线性代数向量空间自测题(附答案)
空间向量及其线性运算练习题及答案

【巩固练习】 一、选择题1.下列各命题中,不正确的命题的个数为( )①||⋅=a a a ②()()(,)m m m λλλ⋅=⋅∈R a b a b ③()()⋅+=+⋅a b c b c a④22=a b b aA .4B .3C .2D .12.①若A 、B 、C 、D 是空间任意四点,则有0AB BC CD DA +++=; ②|a |-|b |=|a +b |是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在直线平行;④对空间任意一点O 与不共线的三点A 、B 、C ,若OP xOA yOB zOC =++ (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.其中不正确命题的个数是( ). A .1 B .2 C .3 D .43.(2015秋 衡阳校级期中)如图,在四面体ABCD 中,E 、F 分别是棱AD 、BC 的中点,则向量EF 与AB 、CD 的关系是( )A .1122EF AB CD =+ B .1122EF AB CD =-+ C .1122EF AB CD =- D .1122EF AB CD =--4.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( ) A .OC OB OA OM ++= B .OC OB OA OM --=2C .OC OB OA OM 3121++= D .OC OB OA OM 313131++=5.(2014秋·福建校级期末)如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若1BE AA xAB yAD =++,则( )A .12x =-,12y = B .12x =,12y =- C .12x =-,12y =- D .12x =,12y =6.(2015 四川校级模拟) 已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[)+0,|AB |sin B ||sin AB ACOP OA AC Cλλ=+∈+∞(),则点P 的轨迹一定通过ΔABC 的( )A. 外心B.内心C. 重心D.垂心7.已知空间向量A ,B ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ).A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 二、填空题8.如果两个向量→-a ,→-b 不共线,则→-p 与→-a ,→-b 共面的充要条件是____________。
自考线性代数试题及答案

自考线性代数试题及答案一、选择题(每题2分,共20分)1. 在线性代数中,向量空间的基具有什么性质?A. 唯一性B. 线性无关性C. 任意性D. 可数性答案:B2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目答案:D3. 线性变换的核是指什么?A. 变换后的向量集合B. 变换前的向量集合C. 变换后为零向量的向量集合D. 变换前为零向量的向量集合答案:C4. 线性方程组有唯一解的条件是什么?A. 方程的个数等于未知数的个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩答案:D5. 特征值和特征向量在矩阵理论中具有什么意义?A. 矩阵的对角化B. 矩阵的转置C. 矩阵的行列式D. 矩阵的迹答案:A6. 以下哪个矩阵是正交矩阵?A. 对角矩阵B. 单位矩阵C. 任意矩阵D. 零矩阵答案:B7. 矩阵的迹是矩阵对角线上元素的什么?A. 和B. 差C. 积D. 比答案:A8. 线性代数中的线性组合是什么?A. 向量的加法B. 向量的数乘C. 向量的加法和数乘的组合D. 向量的点积答案:C9. 矩阵的行列式可以用于判断矩阵的什么性质?A. 可逆性B. 秩C. 正交性D. 特征值答案:A10. 线性变换的值域是指什么?A. 变换前的向量集合B. 变换后的向量集合C. 变换前的向量空间D. 变换后的向量空间答案:B二、填空题(每空1分,共10分)11. 矩阵的转置是将矩阵的______交换。
答案:行与列12. 方程组 \( Ax = 0 \) 是一个______方程组。
答案:齐次13. 矩阵 \( A \) 和矩阵 \( B \) 相乘,记作 \( AB \),其中\( A \) 的列数必须等于______的行数。
答案:B14. 向量 \( \mathbf{v} \) 的长度(或范数)通常表示为\( \left\| \mathbf{v} \right\| \),它是一个______。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
第六章线性空间自测练习及答案

第六章 线性空间—自测答案一.判断题1.两个线性子空间的和(交)仍是子空间。
2.两个线性子空间的并仍是子空间。
3.n 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。
4.线性空间中两组基之间的过渡阵是可逆的。
5.两个线性子空间的和的维数等于两个子空间的维数之和。
6.同构映射的逆映射仍是同构映射。
7.两个同构映射的乘积仍是同构映射。
8.同构的线性空间有相同的维数。
9.数域P 上任意两个n 维线性空间都同构。
10.每个n 维线性空间都可以表示成n 个一维子空间的和。
答案:错:2.5.8 对:1.3.4.6.7.9.10 二.计算与证明1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维数。
解:(1)0f =0110n a a a -∴++=……+ 0121n a a a a -∴=----……设11a k =,22a k =,…,11n n ak --=,故0121n a k k k -=----……,21121121()n n n f t k k k k t k t k t ---∴=---+++ 21121(1)(1)(1)n n t k t k tk --=-+-++-因此,W 中任一多项式可写成211,1,,1n t t t ---- 的线性组合,易知211,1,,1n t t t---- 线性无关,故为W 的一组基,且W 的维数为n -1. 2. 求22P ⨯中由矩阵12113A ⎛⎫= ⎪-⎝⎭,21020A ⎛⎫= ⎪⎝⎭,33113A ⎛⎫= ⎪⎝⎭,41133A ⎛⎫= ⎪-⎝⎭生成的子空间的基与维数。
解:取22P ⨯的一组基11122122,,,E E E E ,则有 12341112212221311011,,,)(,,,)12133033A A A A E E E E ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦( 设213110111213333A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,即为1234,,,A A A A 在11122122,,,E E E E 下的坐标矩阵,对其作初等行变换得矩阵1011011-1000000B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1234dim (,,,)2L A A A A rankB ∴==,12,A A 为一组基。
线性代数作业及参考答案

第一章 矩阵作业答案班级: 姓名: 学号 : 得分:一、选择题 (每小题5分,共20分)1. 设A 为任意n 阶矩阵,下列4项中( B )是反对称矩阵。
(A )T A A + (B )T A A - (C )T AA (D )A A T2.设n 阶矩阵A ,B 是可交换的,即BA AB =,则不正确的结论是( D )。
(A )当A ,B 是对称矩阵时,AB 是对称矩阵 (B )2222)(B AB A B A ++=+ (C )22))((B A B A B A -=-+(D )当A ,B 是反对称矩阵时,AB 是反对称矩阵3.设n 阶矩阵A ,B 和C 满足E ABAC =,则( A)。
(A )E C A B A T T T T = (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =24. 设÷øöçèæ=21,0,0,21a ,a a T E A -=,a a T E B 2+=,则AB =( B )(A) a a TE + (B) E (C) E - (D) 0二、计算与证明题 (每小题20分,共80分)1.已知úûùêëé--=1121A ,试求与A 可交换的所有二阶矩阵X得分得分2. 已知úúúûùêêêëé=010101001A , (1)证明:E A A A n nn -+=³-223时,(2)求100A.3. 已知矩阵,,试作初等变换把A 化成B ,并用初等矩阵表示从A 到B 的变换.BQ AQ Q Q B a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a A c c c c =úúúûùêêêëé=úúúûùêêêëé==úúúûùêêêëé+++¾¾®¾úúúûùêêêëé+++¾¾®¾úúúûùêêêëé=«+21213133323321232223111312133333323123232221131312113332312322211312110010101001100100013123所以,设解:4.已知矩阵,试作初等行变换,把分块矩阵化成,其中E 是单位矩阵,B 是当左块A 化成E 时,右块E 所变成的矩阵;并计算矩阵的乘积AB 与BA .úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé+-+-101110012430001321100431010212001321312112r r r r )()(解:úúúûùêêêëé----¾¾¾®¾úúúûùêêêëé---¾¾®¾úúúûùêêêëé----¾¾®¾+-+-+--+«3151004160101120013151001011100013210124301011100013211213233321223113r r r r rr r r r r r )()()()(úúúûùêêêëé==úúúûùêêêëé----=100010001315416112BA AB B 则第二章 行列式与矩阵求逆作业答案班级: 姓名: 学号 : 得分:一.计算下列行列式:(每题10分,共30分)1. 已知4阶行列式44332211400000a b a b b a b a D =, 求4D 的值. 解:得分2. 计算n 阶行列式111111111111nn n n D n ----=3. 计算5阶行列式242322214321500032100111011110x x x x x x x x D =二.计算题:(每题15分,共60分)1. 已知3阶行列式2101123z y x D =,且,1,0322213331311-=++=+-M M M M M M2132131=+-M M M其中的值的余之式,求中元素是33D a D M ij ij .得分2. 求4阶行列式22350070222204034--=D 中第4行各元素余之式之和.3. 设úúúúûùêêêêëé=5400320000430021A , 则求1-A .4. 若úúúúûùêêêêëé=121106223211043a A 可逆,则求a 的值.三.(10分)问m l 、取何值时,齐次方程组ïîïíì=+m +=+m +=++l 0200321321321x x x x x x x x x有非零解?零解。
(完整)自考线性代数第三章向量空间习题

第三章 向量空间一、单项选择题1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( )A .若(I )线性无关,则(Ⅱ)线性无关B .若(I)线性无关,则(Ⅱ)线性相关C .若(Ⅱ)线性无关,则(I )线性无关D .若(Ⅱ)线性无关,则(I )线性相关2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组4321,,,αααα的秩为( )A .1B .2C .3D .43.设向量组4321,,,αααα线性相关,则向量组中( )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( )A 。
α1,α3线性无关 B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( )A .s ααα,,,21 中没有线性相关的部分组B .s ααα,,,21 中至少有一个非零向量C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4)。
如果|A |=2,则|—2A |=()A.-32B.-4C 。
4 D.327。
设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D 。
α1,α2,α3一定线性无关8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1 B 。
线性空间测试题及答案

线性空间测试题及答案一、选择题1. 线性空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 分配律D. 所有选项都正确2. 以下哪个不是线性空间的定义条件?A. 向量加法的封闭性B. 标量乘法的封闭性C. 存在零向量D. 向量加法的逆元存在二、填空题1. 线性空间中的向量加法满足_________,即对于任意向量u, v ∈ V,存在一个向量w ∈ V,使得u + w = v。
2. 线性空间中的标量乘法满足_________,即对于任意向量v ∈ V和标量a, b,有(a + b)v = av + bv。
三、简答题1. 请简述线性空间的定义。
2. 线性空间中的向量加法和标量乘法需要满足哪些条件?四、计算题1. 给定线性空间V中的向量u = (1, 2)和v = (3, 4),计算u + v。
2. 若标量a = 2,计算2u。
五、证明题1. 证明线性空间中的向量加法满足结合律。
2. 证明线性空间中的标量乘法满足分配律。
答案:一、选择题1. 答案:D2. 答案:D二、填空题1. 答案:逆元存在2. 答案:分配律三、简答题1. 答案:线性空间是一个集合V,配合两个二元运算:向量加法和标量乘法,满足以下条件:向量加法的封闭性、结合律、存在零向量、向量加法的逆元存在,以及标量乘法的封闭性、分配律、结合律。
2. 答案:向量加法需要满足封闭性、结合律、存在零向量、逆元存在,而标量乘法需要满足封闭性、分配律、结合律。
四、计算题1. 答案:u + v = (1+3, 2+4) = (4, 6)2. 答案:2u = 2 * (1, 2) = (2, 4)五、证明题1. 证明:设u, v, w ∈ V,则(u + v) + w = u + (v + w),由向量加法的结合律得证。
2. 证明:设u ∈ V,a, b为标量,则a(bu) = (ab)u,由标量乘法的分配律得证。
线性代数自测习题及答案

自测复习题21填空题 (1) 向量组[][][]1232,2,7,3,1,2,1,5,12a a a T T T ==-=线性 关。
(2) 4维向量组[]11,4,0,2a T =-,[]25,11,3,0a T =-,[]33,2,4,1a T =--,[]42,9,5,0a T =--, []50,3,1,4a T=-的秩是 ,且一个极大无关组为 。
的秩为,则向量组的秩为)已知向量组(321321,3,,4a a a a a a - 。
=⨯m A A n m 则的行向量组线形无关,,且的秩为矩阵)已知(35 ,m n 。
(6)已知秩为3的向量组1234,,,a a a a 可由向量组123,,βββ线性表示,则向量组123,,βββ必线性 。
(7)设20,,k k βT ⎡⎤=⎣⎦能由[]11,1,1a k T =+,[]21,1,1a k T =+,[]31,1,1a k T =+唯一线性表出,则k 满足 。
(8)设A 为4阶方阵,且()2r A =,则*0A x =的基础解系所含解向量的个数为 。
2选择题(1)设向量组()I 123,,a a a ;1234(),,,a a a a II ;1235(),,,a a a a III ;()V I 12345,,,a a a a a +,且()()3r r I =II =,()4,r III =则()r V I =( )。
(A)2 (B)3 (C)4 (D)5(2)设向量β可由向量组12,,....m a a a 线性表示,但不能由向量组121(),,....m a a a -I 线性表示,若向量组121(),,...,m a a a β-II ,则m a ( )。
(A )既不能由(I )线性表示,也不能由(II )线性表示(B )不能由(I )线性表示,但可由(II )线性表示(C )可由(I )线性表示,也可由(II )线性表示(D )可由(I )线性表示,但不可由(II )线性表示(3)n 维向量组12,,.....(3)s a a a s n ≤≤线性无关的充要条件是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第四章 向量空间》 自测题 (75
分钟)
一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。
(A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量;
(B )R n 中,分量是整数的所有向量;
(C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量;
(D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。
2.设R 4 的一组基为,,,,4321αααα令
414433322211,,,ααβααβααβααβ+=+=+=+=,
则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。
3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。
4. 设W 是所有二阶实对称矩阵构成的线性空间,即⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=R a a a a a W ij 2212
1211,则它的维数为 ,一组基为 。
5.若A=⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡-100021021b a 为正交矩阵,且|A|=-1,则a = ,b = 。
二、计算题(60分)
1.(15分)设R 3的两组基为:
T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T
(1)求由基321,,ααα到基321,,βββ的过渡矩阵。
(2)求α关于这两组基的坐标。
(3)将321,,βββ化为一组标准正交基。
2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,
⎪⎩⎪⎨⎧=+-+=-+-=+-+01113530333045234321
43214321x x x x x x x x x x x x
3.(20分)已知321,,ααα是3维向量空间R 3的一组基,向量组321,,βββ满足
3132322132131,,ααββααββαααββ+=++=+++=+
(1)证明:321,,βββ是一组基。
(2)求由基321,,βββ到基321,,ααα的过渡矩阵。
(3)求向量3212αααα-+=关于基321,,βββ的坐标。
4.(10分)已知A 是2k+1阶正交矩阵,且|A|=1,求|A -E|。
三、证明题(20分)
1. (5分)设0321=++γβαk k k ,且031≠k k 。
证明:),(),(γββαL L =。
2. (5分)设A 为正交矩阵,证明:A *为正交矩阵。
3.(10分)设A 、B 为n 阶正交矩阵,且|A|≠|B|。
证明:A+B 为不可逆矩阵。
参考答案
一、选择、填空
1. A
2. dimW=3,一组基为.,,321βββ
3. dimW=n-2,一组基为T n T T )0,1,0,,0,0(,)0,0,,1,0,0(,)0,0,,0,1,1(221 ==-=-ααα
4. dimW =3,一组基为⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛0110,1000,0001。
5. a =21,b =2
1
二、计算题
1.(1)基321,,ααα到基321,,βββ的过渡矩阵:⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡112110210121
(2) α关于321,,ααα的坐标是(0,1,1)
α关于321,,βββ的坐标是(1,1,2)
(3)⎪⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121,626161,313131。
2.解空间的维数是2,一组基为T T )1,0,3
7,92(,)0,1,38,91(21-=-=αα。
3.(1)提示:证明321,,βββ与321,,ααα等价,从而r(321,,βββ)=3,线性无关。
(2)基321,,βββ到基321,,ααα的过渡矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--001211010。
(3)向量α关于基321,,βββ的坐标为(2,-5,1)。
4. ()
()0)1(121=-⇒--=--=--=-=-=-+-E A E A E A E A A E A E A E A T k T T 。
三、证明题
1. 提示:证明两个向量组等价,即},{},{γββα≅,则生成子空间),(),(γββαL L =。
2. 证明: ()()E AA A A A A A A A A A T T T T ====----11211*)(*。
3.提示:0111=+⇒+-=+=+=+---B A B A B A B A B A E A B A。