线性代数-向量空间与线性方程组解的结构
线性代数教案同济版

线性代数教案同济版第一章线性代数基本概念1.1 向量空间教学目标:1. 理解向量空间的概念及其性质;2. 掌握向量空间中的线性组合和线性关系;3. 了解向量空间的基和维数。
教学内容:1. 向量空间的概念;2. 向量空间的性质;3. 线性组合和线性关系;4. 基和维数的概念及计算。
教学方法:1. 通过具体例子引入向量空间的概念,引导学生理解向量空间的基本性质;2. 通过练习题,让学生掌握线性组合和线性关系的计算方法;3. 通过案例分析,让学生了解基和维数的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入向量空间的概念,讲解向量空间的基本性质;2. 讲解线性组合和线性关系的计算方法,举例说明;3. 介绍基和维数的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
教学评估:1. 课堂问答,检查学生对向量空间概念的理解;2. 练习题,检查学生对线性组合和线性关系计算方法的掌握;3. 案例分析,检查学生对基和维数概念及计算方法的掌握。
1.2 线性变换教学目标:1. 理解线性变换的概念及其性质;2. 掌握线性变换的矩阵表示;3. 了解线性变换的图像和核。
教学内容:1. 线性变换的概念;2. 线性变换的性质;3. 线性变换的矩阵表示;4. 线性变换的图像和核的概念及计算。
教学方法:1. 通过具体例子引入线性变换的概念,引导学生理解线性变换的基本性质;2. 通过练习题,让学生掌握线性变换的矩阵表示方法;3. 通过案例分析,让学生了解线性变换的图像和核的概念及计算方法。
教学资源:1. 教材《线性代数》(同济版);2. 教学PPT;3. 练习题及答案。
教学步骤:1. 引入线性变换的概念,讲解线性变换的基本性质;2. 讲解线性变换的矩阵表示方法,举例说明;3. 介绍线性变换的图像和核的概念,讲解计算方法,举例说明;4. 布置练习题,让学生巩固所学知识。
同济大学线性代数教案第三章向量空间与线性方程组解的结构

线性代数教学教案第三章 向量组及其线性组合授课序号01,n a 组成的有序数组称为2n a ⎪⎪⎪⎭维向量写成),,n a个分量,其中T,…来表示,n a 是复数时,维复向量,当12,,,n a a a 是实数时,本书所讨论的向量都是实向量0⎪⎪⎪⎭或()0,0,,00=.2n a ⎪⎪⎪⎭称为向量2n a ⎪⎪⎪⎭的负向量,记为α. 向量的运算:由于向量可看成行矩阵或列矩阵,因此我们可用矩阵的运算来定义向量的运算,也就是:122,n n a a b ⎛⎫⎛⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭β,k ∈,则有1122n n a b a b a b +⎛⎫ ⎪+ ⎪= ⎪ ⎪+⎝⎭β; (2)2n k ka ⎪⎪⎪⎭α;我们称这两种运算为向量的线性运算)1221122,,n n n n b ba a ab a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪⎝⎭;()111212212221212,,,n n n n n n n n a b a b a b a b a ba b b b b a a b a b a b ⎛⎫⎪⎪ ⎪=⎪ ⎪⎪⎪⎭⎝⎭. 二、向量组及其线性组合::由若干个维数相同的向量构成的集合,称为向量组. :给定n 维向量组,,,n ααα,对于任意一组数,,,n k k k ,表达式+n n k k α,n α和一个,n k ,使得++n n k =βα,,,n α线性表示,或者说向量β是向量组,n α的一个线性组合量组12,,,n ααα(唯一)线性表分必要条件是+n n x =α有(唯一)解.三、向量组的等价:由向量组B 线性表示:,,m αα是m ,,s β是s 维向量组成的向量组. 中每一个向量,)s β均可由向量组,m α线性表,s β可由向量组:A 12,,,m ααα线性表示.A 与向量组可以相互线性表示,则称向量组A 与向量组2,,,m αα与向量组:B 2,,,s βββ. 令矩阵),m A α,),s β,则向量组B 可由向量组线性表示的充分必要条件是矩阵方程=B向量组A 与向量组等价的充分必要条件是矩阵方程=BY A四、主要例题:1211222221122n n n n m m mn n ma x a x a x a x a xb +++++=中第()121,2,,i i i mi a ai n a ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭α,维列向量2m b ⎪⎪⎪⎭, n n x β+=α12122212n n m m mn a a a a a ⎫⎪⎪⎪⎪⎭,将矩阵A 与列向量组和行向量组对应2100010,,,001n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭e e ,将任一向量2n a ⎪⎪⎪⎭由12,,n e e e 线性表示536⎫⎪⎪⎪-⎭及向量组123101,2,11⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭βββ,试问α能否由12,ββ123-⎫⎛⎫⎛⎫授课序号02,m α,如果存在一组不全为零的数,m k ,使得m m k +α,则称向量组,m α线性相关.线性无关:若当且仅当0m k ==时,才有112m m k k k ++=0ααα,m α线性无关.m 个n 维向量构成的向量组12,,,m ααα线性相关的充分必要条件是齐次线性方程组1122m m k k k +++=0ααα有非零解;线性无关的充分必要条件是上述齐次线性方程组只有零解0m k k k ===(,m m α线性相关的充分必要条件是存在某一个向量(1j ≤α2线性相关的充分必要条件是它们的分量对应成比例是向量组A 的部分组线性无关,则其部分组,m α是m 个,m α线性无关,而向量组,,m αβ线性相关,则向量,m α线性表示,且表示式是唯一的如果向量组1,,s ααα可由向量组,t β线性表示,并且s >,s α线性如果向量组12,,,s ααα可由向量组2,,t β线性表示,并且向量组,s α线性无关,则2,,s α与向量组,t β均线性无关,并且这两个向量组等价,则s t =.2322,2⎛⎫ ⎪= ⎪ ⎪α,存在一组不全为零的数20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e ,对任意一组数12120001001n n n n k k k k k k k ⎛⎫⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭e ,0n k ==时,才有1122n n k k k +++=0e e e ,所以向量组1,,n e e e 线性无关证明:任一含有零向量的向量组必定线性相关.221,11⎫⎛⎫⎛⎫⎪ =⎪ ⎪ -⎭⎝α,判断向量组12,,αα授课序号03,r α满足条件:)向量组1,,r ααα线性无关;)对于A 中任意的向量β,向量组,,r αβ线性相关,则称向量组12,,r ααα为向量组的一个极大线性无关组,简称极大无关组向量组A 的任意一个极大无关组所含向量的个数,称为这个向量组的秩,记为等价的向量组有相同的秩二、矩阵秩的概念及求法:rB ,则RA B ,n α为列构作矩阵),,n α,对矩阵的阶梯数给出矩阵的秩,从而给出向量组1,,n ααα的秩),n β,,n α与向量组,n β有相同的线性相关性,从而可以根据向量组,n β的极大无关组给出向量组12,,,n ααα的极大无关组,并给出不属于极大无关组的向量由极大无关组线性表示的表示20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e 线性无关,所以该向量组的极大无关组就是它3145,1227⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭α,向量1α与2α的分量不对应成比例,。
线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.
取
k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6
线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
线性代数讲义 (24)

1 –2 1 –1 1 –1 0 1 1 0 0 –1 0 4 –4 4 –5 7 0 –1 –1 0 0 1
8/13 第5章 向量组与解空间 第5节 线性方程组的解的结构
1 0 3 –1 1 –3 0 1 1 0 0 –1 0 0 –8 4 –5 11 000 0 0 0
1 0 0 12– – 78– 98– 0 1 0 12– – 58– 38– 0 0 1 – –12 –85 – 1–81– 000 0 0 0
解为
X = + c11 + c22 + + cn–rn–r, c1, c2, , cn–r R.
线性方程组的这样的通解表达式给出了解的新的 含义, 使得解的结构更加清楚.
7/13 第5章 向量组与解空间 第5节 线性方程组的解的结构
p.98 例1
例 1 求解下列线性方程组的通解: x1 – 2 x2 + x3 – x4 + x5 = –1,
x1 x2
+ b1,r+1 xr+1 + + b2,r+1 xr+1 +
+ b1n xn = 0, + b2n xn = 0,
xr + br,r+1 xr+1 + … + brn xn = 0, 0 = 0,
0 = 0,
3/13 第5章 向量组与解空间 第5节 线性方程组的解的结构
于是 AX = 0 的解为
若 1, 2, , s 是 AX = 0 的一个基础解系, 则 AX = 0 的任一解 可以唯一地表示为
= k11 + k22 + + kss, k1, k2, ks R,
高等代数1

高等代数高等代数是现代数学中的一门重要学科,它研究的是代数结构的基础和性质。
代数结构是指由一组元素及其相关运算组成的数学系统,如群、环、域等。
高等代数是对线性代数和抽象代数等基础知识的延伸和深化,对于理解现代数学中许多分支都至关重要。
一、线性代数高等代数中最基础的部分是线性代数。
线性代数是代数学中的一个分支,主要研究向量、矩阵以及线性方程组的性质和运算。
线性代数是微积分和微分方程等数学领域必不可少的基础知识,它的应用范围也很广泛,包括了图像处理、信号处理、机器学习等领域。
1. 向量空间向量空间是线性代数中最重要的概念之一,它是由一组向量以及其对应的加法和数乘运算组成的数学结构。
向量可以是实数向量或复数向量,它们具有加法、数乘、向量求和、向量求差等运算。
2. 线性变换线性变换是一种从一个向量空间到另一个向量空间的映射,它具有线性性质。
线性变换的本质是将一个向量空间中的向量映射到另一个向量空间中的向量,它可以用矩阵表示,从而得到更方便的运算方式。
3. 矩阵及其运算矩阵是线性代数中常见的数学工具,它具有加法、数乘、矩阵乘法等运算,可以用于解决线性方程组、对称矩阵的特征值和特征向量等问题。
二、抽象代数抽象代数是研究代数结构的基本性质和理论结构的一门学科,它通过对代数结构的抽象和推广,研究了许多重要的代数性质。
抽象代数包括了群论、环论、域论等领域。
1. 群论群是一种有限或无限的、具有代数结构的量,它由一组元素以及合成运算组成。
群具有封闭、结合、单位元和逆元等运算性质,在数学研究中被广泛应用。
群论的应用领域包括了几何学、物理学、密码学等领域。
2. 环论环是一种数学结构,它由一个集合以及两个二元运算(加法和乘法)组成。
环论是研究环以及环上的运算和性质的数学分支,它的应用包括了计算机科学、代数几何学等领域。
3. 域论域是一种具有加法、乘法、加法逆元和乘法逆元等运算的数学结构,它是一个基本的代数结构。
域论是研究域以及域上的运算和性质的数学分支,它在现代数学和理论物理学中都有广泛的应用。
高等代数知识点总结

高等代数知识点总结高等代数是一门研究抽象代数结构的数学学科。
它是线性代数的拓展,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式等知识点。
以下是高等代数的主要知识点的总结。
1.向量空间:向量空间是高等代数的核心概念之一、它是一组满足特定性质的向量的集合。
向量空间具有几何和代数两种性质,包括加法、数乘、零向量、负向量等。
2.线性变换:线性变换是一种保持向量空间线性组合关系的变换。
它可以通过矩阵来表示,矩阵的乘法与线性变换的复合运算等价。
线性变换的性质包括保持加法和数乘、保持零向量、保持线性组合等。
3.矩阵理论:矩阵是高等代数中常用的工具,用于表示线性变换、求解线性方程组等。
矩阵具有加法、数乘、乘法等运算规则,还可以求逆矩阵、转置矩阵等。
矩阵的秩、特征值与特征向量等性质也是矩阵理论的重要内容。
4.线性方程组:线性方程组是高等代数中的基本问题之一、它是一组包含线性方程的方程组,可以用矩阵形式表示。
线性方程组的求解可以通过消元法、高斯消元法、矩阵求逆等方法来实现。
5.特征值与特征向量:特征值与特征向量是线性变换的重要性质。
特征值是线性变换在一些向量上的纵向缩放比例,特征向量是特征值对应的非零向量。
特征值与特征向量在很多应用中起到重要作用,如矩阵对角化、求解微分方程等。
6.行列式:行列式是矩阵的一个标量量。
行列式的值代表矩阵所对应的线性变换对单位面积进行的放缩倍数。
行列式具有反对称性、线性性、乘法性等性质,可以用于求解矩阵的逆、计算特征值等。
7.正交性与正交变换:正交性是高等代数中的一个重要概念。
向量空间中的两个向量称为正交,如果它们的内积为零。
正交性和正交变换在几何、物理、信号处理等领域有广泛应用。
8.对称性与对称变换:对称性是高等代数中的一个重要概念。
对称性指的是其中一变换下,物体经过变换后保持不变。
对称性与对称变换在几何、物理、化学等领域有广泛应用。
总结起来,高等代数是一门研究抽象代数结构的学科,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式、正交性与正交变换、对称性与对称变换等知识点。
《线性代数》教学课件—第4章 向量线性相关 第四节 线性方程组的解的结构

2. 基础解系的求法
设系数矩阵 A 的秩为 r , 并不妨设 A 的前 r 个
列向量线性无关, 于是 A 的行最简形矩阵为
1
0
b11
b1,nr
B
0
0
1 0
br1 0
br,nr
,
0
0
0
0
0
与 B 对应, 即有方程组
x1
b11xr1 b1,nr xn
,
(3)
例 12 求齐次线性方程组
2xx11x52x2
x3 x4 3x3
2
0, x4
0,
7x1 7x2 3x3 x4 0
的基础解系与通解.
解 对系数矩阵 A 作初等行变换, 变为行最
简形矩阵, 有
1
1
1 1
行变换
1
0
2 7 5
3
7 4
例 13 设 Am×nBn×l = O,证明
xr
br1xr1 br,nr xn
,
把 xr+1 , ···, xn 作为自由未知量,并令它们依次 等于 c1 , ···, cn-r ,可得方程组 (1) 的通解
x1
b11
b12
b1,nr
xr
br1
br
2
br
,nr
xr1 c1 1 c2 0 cnr 0 .
把方程 Ax = 0 的全体解所组成的集合记作 S ,
如果能求得解集 S 的一个最大无关组 S0 : 1 , 2 , ···, t,那么方程 Ax = 0 的任一解都可由最大无关
组 S0 线性表示;另一方面,由上述性质 1、2 可 知,最大无关组 S0 的任何线性组合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 37
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 38
01
OPTION
02
OPTION
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 39 例 2 证明:任一含有零向量的向量组必定线性相关. 证明
目录/Contents
第3章 向量空间与线性方程组解的结构 101
3.4 线性方程组解的结构 一、线性方程组有解的判定定理 二、齐次线性方程组解的结构 三、矩阵秩的求法
一、线性方程组有解的判定第定3章理向量空间与线性方程组解的结构 102
ᵃᵆ = ᵯ
ᵃᵆ = 0
一、线性方程组有解的判定第定3章理向量空间与线性方程组解的结构 103
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 97 例9
解
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 98
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 99
目录/Contents
第3章 向量空间与线性方程组解的结构 100
3.1 向量组及其线性组合 3.2 向量组的线性相关性 3.3 向量组的秩与矩阵的秩 3.4 线性方程组解的结构 3.5 向量空间
一、向量的概念及运算 2. 向量的运算
第3章 向量空间与线性方程组解的结构 7
这两种运算 称为向量的 线性运算
一、向量的概念及运算
第3章 向量空间与线性方程组解的结构 8
一、向量的概念及运算 例1 设有线性方程组
第3章 向量空间与线性方程组解的结构 9
一、向量的概念及运算
第3章 向量空间与线性方程组解的结构 10
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 92
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 93
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 94
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 95
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 96
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 52 证明
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 53 推论3
证明
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 54 推论4
证明
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 55 例6
二、齐次线性方程组解的结第构3章 向量空间与线性方程组解的结构 112
二、齐次线性方程组解的结第构3章 向量空间与线性方程组解的结构 113 证明
三、矩阵秩的求法
第3章 向量空间与线性方程组解的结构 84
三、矩阵秩的求法
第3章 向量空间与线性方程组解的结构 85
三、矩阵秩的求法
第3章 向量空间与线性方程组解的结构 86
三、矩阵秩的求法
第3章 向量空间与线性方程组解的结构 87
经过一次初等行变换不改变矩阵的秩,则经过有限 次初等行变换也不改变矩阵的秩.
一、向量组秩的概念 定义1
第3章 向量空间与线性方程组解的结构 66
一、向量组秩的概念
第3章 向量空间与线性方程组解的结构 67
一、向量组秩的概念 例1
第3章 向量空间与线性方程组解的结构 68
一、向量组秩的概念 例2
第3章 向量空间与线性方程组解的结构 69
一、向量组秩的概念
第3章 向量空间与线性方程组解的结构 70
一、向量组秩的概念 定义2
第3章 向量空间与线性方程组解的结构 71
一、向量组秩的概念
第3章 向量空间与线性方程组解的结构 72
定理1 等价的向量组有相同的秩.
证明 因为每个向量组都与它的极大无关组等价, 根据向量组等价的传递性,任意两个等价的 向量组的极大无关组也等价,因而有相同的 秩.
一、向量组秩的概念 例3
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 40 例3
解
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 41 于是,问题转化为齐次线性方程组
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 42 例4
证明
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 43
证明
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 48
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 49 从而有:
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 50 例5
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 51
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 44 定理1
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 45
一、向量组的线性相关与线第性3章无向关量空间与线性方程组解的结构 46
二、向量组线性相关性的一第些3章重向要量空结间与论线性方程组解的结构 47 定理1
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 11 定义 2 由若干个维数相同的向量构成的集合,称为向量组.
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 12 例2
第3章 向量空间与线性方程组解的结构 13
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 14 定义 3
一、线性方程组有解的判定第定3章理向量空间与线性方程组解的结构 108 证明
一、线性方程组有解的判定第定3章理向量空间与线性方程组解的结构 109 证明
一、线性方程组有解的判定第定3章理向量空间与线性方程组解的结构 110 证明
一、线性方程组有解的判定第定3章理向量空间与线性方程组解的结构 111
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 22 解
三、向量组的等价 定义 5
第3章 向量空间与线性方程组解的结构 23
三、向量组的等价
第3章 向量空间与线性方程组解的结构 24
三、向量组的等价
第3章 向量空间与线性方程组解的结构 25
三、向量组的等价 定理 2
第3章 向量空间与线性方程组解的结构 26
三、矩阵秩的求法
第3章 向量空间与线性方程组解的结构 88
三、矩阵秩的求法 例8
第3章 向量空间与线性方程组解的结构 89
解
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 90 定理4 矩阵的行向量组的秩与它的列向量组的秩 相等,都等于矩阵的秩. 证明
四、向量组的秩与矩阵的秩第的3章关向系量空间与线性方程组解的结构 91
第3章 向量空间与线性方程组解的结构 3
3.1 向量组及其线性组合 一、向量的概念及运算 二、向量组及其线性组合 三、向量组的等价
一、向量的概念及运算
第3章 向量空间与线性方程组解的结构 4
定义1
一、向量的概念及运算
第3章 向量空间与线性方程组解的结构 5
一、向量的概念及运算
第3章 向量空间与线性方程组解的结构 6
三、向量组的等价 证明
第3章 向量空间与线性方程组解的结构 31
三、向量组的等价 另一方面,由于
第3章 向量空间与线性方程组解的结构 32
目录/Contents
第3章 向量空间与线性方程组解的结构 33
3.1 向量组及其线性组合 3.2 向量组的线性相关性 3.3 向量组的秩与矩阵的秩 3.4 线性方程组解的结构 3.5 向量空间
证明 ᵅ 1ᵯ 1 + ᵅ 2ᵯ 2 + ⋯ + ᵅ ᵅ ᵯ ᵅ = ᵯ .
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 18
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 19 例4
解
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 20
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 21 例5
第3章 向量空间与线性方程组解的结构 74
证明
二、矩阵秩的概念 定义 3
第3章 向量空间与线性方程组解的结构 75
二、矩阵秩的概念 定义4
第3章 向量空间与线性方程组解的结构 76
并规定:零矩阵的秩等于0.
二、矩阵秩的概念
第3章 向量空间与线性方程组解的结构 77
二、矩阵秩的概念
第3章 向量空间与线性方程组解的结构 78
定义 4
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 15
由此可见,一个向量组可以线性表 示这个向量组中的每一个向量,零 向量是任意一个向量组的线性组合.
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 16 例3
二、向量组及其线性组合 第3章 向量空间与线性方程组解的结构 17 定理 1
三、向量组的等价 证明
第3章 向量空间与线性方程组解的结构 27
1 2
3
4
三、向量组的等价 例6
第3章 向量空间与线性方程组解的结构 28
证明
三、向量组的等价
第3章 向量空间与线性方程组解的结构 29
对增广矩阵实施初等行变换,有
三、向量组的等价 例7
第3章 向量空间与线性方程组解的结构 30
第3章 向量空间与线性方程组解的结构 73
证明:一个向量组线性无关的充分必要条件是它性无关,则这个向 量组的极大无关组就是它自身,于是它的秩等于它 所含向量的个数;