能裁剪8dm 长的竖杠1根. 任务二:设方法②需裁剪x 根,方法③需裁剪y 根,依据题意得:210325x y x y +=⎧⎨+=⎩,解得:81x y =⎧⎨=⎩. ()5081450⨯+=(元).答:方法②和方法③各裁剪8根与1根40dm 长的围栏材料,才能刚好得到所需要的相应数量的用料,购买围栏材料的费用共需45元. 任务三:依据题意得25107m m=−,解得:5m =. 19.(7分)某数学兴趣小组测量一栋居民楼高度的活动报告如下:请你根据该兴趣小组的测量结果求出该居民楼的高度AB . 【答案】34.5m【分析】本题主要考查了解直角三角形的实际应用.延长CD 交BE 的延长线于点G ,过点C 作CH AB ⊥于点H . 则四边形BGCH 是矩形,根据斜坡EF 的坡度3:4i =,可得3m DG =,4m EG =,从而得到40m CH BG ==.在Rt ACH 中,根据锐角三角函数可得30m AH ≈,即可求解.【详解】解:延长CD 交BE 的延长线于点G ,过点C 作CH AB ⊥于点H . 则四边形BGCH 是矩形,∴BG CH =,CG BH =.∵5m DE =,坡度34DG i EG ==, ∴3m DG =,4m EG =, ∴ 4.5m BH CG CD DG ==+=.36m BE =,∴40m CH BG BE EG ==+=.在Rt ACH 中,tan AHACH CH∠=, 即tan 370.75AHCH︒=≈ ∴0.7540AH≈,则30m AH ≈, ∴30 4.534.5m AB AH BH =+=+=, ∴该居民楼的高度AB 为34.5m .20.(8分)请阅读下面材料,并完成相应的任务.用“几何代数法”解分式方程.《几何原本》中的“几何代数法”是指用几何方法研究代数问题,这种方法是数学家处理问题的重要依据.在意大利数学家斐波那契(约1170—1250)编写的《计算之书》中频繁运用了这种方法.例如,运用面积关系将分式方程转化为整式方程,从而求解分式方程.例:《计算之书》中记载了一道题,译文如下:一组人平分90枚硬币,每人分得若干,若再加上6人,平分120枚硬币,则第二次每人所得与第一次相同.求第一次分硬币的人数.设第一次分硬币的人数为x 人,则可列方程为901206x x =+.解:构造如图1所示的图形,BC x =,6CE =,矩形ABCD 的面积为90,矩形ABEF 的面积为120,则90CD x=,1206EF x =+.显然,CD EF =. 根据图形可知ABCD CEFD S BC CD BCS CE CD CE⋅==⋅矩形矩形.所以90120906x=−.(将分式方程转化成了整式方程)解得18x =.图1答:第一次分硬币的人数为18人. 任务:(1) 如图2,AB x =,2BC =,矩形ABDE 和矩形ACGH 的面积均为60,下列代数式可以表示边DF 的是___________.(多选) A .60x B .602x + C .60602x x −+ D .()1202x x +(2)如图3,AB x =,2BC =,矩形ACDE 的面积为60,矩形ABFH 的面积为20,5FI =,则可列方程为___________.(3)请仿照材料中的方法,通过构造图形,求分式方程2131x x =+−的解. 【答案】(1)C 、D (2)602052x x−=+(3)图见解析,5x =【分析】本题考查了由实际问题抽象出分式方程,找准等量关系列出表达式和分式方程是解题的关键. (1)根据题意表示出BD 、BF ,利用DF BD BF =−,即可解题; (2)根据BI BF FI −=列出分式方程即可.(3)根据分式方程构造图形,并根据图形的面积关系求解,即可解题. 【详解】(1)解:AB x =,2BC =,矩形ABDE 和矩形ACGH 的面积均为60,∴60BD x=,602BF CG x ==+,∴()606012022DF BD BF x x x x =−=−=++, 故选:C 、D ;(2)解:根据题意可列方程为:602052x x−=+, 故答案为:602052x x−=+; (3)解:构造如图所示的图形,BC x =,3CE =,1CG =, 矩形ABGH 的面积为1,矩形ABEF 的面积为2, 则23EF x =+,11GH x =−. 矩形ABGH 中,AB GH =,矩形ABEF 中,AB EF =, ∴EF GH =.根据图形可知ABEF EFHGS EF BE BES EF GE GE⋅==⋅矩形矩形.所以232113x +=−+.解得5x =. 21 .(9分)阅读理解:阅读以下内容,完成后面任务: 材料一“最短路径问题”是数学中一类具有挑战性的问题.其实,数学史上也有不少相关的故事.如下即为其中较为经典的一则:古希腊有一位久负盛名的学者,名叫海伦.他精通数学,物理,聪慧过人.有一天,一位将军向他请教一个问题:如图①,将军从A 地骑马出发,要到河边让马饮水,然后再回到B 地的马棚,为使马走的路程最短,应该让马在什么地方饮水?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连接AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小. 理由:如图③,在直线l 上另取任一点P ',连接'AP ,BP ',B P '', ∵直线l 是点B ,B '的对称轴,点P ,P '在l 上, ∴PB =______,P B '=______,(依据1______) ∴AP PB AP PB '+=+=______.在AP B ''△中,∵AB AP P B ''''<+,(依据2______), ∴A AP PB P P B ''+<+,即AP PB +最小. 材料二的几何意义,并求它的最小值.几何意义:如图④,建立平面直角坐标系,点()0P x ,是x 轴上一点,则P 与点()01A ,P 与点()32B ,的距离,所求代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA PB +的最小值.任务一PB =______,P B '=______,依据1____________________________________ 依据2______________________________________ 任务二利用图④ 任务三的最小值. 【答案】任务一:PB ',P B '',轴对称的性质,AB ',三角形三边关系; 【分析】由轴对称的性质和三角形三边关系解答即可:【详解】理由:如图③,在直线l 上另取任一点P ',连接'AP ,BP ',B P '', ∵直线l 是点B ,B '的对称轴,点P ,P '在l 上, ∴PB PB '=,P B P B '''=,(依据轴对称的性质) ∴AP PB AP PB AB ''+=+=.在AP B ''△中,∵AB AP P B ''''<+,(依据三角形三边关系), ∴A AP PB P P B ''+<+,即AP PB +最小;故答案为:PB ',P B ''AB ',三角形三边关系; 任务二【答案】3√2【分析】设点A 关于x 轴对称点A ',则PA PA '=.因此,求PA PB +的最小值,只需求PA PB +的最小值,而点A 、B 间的直线段距离最短,所以PA PB '+的最小值为线段AB 的长度.为此,构造直角三角形A CB ',因为3A C '=,3CB =.所以由勾股定理得AB =【详解】设点A 关于x 轴对称点A ',作BC ⊥X 轴,A 'C ⊥Y 轴,交于点C ,在Rt∆A 'BC 中,A 'B 2=A 'C 2 +BC 2 =32+32A 'B=任务三5.系中点()0P x ,与点()12A ,、点()51B ,的距离之和,再根据勾股定理描出各点,利用勾股定理即可求解.=的值可以看成平面直角坐标系中点()0P x ,与点()12A ,、点()51B ,的距离之和, 如图所示,设点A 关于x 轴的对称点为A ',则PA PA '=,∴PA PB +的最小值,只需求PA PB '+的最小值,而点A '、B 间的直线距离最短, ∴PA PB '+的最小值为线段A B '的长度,∵点()12A ,,()51B ,, ∴()12A '−,,514A C '=−=,123BC =+−=,∴5A B ',的最小值为5. 22 .(11分)综合与实践 问题情境:在数学活动课上,李老师给同学们提供了一个矩形ABCD (如图1),其中2AB =,连接对角线AC ,且30DAC ∠=︒,要求各小组以图形的旋转为主题开展数学活动.以下是部分小组的探究过程,请你参与活动并解答所提出的问题:猜想证明:(1)如图2,“奋勇”小组将ADC △绕点D 旋转得到A DC '',当点C '落到对角线AC 上时,A C ''与AD 交于点F .试猜想线段CC '与AC '的数量关系,并加以证明;(2)“勤学”小组在“奋勇”小组的基础上,取A C ''的中点E ,连接AE ,DE ,试判断四边形AEDC '的形状,并说明理由; 深入探究:(3)在ADC △绕点D 旋转的过程中,当DC AC '∥时,求点A 与点A '之间的距离,请你思考此问题,直接写出答案.【答案】(1)CC AC ''=,理由见解析;(2)菱形,理由见解析;(3)6或【分析】(1)首先根据矩形的性质得到90ADC ∠=︒,然后利用30DAC ∠=︒得到12DC AC =,然后证明出DCC '△是等边三角形,得到12CC DC AC '=,即可证明出CC AC ''=; (2)首先由DCC '△是等边三角形得到60CDC '∠=︒,然后结合旋转的性质得到A C AD ''⊥,然后证明出12DE A C ''=,然后由A C AD ''⊥得到AD 与EC '互相平分,证明出四边形AEDC '是菱形; (3)根据题意分两种情况:当点C '在AD 上方时,连接AA ',首先由DC AC '∥得到30C DA DAC '∠=∠=︒,然后结合旋转的性质得到30DA A DA C '''∠=∠=︒,证明出点A ,C ',A '三点共线,然后得到246AA AC A C ''''=+=+=;当点C '在线段AD 下方时,首先由DC AC '∥和旋转的性质得到ADA '是等边三角形,然后利用勾股定理求解即可. 【详解】(1)CC AC ''=, 证明:∵四边形ABCD 是矩形, ∴90ADC ∠=︒, 又∵30DAC ∠=︒,∴12DC AC =,903060ACD ∠=︒−︒=︒, 由旋转可得,DC DC '=, ∴DCC '△是等边三角形, ∴12CC DC AC '==, ∴CC AC ''=;(2)四边形AEDC '是菱形.理由:由(1)得DCC '△是等边三角形, ∴60CDC '∠=︒,由旋转得30A DAC '∠=∠=︒,60A DA CDC ''∠=∠=︒,90A DC ADC ''∠=∠=︒,AC A C ''=, ∴18090A FD A A DA '''∠=︒−∠−∠=︒, ∴A C AD ''⊥, 又∵AC CC DC '''==, ∴AF DF =,∵90A DC ''∠=︒,点E 是线段A C ''的中点, ∴12DE A C ''=, 又∵12DC AC =,AC A C ''=,DC DC '=, ∴DE DC '=, 又∵A C AD ''⊥, ∴FE FC '=,∴AD 与EC '互相平分, ∴四边形AEDC '是平行四边形, 又∵A C AD ''⊥,∴平行四边形AEDC '是菱形;(3)如图所示,当点C '在AD 上方时,连接AA ',∵DC AC '∥,∴30C DA DAC '∠=∠=︒,由旋转可得,AD A D '=,90ADC A DC ''∠=∠=︒,30C A D DAC ''∠=∠=︒, ∴120ADA ADC A DC ''''∠=∠+∠=︒, ∴()1180302DAA DA A ADA ∠=∠=︒−'∠=''︒, ∵30C A D DAC ''∠=∠=︒, ∴30DA A DA C '''∠=∠=︒, ∴点A ,C ',A '三点共线, ∴30C AD C DA ''∠=∠=︒, ∴2C A C D ''==,4A C AC ''==, ∴246AA AC A C ''''=+=+=; 如图所示,当点C '在线段AD 下方时,由旋转可得,90ADC A DC ''∠=∠=︒,AD A D '=, ∵DC AC '∥,∴90AED A DC ''∠=∠=︒, ∵30DAC ∠=︒,∴903060ADE ∠=︒−︒=︒, ∴ADA '是等边三角形,∴AA AD '=综上所述,当DC AC '∥时,点A 与点A '之间的距离为6或 23.(13分)综合与探究如图,抛物线()220y ax bx a =+−≠与x 轴交于()4,0A −,()1,0B 两点,与y 轴交于C 点.点D 与点C 关于x 轴对称,直线AD 交抛物线于另一点E .(1)求抛物线的函数表达式,并直接写出直线AD 的函数表达式.(2)点P 是直线AE 下方抛物线上的一点,过点P 作直线AE 的垂线,垂足为F .设点P 的横坐标为m ,试探究当m 为何值时,线段PF 最大?请求出PF 的最大值.(3)在(2)的条件下,当PF 取最大值时,若点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点B ,P ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由. 【答案】(1)213222y x x =+−,122y x =+(2)存在,当1m =−时,PF (3)存在,点M 的坐标为311,28⎛⎫ ⎪⎝⎭,79,28⎛⎫−− ⎪⎝⎭或19,28⎛⎫− ⎪⎝⎭【分析】(1)将()4,0A −,()1,0B 代入()220y ax bx a =+−≠得:1642020a b a b −−=⎧⎨+−=⎩,求解即可得出抛物线解析式,从而得出点C 的坐标,进而得出点D 的坐标,再利用待定系数法求解即可;(2)过点P 作y 轴的平行线交AD 于G ,AGP ADC ∠=∠,求出sin sin AGP ADO ∠=∠=。
2024年中考数学终极押题密卷(广东卷)数学试题及答案

广东省(统考新题型)2024年中考(新题型)猜题卷02数 学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷总分120分,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的考生信息. 3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔描黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4−B .2−C .2D .42.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨B .101.0210×吨C .1010210×吨D .70.10210×吨3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .5.下列计算正确的是( )A .325a a a +=B .325a a a ⋅=C .()22242a a a +=++ D .()235a a −=6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .347.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×−C .300003000045003x x =×− D .300003000050034x x =− 10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm +第二部分(非选择题 共75分)二、填空题(共15分) 11.因式分解:2a 2﹣8= .12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 . 13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .15.如图,在正方形ABCD中,4AB=,点E是CD边的中点,ABE∠的平分线交AD于点F,连接EF,则tan DEF∠的值为.三、解答题(共75分)16.(511)2sin605π−−−°+.17.(5分)解方程组:7 22 x yx y−=+=①②18.(5分)如图,已知B C∠=∠,AD平分BAC∠,求证:ABD ACD△≌△.19.(5分)如图,点A是∠MON边OM上一点,AE//ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE的大小为________.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形ABCD ∽菱形AEFG ,如图3,5AD =,6AC =,AG 平分DAC ∠,点P 在射线AG 上,在射线AF 上截取AQ ,使得35AQ AP =,连接PQ ,QC ,当4tan 3PQC ∠=时,直接写出AP 的长.广东省(统考新题型)2024年中考(新题型)猜题卷02数 学全解全析一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4− B .2− C .2 D .4【答案】B【分析】本题考查了有理数的加法运算,理解有理数加法运算法则,根据题意列出算式计算即可.【详解】解:比3−大1的数为:312−+=−, 故选:B .2.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨 B .101.0210×吨 C .1010210×吨 D .70.10210×吨【答案】A【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【详解】解:81.021.0210=×亿, 故选:A .3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】本题考查了轴对称图形及中心对称图形,轴对称图形是沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形是绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项不符合题意,B.是中心对称图形,不是轴对称图形,故该选项不符合题意,C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意,D.既是轴对称图形又是中心对称图形,故该选项符合题意,故选:D.4.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的方向:从正面看所得到的图形.根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选B.5.下列计算正确的是()A.325+=B.325a a a⋅=a a aC.()22+=++D.()235242a a a−=a a【答案】B【分析】本题考查了整式的混合运算,掌握整式的运算法则是解决本题的关键.利用整式的运算法则计算每一个,根据计算结果得结论.【详解】解:32a a不能合并,故选项A计算错误;,325⋅=,故选项B计算正确;a a a()22+=++,故选项C计算错误;244a a a()236a a −=,故选项D 计算错误;故选:B .6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .34【答案】A【分析】本题主要考查了树状图法或列表法求解概率.先列表得到所有等可能性的结果数,再找到他们选择的诗人相同的结果数,最后依据概率计算公式求解即可.【详解】解:王维、柳宗元、白居易、王勃四位唐代山西诗人分别用A 、B 、C 、D 表示,列表如下: 小明小颖A B C DA(),A A (),B A (),C A (),D AB(),A B (),B B (),C B (),D BC(),A C (),B C (),C C (),D CD(),A D (),B D (),B D (),D D由表格可知,一共有16种等可能性的结果数,其中他们选择的诗人相同的结果数有4种, ∴他们选择的诗人相同的概率为41164=, 故选:A .7.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−【答案】C 【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:426231x x −< +≥①② 解不等式①得:2x <,解不等式②得:1x ≥−,∴不等式组的解集为12x −≤<,故选:C .8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想【答案】D 【分析】本题考查了平面直角坐标系,根据平面直角坐标系使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题,即可确定答案.【详解】解:用代数的方法研究几何问题,可知这种研究方法体现了数形结合思想, 故选:D .9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×− C .300003000045003x x =×− D .300003000050034x x =− 【答案】D【分析】本题考查了列分式方程;设购进甲种品牌的自行车x 辆,则购进乙种品牌的自行车34x 辆,用总价除以单价表示出购进自行车的数量,根据两种自行车的数量相等列出方程求解即可.【详解】设购进甲种品牌的自行车x 辆,依题意得300003000050034x x =− 故选:D .10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm + 【答案】C 【分析】此题考查了矩形的性质,三角形内角和定理,过中间三角形的三个顶点分别向绿化带作垂线,首先根据题意得到1m AD BC MC GH GF DE ======,求出扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,然后利用绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形求解即可.【详解】如图所示,过中间三角形的三个顶点分别向绿化带作垂线,根据题意得,1m ADBC MC GH GF DE ======,四边形ADCB ,DEFG ,GHMC 是矩形 ∴90ADC BCD MCG CGH DGF GDE ∠=∠=∠=∠=∠=∠=° ∴180AEDCDG ∠=°−∠,180BCM DCG ∠=°−∠,180FGH DGC ∠=°−∠ ∵180∠+∠+∠=°CDG DCG DGC∴360BCM ADE HGF∠+∠+∠=° ∴扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,∴绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形2π1AD DC MC DC DE DC =⋅+⋅+⋅+×()2215π15πm =×+×=+. 故选:C .二、填空题(共15分)11.因式分解:2a 2﹣8= .【答案】2(a +2)(a -2).【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2).故答案为2(a +2)(a -2).考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 .【答案】3−【分析】此题主要考查了解一元二次方程,以及根的定义.先把2x =代入原方程,求出k 的值,进而再将k 的值代入原方程,然后解方程即可求出方程的另一个根.【详解】解:∵2x =是方程260x kx +−=的一个根, ∴22260k +−=, 解得:1k =,将1k =代入原方程得:260x x +−=, 解得:122,3x x ==−,∴方程的另一个根为3−.故答案为:3−.13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .【答案】()4,3−−【分析】本题考查了作图—位似变换,对应顶点所在直线相交于一点即为位似中心,确定位似中心是解题的关键.连接'A A ,'B B 并延长交于一点,交点即为所求.【详解】解:如图,连接'A A ,'B B 并延长交于一点P ,点P 即为所求.由网格图形可知,点P 的坐标为()4,3−−. 故答案为:()4,3−−.14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .【答案】73/123【分析】本题主要考查了切线的性质,勾股定理,如图所示,连接OC ,设O 的半径为r ,则OC OB r ==,3OD r =+,由切线的性质可得90OCD ∠=°,则由勾股定理可得()22234r r +=+,解方程即可得到答案.【详解】解:如图所示,连接OC ,设O 的半径为r ,则OCOB r ==, ∴3OD r =+,∵CD 是O 的切线,∴90OCD ∠=°, 在Rt COD 中,由勾股定理得222OD OC CD =+,∴()22234r r +=+, 解得76r =, ∴O 的直径为723r =, 故答案为:73.15.如图,在正方形ABCD 中,4AB =,点E 是CD 边的中点,ABE ∠的平分线交AD 于点F ,连接EF ,则tan DEF ∠的值为 .【答案】33+【分析】本题考查正方形的性质,角平分线的性质定理,勾股定理,全等三角形的判定与性质,求角的正切值等,作FG BE ⊥于点G ,由角平分线的性质可得AF FG =,再证Rt BGF ≌()Rt HL BAF ,推出4BG AB ==,AF GF =,设AF GF x ==,用勾股定理解Rt EDF 和Rt EGF ,求出x 的值,再根据tan DF DEF DE∠=即可求解.【详解】解:如图,作FG BE ⊥于点G , 正方形ABCD 中,4AB =,点E 是CD 边的中点,∴90A C D ∠=∠=∠=°,4CD BC AD AB ====, 122CE DE CD ===, ∴BEBF 平分ABE ∠,FG BE ⊥,FA AB ⊥,∴AF FG =,在Rt BAF △和Rt BGF 中,AF FG BF BF = =, ∴Rt BGF ≌()Rt HL BAF ,∴4BG AB ==,AF GF =,∴4GE BE BG =−=,设AFGF x ==,则4FD AD AF x =−=−, 在Rt EDF 中,222DE DF EF +=,在Rt EGF 中,222EG FG EF +=, ∴2222EG FG DE DF +=+,即()()2222424x x +=+−, 解得2x =,∴()426FD =−=−∴tan 3DF DEF DE ∠=故答案为:3三、解答题(共75分)16.(5101)2sin 605π− −−°+ . 【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】解:原式125=−− 4=. 【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.(5分)解方程组:722x y x y −=+=①② 【答案】34x y = =− 【分析】本题考查的是二元一次方程组的解法,掌握解法步骤是解本题的关键,直接利用加减消元法解方程组即可.【详解】解:722x y x y −= +=①②, ①+②得39x =,解得3x =.将3x =代入②,得4y =−.所以 34x y = =− ,. 18.(5分)如图,已知B C ∠=∠,AD 平分BAC ∠,求证:ABD ACD △≌△.【答案】见解析【分析】本题主要考查对全等三角形的判定,三角形的角平分线定义;根据角平分线的定义得出BAD CAD ∠=∠,根据AAS 即可证出答案. 【详解】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD 中B C BAD CAD AD AD ∠=∠ ∠=∠ =, ()AAS ABD ACD ∴ ≌.19.(5分)如图,点A 是∠MON 边OM 上一点,AE//ON .(1)尺规作图:作∠MON 的角平分线OB ,交AE 于点B (保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE 的大小为________.【答案】(1)见解析;(2)156°【分析】(1)利用基本作图作OB 平分∠MON ;(2)先利用平行线的性质得到∠MON =∠MAE =48°,再根据角平分线的定义得到∠NOB =24°,接着根据平行线的性质得到∠OBA 的度数,然后利用邻补角的定义计算∠OBE 的度数.【详解】解:(1)如图,OB 为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB=12∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°-∠OBA=180°-24°=156°.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.【答案】第一家网店每支签字笔的价格是10元【分析】本题主要考查了分式方程的应用等知识点,首先设第一家网店每支签字笔的单价是x 元,现在每支签字笔的价格是1.5x元,即可根据题意列出方程,解此分式方程即可求得答案,注意分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【详解】解:设第一家网店每支签字笔的单价是x元,现在每支签字笔的价格是1.5x元,依题意得:606021.5x x=+,解得:10x=,经检验:10x=是原方程的解,答:第一家网店每支签字笔的价格是10元.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.【答案】(1)40,54°(2)画图见解析(3)不少于1.5小时的学生有330人【分析】(1)根据统计图中的数据可以求得本次调查的学生数;根据A组的学生人数以及总人数即可求得A组对应的圆心角的度数;(2)求出C组的学生人数,补全条形统计图即可;(3)利用用样本估计总体的计算方法列式计算即可求得.【详解】(1)解:本次调查的学生人数为:1230%=40÷(人);A组(0.5小时)在扇形统计图中的圆心角α的大小为:6360=54°×°,40故答案为:40,54°;(2)解:C 组的人数为:40-6-12-8=14(人), 补全条形统计图如下:(3)解:14860033040+×=(人) 答:估计该校九年级每天自主学习时间不少于1.5小时的学生人数有330人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)【答案】653m【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,可得BF DE DF BE ==,,设m AE x =,则()320m BF DE x ==−,解Rt ABE △得到 2.7m AB x ≈,解Rt BCF 得到()6402m BC x =−,进而得到2.76402x x =−,解方程得到136m 184m AE BF ==,,再解直角三角形求出BE CF ,的长即可得到答案.【详解】解:如图所示,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,∴BF DEDF BE ==,, 设m AE x =,则()320m BF DE AD AE x ==−=−, 在Rt ABE △中, 2.7m sin AEABx ABE =≈∠,在Rt BCF 中,()6402m sin BF BC x C==−,∵AB BC =,∴2.76402x x =−, 解得136x ≈,∴136m184m AE BF ==,, 在Rt ABE △中,136340m tan 0.4AE BE ABE =≈=∠,在Rt BCF 中,313m tan BFCF C=≈, ∴653m CD DF CF =+=, ∴CD 的长约为653m .23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.【答案】(1)216k = (2)2x >【分析】本题考查反比例函数的图象与性质,全等三角形的判定与性质,解题的关键是灵活运用所学知识解决问题,(1)过点A 作y 轴的垂线,垂足为D ,证明ADC BOC ≌进而求出结论; (2)先求出()2,8A ,根据图象写出结论即可. 【详解】(1)解:过点A 作y 轴的垂线,垂足为D .点C 为AB 的中点,BC AC ∴=,又90BOC ADC ∠=∠=°;BCO ACD ∠=∠, ∴ADC BOC ≌, ∴DC OC =,设(),A x y ,点A 在第一象限, 则111142222x y x y ⋅=⋅=,即16xy =, ∴216k =.(2)因为2OB =, 所以()2,0B −,由ADC BOC ≌,得2ADOB ==, 所以,()2,8A .当120y y >>时,x 的取值范围是:2x >. 24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C 两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.【答案】(1)()212531616y x =−−+ (2)小华此次击球不能飞过球网 (3)小华击球高度取值范围大于1916m 小于12731024m【分析】本题考查了二次函数的实际应用,待定系数法求解析式,相似三角形的判定与应用,熟练掌握知识点是解题的关键. (1)待定系数法求解析式即可;(2)连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,由ANM BPM △△∽求得M 的坐标为()5,0,再代入函数解析式即可;(3)设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q ,可求67,08Q,将()5,1.5,67,08分别代入,得到174k =,218491024k =,再将将0x =分别代入即可.【详解】(1)解:根据题意,得()0,1D ,()3,C b ,()8,0B , 设此抛物线的解析式为()23y a x b =−+, 将点()0,1D ,()8,0B 代入,得19,025,a b a b =+=+解得1,1625.16a b=−=所以此抛物线的解析式为()212531616y x =−−+. (2)解:连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,如图所示.根据题意,得8AB =,4AN =, 2.4BP . ∵,BP l AN l ⊥⊥, ∴BP AN , ∴ANM BPM △△∽,452.43AM AN BM BP ∴===, 558AM AB ∴, 即点M 的坐标为()5,0.将点()5,0M 代入()212531616y x =−−+,得2116y =.2124 1.51616<=, ∴小华此次击球不能飞过球网.(3)解:∵小华仍从点A 处发球,且击球时的用力方向和大小不变,∴设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q .场地内边线距离场地中线的距离为6.7m,∴由(2)同理可得67,08Q.要求球越过球网且落在球场内边线内,∴将()5,1.5,67,08分别代入()21316y x k =−−+,得174k =,218491024k =.将0x =分别代入()211316y x k =−−+,()221316y x k =−−+, 得11916y =,212731024y =. ∴小华击球高度取值范围大于19m 16小于1273m 1024. 25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形。
2024年中考数学考前押题密卷(全国卷)(全解全析)

2024年中考考前押题密卷(全国卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列各数中,相反数是它本身的数是()A .2-B .1-C .0D .11.C【分析】根据相反数的意义,只有符号不同的数为相反数.【解析】相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.如图所示的几何体是由7个相同的小正方体组合成的,则这个几何体的左视图是()A .B .C .D .2.D【分析】根据观察几何体,从左边看,底层有2个正方体,上层有一个正方体,即可得到答案.【解析】从左边看,底层有2个正方体,上层有一个正方体,∴几何体的左视图为:,故选:D .【点睛】本题考查三视图的知识,解题的关键是学会找几何体的三视图.3.据国家统计局预测,截止2024年底,我国GDP 将突破23万亿美元,23万亿用科学记数法表示为()A .132.310⨯B .142.310⨯C .140.2310⨯D .122310⨯3.A【分析】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【解析】23万亿23000000000000=元132.310=⨯元.故选:A .4.下列运算中,正确的是()A .326326x x x ⋅=B .4482x x x +=C .633x x x ÷=D .()32528x x =4.C【分析】分别利用单项式乘单项式、合并同类项、同底数幂的除法和积的乘方运算法则化简求出即可.【解析】A 、3x 3•2x 2=6x 5,故此选项错误;B 、x 4+x 4=2x 4,故此选项错误;C 、x 6÷x 3=x 3,故此选项正确;D 、(2x 2)3=8x 6,故此选项错误.故选:C .【点睛】此题主要考查了单项式乘单项式、合并同类项、同底数幂的除法和积的乘方等知识,熟练掌握相关运算法则是解题关键.5.如图,在平面直角坐标系中,点P 坐标为()1,2,以点O 为圆心,以OP 的长为半径画弧,交x 轴的正半轴于点A ,则点A 的横坐标介于()A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.B【分析】先根据勾股定理计算出OP 的长度,OP OA =可以知道A 点的横坐标,再利用估算无理数的方法得出答案.【解析】22125OP =+=,则A 点横坐标为5,459<<,即253<<,∴A 的横坐标介于2和3之间,故选B .【点睛】本题主要考查了估算无理数的大小和勾股定理,正确估计5最接近的整数是解题的关键.6.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)10203040户数215103则五月份这30户家庭节电量的众数与中位数分别为()A .20,20B .20,25C .30,25D .40,206.A【分析】根据表格中的数据可以得到这组数据的众数和中位数,本题得以解决.【解析】由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选:A .【点睛】本题考查众数、统计表、中位数,解题的关键是明确它们各自的含义,会找一组数据的众数和中位数.7.如图,Rt ABC △中,90ACB ∠=︒,30B ∠=︒,2AC =,23BC =,将ABC 绕点C 逆时针旋转至A B C ''△,使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A CD '△的面积为()A .32B .53C .5D .237.A【分析】由已知结合旋转的性质可知CA CA '=,60A CA B ''∠=∠=︒,可证得ACA ' 是等边三角形,可得2A C A B ''==,30A CB B '∠=∠=︒,进而可知A D BC '⊥,由等腰三角形的性质和含30度的直角三角形的性质可知112A D A C ''==,132CD BC ==,进而利用面积公式即可求解.【解析】在Rt ABC △中,90ACB ∠=︒,2AC =,30B ∠=︒,∴9060A B ∠=︒-∠=︒,24AB AC ==,由旋转可知,CA CA '=,60A CA B ''∠=∠=︒,∴ACA ' 是等边三角形,∴2AA AC A C ''===,∴2A C A B ''==,∴30A CB B '∠=∠=︒,∵60CA B ∠=''︒,∴18090CDA A CD CA D '''∠=︒-∠-∠=︒,则A D BC '⊥,∴112A D A C ''==,132CD BC ==,∴131322A CD S '=⨯⨯=△.故选:A .【点睛】本题考查直角三角形30度角的性质、勾股定理、等边三角形的判定和性质、旋转的性质等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.8.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明距离学校的路程s 关于行驶时间t 的函数图象,那么符合小明行驶情况的图象大致是()A .B .C .D .8.D【分析】根据函数图象与因变量和自变量的关系判断选项即可.【解析】根据题意,小明距离学校的路程s 关于行驶时间t 的函数图象应该分为三段:第一段随着时间的增加,路程s 逐渐减小;第二段小明停下修车,路程s 随着时间的增加没有发生变化;第三段小明加速行驶,随着时间的增加,路程s 减小的更快,所以只有D 选项符合题意,故选:D .【点睛】本题考查函数的图象,熟练掌握函数的图象与因变量和自变量的变化关系是解答的关键.9.如图,AB 为O 的直径.弦CD AB ⊥于点E ,5OC cm =,8CD cm =,则BE 的值为()A .2cmB .3cmC .5cmD .8cm9.A【分析】根据垂径定理得出4CE DE ==cm ,根据勾股定理得出222OC CE OE =+,代入求出答案即可.【解析】AB 是O 的直径,5OB OC ∴==(厘米),弦CD AB ⊥,4CE DE ∴==(厘米),在Rt OCE ∆中,5OC =(厘米),22543OE ∴=-=(厘米),532BE OB OE ∴=-=-=(厘米).故选:A .【点睛】本题考查了勾股定理和垂径定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.10.如图,在正方形ABCD 中,O 是对角线AC ,BD 的交点.过点O 作OE OF ⊥,分别交AB ,BC 于点E ,F .若3AE =,1CF =,则EF =()A .2B 10C .4D .2210.B【分析】本题考查正方形的性质,证明()ASA BOE COF ≌,得到1BE CF ==,继而得到3BF AE ==,最后在Rt BEF △中,利用勾股定理可得EF 的值.掌握正方形的性质及勾股定理是解题的关键.【解析】∵四边形ABCD 是正方形,3AE =,1CF =,∴AB BC =,OB OC =,90BOC ∠=︒,90ABC ∠=︒,45OBE OCF ∠=∠=︒,∵OE OF ⊥,∴90EOF BOC ∠=︒=∠,∴EOB FOC ∠=∠,在BOE △和COF 中,OBE OCF OB OCEOB FOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BOE COF ≌,∴1BE CF ==,∴3BF BC CF AB BE AE =-=-==,在Rt BEF △中,3BF =,1BE =,∴22221310EF BE BF =+=+=.故选:B .第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:236m m -=.11.()32m m -【分析】提取公因式3m 即可.【解析】()23632.m m m m -=-故答案为:()32m m -【点睛】本题考查的是利用提公因式分解因式,掌握“公因式的确定”是解本题的关键.12.有一个圆形飞镖盘,上面画有五个圆,半径由小到大依次为2cm 4cm 6cm 、、、8cm 10cm 、,如图所示,投中镖盘时,飞镖落在阴影部分的概率为.12.35/0.6【分析】本题考查了概率,掌握相关知识并熟练使用是解题的关键.根据概率的定义,分别求出阴影部分的面积和大圆的面积,它们的比值就是所求.【解析】∵()2224cm S ππ=⨯=小阴影,()()2226420cm S ππ=⨯-=中阴影,()()22210836cm S ππ=⨯-=大阴影,()2210100cm S ππ=⨯=大圆,∴飞镖落在阴影部分的概率4203631005ππππ++==.故答案为:35.13.如图,直线4y x =-+与双曲线=y x交于A B ,两点,若AOB △的面积为4,则k 的值为.13.3【分析】根据直线4y x =-+与双曲线=ky x关于直线=y x 对称,得出AOC BOD ≌,求得2AOC S = ,根据三角形面积求得点A 的坐标,代入一次函数求得纵坐标,即可求解.【解析】如图,设4y x =-+与y 轴交于点C ,与x 轴交于点D ,∵直线4y x =-+与双曲线=ky x关于直线=y x 对称,∴AOC BOD ≌,由4y x =-+,令=0x ,得=4y ,令=0y 得=4x ,∴(0,4),(4,0)C D ,∴14482COD S ∆=⨯⨯=,∵AOB △的面积是4,∴()18422AOC S =-= ,∴1422A x ⨯⨯=,解得1A x =,代入4y x =-+得,43y x =-+=,∴(1,3)A ,∴133k =⨯=,∴k 的值为3,故答案为:3.【点睛】本题是反比例函数与一次函数的交点问题,考查了函数的对称性,三角形的面积,一次函数图象上点的坐标特征,求得A 的坐标是解题的关键.14.将一张长方形纸条ABCD 沿EF 折叠,点B ,A 分别落在B ',A '位置上,FB '与AD 的交点为G .若∠DGF =110°,则∠FEG 的度数为.14.55°/55度【分析】根据平行的性质可知∠DGF=∠GFB,再根据翻折的性质可知∠BFE=∠EFG,即可求解.【解析】∵四边形ABCD是长方形,∴AD BC∥,∴∠GFB=∠DGF,∵∠DGF=110°,∴∠GFB=∠DGF=110°,∵根据翻折的性质有∠BFE=∠EFG,∴∠BFE=∠EFG=12∠GFB,∴∠FEG=1110552⨯=o o,故答案为:55°.【点睛】本题考查了平行的性质、矩形的性质以及翻折的性质,掌握平行的性质是解答本题的关键.15.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若20K∠=︒,40PMQ∠=︒,则MQP∠=.15.35°【分析】连接PO、QO,根据圆周角定理,得∠POQ=2∠PMQ=80°,则∠OPQ=∠OQP=50°,则∠POM=70°,再根据圆周角定理即可求解.【解析】连接PO、QO.根据圆周角定理,得∠POQ=2∠PMQ=80°,又OP =OQ ,则∠OPQ =∠OQP =50°,则∠POM =∠K +∠OPK =70°,所以∠PQM =12∠POM =35°.故答案为:35°.【点睛】此题综合运用了圆周角定理,等腰三角形的性质,三角形的外角的性质,难度适中.16.如图,ABC ∆的顶点都在正方形网格纸的格点上,则sin C =.16.31010【分析】连接AD ,利用勾股定理的逆定理先证明ACD ∆是直角三角形,从而可得90ADC ∠=︒,然后在Rt ACD ∆中,利用锐角三角函数的定义进行计算即可解答.【解析】如图:连接AD ,由题意得:2221750AC =+=,222125CD =+=,2226345AD =+=,∴222AD CD AC +=,∴ACD ∆是直角三角形,∴90ADC ∠=︒,在Rt ACD ∆中,35AD =,52AC =,∴35310sin 1052AD C AC ===,故答案为:31010.【点睛】本题考查了解直角三角形,勾股定理的逆定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(本大题共8个小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:202321(1)|13()231--+--.【解析】2023221(1)|13|()231--+-----=()131314-+--+-=131314-+----=7-【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解答本题的关键.18.(5分)为提高病人免疫力,某医院精选甲、乙两种食物为确诊病人配制营养餐,两种食物中的蛋白质含量和铁质含量如表.如果病人每餐需要35单位蛋白质和40单位铁质,那么每份营养餐中,甲、乙两种食物各需多少克?每克甲种食物每克乙种食物其中所含蛋白质0.5单位0.7单位其中所含铁质1单位0.4单位【解析】设甲、乙两种食物各需x 克、y 克,则0.50.7350.440x y x y +=⎧⎨+=⎩,解得2830x y =⎧⎨=⎩.答:每份营养餐中,甲、乙两种食物分别要28,30克.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.19.(6分)如图,AM BN ∥,AC 平分BAM ∠,交BN 于点C ,过点B 作BD AC ⊥,交AM 于点D ,垂足为O ,连接CD ,求证:四边形ABCD是菱形.【解析】证明:∵AC 平分BAM ∠,AM BN ∥,∴12∠=∠,23∠∠=.∴13∠=∠.∴BA BC =.又∵BD AC ⊥于点O ,∴OA OC =.在AOD △和COB △中,23OA OC AOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()AOD COB ASA ≌.∴OD OB =.∴四边形ABCD 是平行四边形.又∵BA BC =,∴平行四边形ABCD 是菱形.【点睛】本题主要考查了菱形的判定,涉及平行四边形的判定和性质,全等三角形的判定和性质,角平分线的性质,平行线的性质等知识,熟练掌握菱形的判定方法是解题的关键.20.(6分)某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言的人数比为10:3,请结合图中相关数据回答下列问题:(1)A组有人,C组有人,E组有人,并补全直方图;(2)该年级共有学生600人,请估计全年级在这天发言次数不少于20的人数;(3)已知A组发言的学生中恰有一位女生,E组发言的学生中恰有两位男生,现从A组与E组中分别抽一位学生写报告,求所抽的两位学生至多有一位男生的概率.【解析】试题分析:(1)根据B、E两组发言的人数比为10:3,即可求得B组发言人数的百分比,从而可以求得抽取的总人数,即可求得结果;(2)先求得发言次数不少于20的人数所占的百分比,再乘以600即可得到结果;(3)先列树状图表示出所有等可能的情况,再根据概率公式求解即可.(1)∵B、E两组发言的人数比为10:3,E组发言人数的百分比为6%∴B组发言人数的百分比为20%∴B组发言的人数=10÷20%=50人∴A组有50×4%=2人,C组有50×40%=20人,E组有50×6%=3人(2)由题意得(人)答:全年级在这天发言次数不少于20的人数为60人;(3)列树状图:共有6六种等可能情况,符合至多有一位男生的情况有4种因此P (至多有一位男生)4263==.21.(6分)电力公司在高山上建设如图1所示的输电铁塔,其示意图如图2所示,铁塔A 沿着坡面到山脚的距离200m AC =,铁塔B 沿着坡面到山脚的距离60m BD =,坡面AC 与山脚水平线CD 的夹角140ACD ∠=︒,坡面BD 与山脚水平线CD 的夹角120BDC ∠=︒.(1)求铁塔A 到山脚水平线CD 的距离;(2)若从铁塔A 看铁塔B 的俯角为10°,求铁塔A 与铁塔B 的距离AB 的长(结果精确到1m ).(参考数据:sin 400.643︒≈,cos 400.766︒≈,tan 400.839︒≈,sin100.174︒≈,cos100.985︒≈,tan100.176︒≈,3 1.732≈)【解析】(1)解:如下图,过A 作AE CD ⊥交DC 延长线于E ,90AEC ∴∠=︒,140ACD ∠=︒,18014040ACE ∴∠=︒-︒=︒,200m AC =Q .∴在Rt ACE 中,sin AE ACE AC∠=,sin 200sin 402000.643128.6m AE AC ACE ∴=⋅∠=︒≈⨯=.答:铁塔A 到山脚水平线CD 的距离约为128.6m .(2)如上图,过B 作BF CD ⊥交CD 的延长线于F ,过A 作AH CD ∥交FB 的延长线于H ,则90AEC BFE H ∠=∠=∠=︒,∴四边形AEFH 为矩形,128.6m HF AE ∴==.120BDC ∠=︒ ,60BDF ∴∠=︒;60m BD = ,∴在Rt BDF △中,sin BF BDF BD∠=,3sin 60sin 6060303301.73251.96m 2BF BD BDF ∴=⋅∠=⨯≈︒=⨯=⨯=,128.651.9676.64m BH HF BF ∴=-=-=.在Rt ABH △中,sin BH BAH AB ∠=,76.6476.64440m sin sin100.174BH BA AB H ∴==≈≈∠︒.答:铁塔A 到铁塔B 的距离AB 的长约为440m .22.(7分)如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过点D 作DE ⊥MN 于点E .(1)求证:DE 是⊙O 的切线;(2)若DE =4cm ,AE =3cm ,求⊙O 的半径.【解析】(1)证明:连接OD ,∵OA=OD,∴∠1=∠2,∵AD平分∠CAM,∴∠2=∠3,∴∠1=∠3,∴MN∥OD,∵DE⊥MN,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连接CD,∵AC是⊙O的直径,∴∠ADC=90°,43+=5,∴AD=22+=22DE AE∵DE⊥MN,∴∠AED=90°,∴∠ADC=∠AED,又∵∠2=∠3,∴△ADC ∽△AED ,∴AC AD AD AE =,即553AC =,∴AC =253,∴OA =12AC =256,即⊙O 的半径为256cm .【点睛】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度.23.(8分)如图,已知抛物线22y ax bx =++()0a <与y 轴交于点C ,与x 轴交于()1,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)若点D 是第二象限抛物线上的动点,DE x 轴,交直线BC 于点E ,点G 在x 轴上,点F 在坐标平面内,是否存在点D ,使以D ,E ,F ,G 为顶点的四边形是正方形?若存在,求点D 的坐标;若不存在,请说明理由.【解析】(1)将()1,0A -,()2,0B 代入22y ax bx =++()0a <中,得204220a b a b -+=⎧⎨++=⎩,解得:11a b =-⎧⎨=⎩∴抛物线的函数表达式为22y x x =-++.(2)由题意和22y x x =-++可得()0,2C ,()2,0B ,可设直线BC 的函数表达式为:2y kx =+,将()2,0B 代入得:220k +=,∴1k =-,∴直线BC 的函数表达式为2y x =-+.设()2,2D t t t -++(0t <),分两种情况:①当DE 为边时,如图1,四边形DEFG 是正方形(点G 、F 可互换位置).则22DG D t E t ==-++,故E 的纵坐标与D 的纵坐标相等为22t t -++,将22y t t =-++代入2y x =-+中,可得E 的横坐标为2t t -,则点E 的坐标为()22,2t t t t --++,2t t tDE =--∴DE EF =,即222t t t t t --=-++,解得2t =(0t <,要舍)或12t =-,∴点D 的坐标为15,24⎛⎫- ⎪⎝⎭.②当DE 为对角线时,如图2,连接FG ,过点D 作DH x ⊥轴于点H ,DE HG ∥,DH FG ∥,易得2DE FG DH ==,则()2222224DE t t t t =-++=-++,则E 的纵坐标为2224t t t -+++,∴点E 的坐标为()22224,2t t t t t -+++-++.点E 在直线2y x =-+上,∴2222342t t t t -++=--+,解得23t =-或2(0t <,要舍),∴点D 的坐标为28,39⎛⎫- ⎪⎝⎭.综上可得:存在点D ,使以D ,E ,F ,G 为顶点的四边形是正方形,点D 的坐标为15,24⎛⎫- ⎪⎝⎭或28,39⎛⎫- ⎪⎝⎭.24.(10分)如图1,在正方形ABCD 中,E ,F 分别在边AB BC ,上,且CE DF ⊥于点O .(1)试猜想线段CE 与DF 的数量关系为______;(2)数学小组的同学在此基础上进行了深入的探究:①如图2,在正方形ABCD 中,若点E ,F ,G ,H 分别在边AB BC CD DA ,,,上,且EG FH ⊥于点O ,求证:EG FH =;②如图3,将①中的条件“在正方形ABCD 中”改为“在矩形ABCD 中,AB a =,2BC a =”,其他条件不变,试推理线段EG 与FH 的数量关系;③如图4,在四边形ABCD 中,90ABC ∠=︒,60BCD ∠=︒,6AB BC CD ===,点M 为AB 的三等分点,连接CM ,过点D 作DN CM ⊥,垂足为点O ,直接写出线段DN 的长.【解析】(1)证明:∵四边形ABCD 是正方形,90,B DCF BC CD ︒∴∠=∠==,90BCE DCE ∴∠+∠=︒,CE DF ⊥ ,90CPD ︒∴∠=,90CDF DCE ∴∠+∠=︒,BCE CDF ∴∠=∠,()CBE DCF ASA ∴ ≌,CE DF ∴=.(2)①证明:过点H 作HN BC ⊥交于N ,过点G 作GM BA ⊥交于M ,∵四边形ABCD 是正方形,BC CD∴= 四边形BCGM 为矩形,四边形CDHN 为矩形,MG BC ∴=,HN CD=∴MG HN =,∵HF EG ⊥,∴90MGE OPG NHF OPG ∠+∠=∠+∠=︒,∴MGE NHF ∠=∠,∴()HFN GEM ASA ≌,∴HF EG =;②解:2EG FH =;理由:过点H 作HQ BC ⊥交于Q ,过点G 作GP ⊥AB 交于P ,由①可得,QHF PGE ∠=∠,QHF PGE ∴V V ∽,HF HQ GE PG∴=,,2AB a BC a ==Q ,2,PG a HQ a ∴==,122HF a GE a ∴==,2EG FH ∴=;③解:如图3,过点D 作DS BC ⊥于S ,90DSN DSC B ∴∠=∠=∠=︒,60,6DCS CD ∠=︒=Q ,3sin 60332DS CD CD ∴=⋅︒==, 点M 是AB 的三等分点,6AB =,2BM ∴=或4BM =,6BC = ,22210CM BC BM ∴=+=或213,DN CM ⊥Q ,BM DS ∴∥,BMC DJM ∴∠=∠,90DJM NDS NDS DNS ∠+∠=∠+∠=︒Q ,DNS DJM ∴∠=∠,BMC DJM DNS ∴∠=∠=∠,∴BCM SDN ∽,CM BC DN SD ∴=,210633DN ∴=,或213633DN =,解得30DN 或39.【点睛】本题考查了四边形的综合题,正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.。
最新甘肃省中考数学押题预测密卷有答案 最新题必考题必考题型

最新甘肃省中考数学押题预测密卷一、选择题(本大题共10小题,每小题4分,共40分,)1.如果零上6℃记作+6℃,哪么零下6℃记作 ( ) A.6℃ B.-6℃ C.6 D.-62.如果x 2-3x +a 可分解为(x +2)(x -5),那么a 的值为 ( ) A. -3 B. -5 C. 10 D. -103.如图,已知︒=∠701,要使AB//CD ,则须具备的另一个条件是 ( ) A.︒=∠702 B.︒=∠1002 C.︒=∠1102 D.︒=∠11034.在反比例函数y=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的1-x A.x ≥0 B.x >0且x ≠1 C.x >0 D.x ≥0且x ≠1 6.如图所示,在△ABC 中,AB=AC ,∠BAC =36°,∠ABC 与∠ACB 的角平分线相交于点p ,则∠BPC 的度数为 ( )A. 72°B. 108°C. 144°D. 126°7.下列命题中,正确的是 ( ) A. 有两边和一角对应相等的两个三角形全等B. 有一边和两角对应相等的两个三角形全等C. 有三个角对应相等的两个三角形全等D. 以上答案都不对8.为了解某校计算机等级考试的情况,抽取60名学生的计算机考试成绩进行了统计,统计结果如表所示,则这60名学生计算机考试成绩的众数..、中位数...分别是 ( )A.20,16 B.16,20 C.20,12 D.16,129.抛物线的图形如图,则下列结论:①>0;②;③>21;④<1.其中正确的结论是 ( )A.①②B.②③C.②④D.③④ 10.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 作0°~90°的旋转,那么旋转时露出的△ABC 的面积(S)随着旋转角度(n)的变化而变化,下面表示S 与n 的关系的图象大致是 ( )8小题,每小题4分,共32分,只要求填写最后结果)11.如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为__________。
2024年广东省深圳市中考数学模拟押题预测试卷

2024年广东省深圳市中考数学模拟押题预测试卷一、选择题(每题3分,共24分)1.(★)(3分)二次根式的值是()A.-3B.3或-3C.9D.32.(★)(3分)函数y=的自变量x的取值范围是()A.x≠-2B.x≥-2C.x>-2D.x<-23.(★)(3分)下列式子、、、、、,二次根式的个数()A.4B.3C.2D.14.(★)(3分)下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.5.(★)(3分)下列根式中,不是最简二次根式的是()A.B.C.D.6.(★★)(3分)已知a为实数,那么等于()A.a B.-a C.-1D.07.(★★)(3分)已知实数a在数轴上对应的点如图所示,则-的值等于() A.2a+1B.-1C.1D.-2a-18.(★)(3分)已知是正整数,则实数n的最大值为()A.12B.11C.8D.3二、填空题(每题3分,共36分)9.(★★)(3分)化简:=.10.(★)(3分)计算:=2.11.(★★)(3分)使在实数范围内有意义的x应满足的条件是x≥1.12.(★★★)(3分)计算=8-4.13.(★★)(3分)当x≤0时,化简|1-x|-的结果是1.14.(★★)(3分)在实数范围内分解因式:x4-25=.15.(★★★)(3分)若|a-2|++(c-4)2=0,则a-b+c=3.16.(★★★)(3分)已知y=--1,求x+y=2.17.(★★)(3分)若成立,则x满足2≤x<3.18.(★★★)(3分)下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有①②③.19.(★★★)(3分)=-1-.20.(★★★)(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来(n≥1).三、计算题:(每题6分,共24分)21.(★★★)(6分).22.(★★)(6分)计算:.23.(★★)(6分)化简:.24.(★★)(6分)计算:-++.四、解答题(每题9分,共36分)25.(★★★)(8分)先化简,再求值:,其中x=+1.26.(★★)(10分)设长方形的长与宽分别为a,b,面积为S.①已知a=cm,b=2cm,求S;②已知S=cm2, b=cm,求a.五.阅读理解:(6分)27.(★★★★)(6分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.试求12※4的值.六、综合题(12分)28.(★★★)(6分)阅读下面问题:;;.…试求:(1)的值;(2)的值; (3)(n为正整数)的值.29.(★★★)(6分)计算:(+)2007×(-)2006.。
最新中考数学押题预测密卷 最新题必考题必考题型

成都市最新中考数学押题预测密卷一、选择题(共10小题,每小题3分,共30分)1.在0,3,-1,-3这四个数中,最大的数是( )A .0.B .3.C .-1.D .-3. 2.式子3x -在实数范围内有意义,则x 的取值范围是( ) A .x >3. B .x ≥3. C .x <3. D .x ≤3.3.如图,△ ABO 的顶点坐标分别是A (-3,3)、B (3,3)、O (0,0),试将△ABO 放大,使放大后的△EFO 与△ABO 对应边的比为1︰2,则点E 和点F 的坐标分别为( ) A .(-6,6),(6,6) B .(6,-6),(6,6)C .(-6,6),(6,-6)D .(6,6),(-6,-6) 4.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ).A. 19和20B. 20和19C. 20和20D. 20和21 5.下列计算正确的是 ( ) A .a 3÷a 2=a B .a 3+a 2=a 5C .(a 3)2=a5D .a 2·a 3=a66.下列等式正确的是( ).A 、()233-=- B 、2(3)3-=- C 、822= D 、4(2)2-=7.如图,甲、乙两图是分别由五个棱长为“1是( )A .主视图.B .左视图.C .俯视图.D .三视图都一致.8.今年的“六·一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了如图1、2的统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有( ) A .4个. B .3个. C .2个. D .1个.9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,甲乙yxF E B AO9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天. B .第4天. C .第5天. D .第6天.10.B 为线段OA 的中点,P 为以O 为圆心,OB 为半径的圆上的动点,当PA 的中点Q 落在⊙O 上时,如图,则cos ∠OQB 的值等于( ) A .12 . B .13 . C .14 . D .23.二、填空题(共6小题,每小题3分,共18分)11.分解因式:3ax 2-3ay 4= .12.2月28日15时,据统计大约有1.97亿海内外网民纷纷登陆新华网发展论坛,就他们关心的热点问题向总理提问.将1.97亿用科学记数法表示为13.一只袋内装有2个红球、3个白球、5个黄球(这些球除颜色外没有其它区别),从中任意取出一球,则取得红球的概率是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新中考数学押题预测密卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.点A 是数轴上的任意一点,则下列说法正确的是( ▲ ) (A )点A 表示的数一定是整数; (B )点A 表示的数一定是分数; (C )点A 表示的数一定是有理数;(D )点A 表示的数可能是无理数.2.下列关于x 的方程一定有实数解的是( ▲ )(A )21011x x x ++=--; (B1x =-; (C )210x x --=; (D )210x x -+=.3.某学校为了了解九年级学生体能情况,随机选取30名 学生测试一分钟仰卧起坐次数,并绘制了直方图(如图), 学生仰卧起坐次数在25~30之间的频率为( ▲ ) (A )0.1; (B )0.4;(C )0.33;(D )0.17.4.将抛物线22y x =-平移到抛物线222y x x =+-的位置,以下描述正确的是( ▲ ) (A )向左平移1个单位,向上平移1个单位;(B )向右平移1个单位,向上平移1个单位;(C )向左平移1个单位,向下平移1个单位;(D )向右平移1个单位,向下平移1个单位. 5.下列图形既是中心对称又是轴对称的是( ▲ )(A )菱形; (B )梯形; (C )正三角形; (D )正五边形. 6.下列条件一定能推得△ABC 与△DEF 全等的是( ▲ ) (A )在△ABC 和△DEF 中,∠A =∠B ,∠D =∠E ,AB =DE ; (B )在△ABC 和△DEF 中,AB =AC ,∠A =∠F , FD =FE ;(C )在△ABC 和△DEF 中,1,AB DEB E BC EF ==∠=∠; (D )在△ABC 和△DEF 中,1,AB BCB E DE EF==∠=∠. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】(第3题图)7= ▲ . 8x =的解是 ▲ .9.如果反比例函数1ky x-=的图像在第二、四象限,那么k 的取值范围是 ▲ . 10.函数y kx b =+的大致图像如图所示,则当0x <时,y 的取值范围是 ▲ .11.黄老师在数学课上给出了6道习题,要求每位同学独立完成。
则这些同学平均答对 ▲ 道题.12.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是 ▲ . 13.在Rt △ABC 中,∠C =90°,点D 为AB 边上中点,如果,AB a CD b ==,那么CA = ▲ (用,a b 表示).14.如果人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,那么该斜坡的坡度是 ▲ .15.如图,△ABC 中,∠A =80°,∠B =40°,BC 的垂直平分线交AB 于点D ,联结DC 。
如果AD =2,BD =6,那么△ADC 的周长为 ▲ .16.如图,在Rt △ABC 中,∠A =90°,∠B =30°,BC =10,以A 为圆心画圆,如果⊙A 与直线BC 相切,那么⊙A 的半径长为 ▲ .17.如果将点(-b ,-a )称为点(a ,b )的“反称点”,那么点(a ,b )也是点(-b ,-a )的“反称点”,此时,称点(a ,b )和点(-b ,-a )是互为“反称点”。
容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0)。
请再写出一个这样的点: ▲ .18.如图,在菱形ABCD 中,AB =a ,∠ABC =α。
将菱形ABCD 绕点B 顺时针旋转(旋转角小于90°),点A 、C 、D 分别落在A ’、C ’、D ’处,当 A ’C ’⊥BC 时A ’D = ▲ (用含a 和α的代数式表示).三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)(第18题图)(第15题图) A B C D A B C (第16题图)先化简,再求值:11123213222-+++--÷--x x x x x x x ,12+=x . 20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧+<+≤+-,2235,3)3(2x x x x 且写出使不等式组成立的所有整数。
21.(本题满分10分)甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数关系如图所示,根据图像所提供的信息解答问题:(1) 他们在进行 ▲ 米的长跑训练,在0<x <15的时段内,速度较快的人是 ▲ ; (2)求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3)当x =15时,两人相距多少米?(4)在15<x <20的时段内,求两人速度之差.22.(本题满分10分)如图,已知:⊙O 是△ABC 的外接圆,半径长为5,点D 、E 分别是边AB 和边AC 的中点,AB =AC ,BC =6。
求∠OED 的正切值。
23.(本题满分12分,其中第(1)小题7分,第(2)小题小题5分)分)A BCD E O (第22题图)梯形ABCD 中,AD //BC ,DC ⊥BC ,CE ⊥AB 于点E ,点F 在边CD 上,且BE CE BC CF ⋅=⋅。
(1)求证:AE CF BE DF ⋅=⋅;(2)若点E 为AB 中点,求证:222AD BC EC BC ⋅=-24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分) 直线6y kx =-过点A (1,-4),与x 轴交于点B ,与y 轴交于点D ,以点A 为顶点的抛物线经过点B ,且交y 轴于点C 。
(1)求抛物线的表达式;(2)如果点P 在x 轴上,且△ACD 与△PBC 相似,求点P(3)如果直线l 与直线6y kx =-关于直线BC 对称, 求直线l 的表达式。
25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分) 已知梯形ABCD 中,AD //BC ,AD =1,BC =2,sin B =35。
过点C 在∠BCD 的内部作射线交射 线BA 于点E ,使得∠DCE =∠B 。
(1)如图1,当ABCD 为等腰梯形时,求AB 的长; (2)当点E 与点A 重合时(如图2),求AB 的长; (3)当△BCE 为直角三角形时,求AB 的长。
x(第24题图)(备用图)BCABCD(图1)BCD(E ) (图2)A(第25题图)A BCD EF(第23题图)一、选择题1、D ;2、C ;3、B ;4、C ;5、A ;6、D ; 二、填空题7、;8、2x =;9、1k >;10、1y <;11、4.5;12、23;13、12b a -;14、;15、14;1617、(3,-3);18、2cos 2a a α-; 三、解答题19、解:原式=11)1)(3()1()1)(1(32-++-+⋅-+-x x x x x x x -----------------------------------------(6分)=1111-+-x x =12-x --------------------------------------------------------(2分) 当12+=x 时, 原式=222=-------------------------------------(2分) 20、解:⎩⎨⎧+<+≤+-.123102,362x x x x ----------------------------------------------------------------------(2分)⎩⎨⎧<-≤.2,93x x -----------------------------------------------------------------------------------(2分) 得⎩⎨⎧->≤.2,3x x ---------------------------------------------------------------------------------(2分)∴不等式组的解集是-2<x ≤3.-----------------------------------------------------(2分) 使不等式组成立的所有整数是-1、0、1、2、3.----------------------------------(2分)21、解:(1)5000-------------------------------------------------------------------------------------(1分)甲 -------------------------------------------------------------------------------------(1分) (2)设所求直线的解析式为:y =kx +5000,-----------------------------------------(1分)由图象可知:当x =20时,y =0,∴0=20k +5000,解得k = -250. --------------------------------------------------(1分) 即y = -250x +5000 ------------------------------------------------------------------(1分) (3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ------------(2分)两人相距: 2000-1250=750(米). ----------------------------------------------(1分)(4) 两人速度之差:750÷(20-15)=150(米/分) ---------------------------------(2分) 22、解:联结AO 并延长交BC 于点H ,联结OC , ∵AB=AC ,∴AB AC =,∵O 为圆心,∴AH ⊥BC ,BH=HC ,---------------------------------------------------------------(2分) ∴HC=3,∵半径OC=5,∴OH=4,AH=9,------------------------------------------(2分) ∴在Rt △AHC 中,tan ∠HAC=3193HC AH ==,即tan ∠OAE=13,----------------(2分)∵D 、E 分别是边AB 和边AC 的中点,∴DE//BC ,∴AH ⊥DE ,∴∠OAE+∠AED=90°,∵E 是边AC 的中点,O 为圆心,∴OE ⊥AC ,∴∠AED+∠OED=90°,∴∠OAE=∠OED ,--------------------------------------------------------------------------(2分) ∴tan ∠OED= tan ∠OAE=13.----------------------------------------------------------------(2分) 23、证明:(1)∵CE ⊥AB ,∴∠B+∠BCE=90°,∵DC ⊥BC ,∴∠DCE+∠BCE=90°,∴∠B=∠DCE ,-----------(2分)∵BE CE BC CF ⋅=⋅,∴BE CFBC CE=,∴△BCE ∽△CEF ,------(2分) ∴∠BCE=∠CEF ,------------------------------------------------------------(1分) ∴EF//BC ,----------------------------------------------------------------------(1分)∴AE DFBE CF=,即AE CF BE DF ⋅=⋅。