线性代数测试试卷及答案

合集下载

线性代数试题及详细答案

线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。

正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。

正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。

正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。

正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。

正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。

线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。

2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。

行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。

线性代数测试试卷及答案

线性代数测试试卷及答案

线性代数A 卷一﹑选择题每小题3分,共15分1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是 A AB BA = B 222()AB A B = C 222()2A B A AB B +=++ D A B B A +=+2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为A nB sC n s -D 以上答案都不正确3.如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于 A 10, 8 B 8, 10 C 10, 8-- D 10, 8--4. 设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么A 2331A ⎛⎫= ⎪-⎝⎭B 2241A ⎛⎫= ⎪-⎝⎭C 2121A ⎛⎫= ⎪-⎝⎭D 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则 A A 的行向量组和列向量组均线性相关 BA 的行向量组线性相关,列向量组线性无关 C A 的行向量组和列向量组均线性无关 DA 的列向量组线性相关,行向量组线性无关 二﹑填空题每小题3分,共30分1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2. 设100210341A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ;9. 若二次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为 ;10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题每小题9分,共27分1. 已知210121012A ⎛⎫⎪= ⎪ ⎪⎝⎭,100100B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使之满足AX X B =+.2. 求行列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.四﹑10分设有齐次线性方程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩ 问当λ取何值时, 上述方程组1有唯一的零解﹔2有无穷多个解,并求出这些解. 五﹑12分求一个正交变换X PY =,把下列二次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑6分已知平面上三条不同直线的方程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为0a b c ++=.线性代数A 卷答案一﹑1. D 2. C 3. B 4. A 5. A二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解 由AX X B =+得1()X A I B -=-. 2分下面求1()A I --. 由于110111011A I ⎛⎫ ⎪-= ⎪ ⎪⎝⎭4分而1()A I --=011111110-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 7分所以10111001()11101111100011X A I B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 9分2. 解1234234134124123=10234103411041210123123413411014121123= 4分 123401131000440004-=-- 8分 160= 9分 .3. 解 由于3112341234011301131301053307330733r r --⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪- ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭324212345011300212700424r r r r -⎛⎫⎪--- ⎪ ⎪+ ⎪--⎝⎭ 43123401132002120000r r -⎛⎫⎪-- ⎪+ ⎪ ⎪⎝⎭6分 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组;9分 四﹑解 方程组的系数行列式111111111A λλλ-=--2(1)(2)λλ=-+- 2分①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; 4分 ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为12 1 21 1 11 2 A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,它有一个二阶子式123021-=-≠-,因此秩A 2n =<这里3n =,故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为132333,,,x x x x x x =⎧⎪=⎨⎪=⎩ 其中3x 可取任意数; 7分 ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为11 1 11 1 11 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭,显然,秩A 1n =<这里3n =,所以方程组也有无穷多个解.对A 施行初等行变换可得方程组的一般解为1232233,,,x x x x x x x =--⎧⎪=⎨⎪=⎩ 其中23,x x 可取任意数. 10分 五﹑ 解 二次型的矩阵为12 2 21 2 22 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭, 2分因为特征多项式为212 221 2 (1)(5)22 1I A λλλλλλ----=---=+----, 所以特征值是1-二重和5. 4分把特征值1λ=-代入齐次线性方程组()0I A X λ-=得1231231232220,2220,2220,x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩ 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为12(1,0,1),(0,1,1)T T αα=-=-.利用施密特正交化方法将12,αα正交化:11(1,0,1)T βα==-, 211(,1,)22T β=--,再将12,ββ单位化得1T η=,2(T η=, 8分 把特征值5λ=代入齐次线性方程组()0I A X λ-=得1231231234220,2420,2240,x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为3(1,1,1)T α=.再将3α单位化得3Tη=. 10分 令123(,,)0P ηηη⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭则P 是一个正交矩阵,且满足1100010005T P AP P AP --⎛⎫ ⎪==- ⎪ ⎪⎝⎭.所以,正交变换X PY =为所求,它把二次型化成标准形222123123(,,)5f x x x y y y =--+. 12分六﹑证明:必要性由123,,l l l 交于一点得方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有解,可知231()()230()10231a b cb c R A R A bc a a b c c a c a ba b=⇒=⇒++= 2分由于2221211[()()()]01b cca b a c b a c a b=--+-+-≠,所以0a b c ++= 3分充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]022312366()10231a bac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ⎫⇒=-=-+=-++-≠⎪⎪⎪⎬⎪==++=⎪⎪⎭又因为()()2R A R A ⇒==, 5分 因此方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有唯一解,即123,,l l l 交于一点. 6分线性代数习题和答案第一部分选择题共28分一、单项选择题本大题共14小题,每小题2分,共28分在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内;错选或未选均无分;1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于A. m+nB. -m+nC. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A是A的伴随矩阵,则A中位于1,2的元素是A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩A T等于A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1α1+β1+λ2α2+β2+…+λsαs+βs=0C.有不全为0的数λ1,λ2,…,λs使λ1α1-β1+λ2α2-β2+…+λsαs-βs=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有A.秩A<nB.秩A=n-1=0 D.方程组Ax=0只有零解10.设A是一个n≥3阶方阵,下列陈述中正确的是A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使λE-Aα=0,则λ是A的特征值的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是A.|A|2必为1B.|A|必为1=A T的行列向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题共72分二、填空题本大题共10小题,每小题2分,共20分不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;15.11135692536=.16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=a ij3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式i,j=1,2,3,则a 11A 21+a 12A 22+a 13A 232+a 21A 21+a 22A 22+a 23A 232+a 31A 21+a 32A 22+a 33A 232= . 18.设向量2,-3,5与向量-4,6,a 线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r<n,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积α+β,α-β= . 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型fx 1,x 2,x 3,x 4,x 5的秩为4,正惯性指数为3,则其规范形为 .三、计算题本大题共7小题,每小题6分,共42分25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求1AB T ;2|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数; 29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:1秩A ;2A 的列向量组的一个最大线性无关组;30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形fx 1,x 2,x 3=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换;四、证明题本大题共2小题,每小题5分,共10分32.设方阵A 满足A 3=0,试证明E -A 可逆,且E -A -1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 1η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; 2η0,η1,η2线性无关;答案:一、单项选择题本大题共14小题,每小题2分,共28分二、填空题本大题共10空,每空2分,共20分 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c η2-η1或η2+c η2-η1,c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题本大题共7小题,每小题6分,共42分25.解1AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 2|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·-2=-12826.解 311251342011153351111113100105530------=-----=511 1111 550 ----=5116205506255301040 ---=---=+=.27.解AB=A+2B即A-2EB=A,而A-2E-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=A-2E-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为2,1,1.解二考虑α4=x1α1+x2α2+x3α3,即-++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x xx xx xx x x.方程组有唯一解2,1,1T,组合系数为2,1,1.29.解对矩阵A施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102 00062 03282 09632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.1秩B=3,所以秩A=秩B=3.2由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组;A的第1、2、5列或1、3、4列,或1、3、5列也是30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=2,-1,0T, ξ2=2,0,1T.经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪.对角矩阵D=100 010 008-⎛⎝⎫⎭⎪⎪⎪.也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.31.解fx1,x2,x3=x1+2x2-2x32-2x22+4x2x3-7x32=x1+2x2-2x32-2x2-x32-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪, 即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩;经此变换即得fx1,x2,x3的标准形y12-2y22-5y32 .四、证明题本大题共2小题,每小题5分,共10分32.证由于E-AE+A+A2=E-A3=E,所以E-A可逆,且E-A-1= E+A+A2 .33.证由假设Aη0=b,Aξ1=0,Aξ2=0.1Aη1=Aη0+ξ1=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解;2考虑l0η0+l1η1+l2η2=0,即l0+l1+l2η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾;所以l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关;。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

(完整版)线性代数试题和答案精选版

(完整版)线性代数试题和答案精选版

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内.错选或未选均无分。

1。

设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A. m+n B。

—(m+n) C。

n—m D. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。

130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。

13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是( )A。

–6 B。

6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有( )A. A =0B。

B≠C时A=0C. A≠0时B=C D。

|A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1B. 2C. 3D. 46。

设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A。

有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C。

有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A。

所有r-1阶子式都不为0 B。

线性代数试卷及其答案

线性代数试卷及其答案

试卷一一、判断题。

在每小题后面的小括号内打“√”号或“×”号1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。

( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。

( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =,则0≠D 。

( )4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组也为此方程组的基础解系。

( ) 5. 设c b a ,,是互不相等的数,则向量组),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c是线性无关的。

( )二、单项选择题1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。

A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =.2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为 。

A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示;B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示;C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价;D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。

3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。

A. )(21)(2121211ββααα-+++k k ;B. )(21)(2121211ββααα++-+k k ;C. )(21)(2121211ββββα-+++k k ;D. )(21)(2121211ββββα++-+k k .4. 设B A ,均为)2(≥n n 阶方阵,则必有 。

线性代数试题(附参考答案)

线性代数试题(附参考答案)

《 线性代数 》课程试题(附答案)一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。

二、 计算行列式的值。

(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。

(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。

(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。

六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。

(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。

(15分)《线性代数》课程试题参考答案一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数(A 卷)一﹑选择题(每小题3分,共15分)1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4. 设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫= ⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2. 设100210341A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ;3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ;4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ;5. 设A 为正交矩阵,则A = ;6. 设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7. 要使向量组123(1,,1),(1,2,3),(1,0,1)T T T αλαα===线性相关,则λ= ; 8. 三阶可逆矩阵A 的特征值分别为1,2,3---,那么1A -的特征值分别为 ; 9. 若二次型222123123121323(,,)52-24f x x x x x x t x x x x x x =++++是正定的,则t 的取值范围为 ;10. 设A 为n 阶方阵,且满足2240A A I +-=,这里I 为n 阶单位矩阵,那么1A -= . 三﹑计算题(每小题9分,共27分)1. 已知210121012A ⎛⎫⎪= ⎪ ⎪⎝⎭,100100B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求矩阵X 使之满足AX X B =+.2. 求行列式1234234134124123的值.3 求向量组1234(1,0,1,0),(2,1,3,7),(3,1,0,3,),(4,3,1,3,)αααα==--=-=--的一个最大无关组和秩.四﹑(10分)设有齐次线性方程组123123123(1)0,(1)0,(1)0.x x x x x x x x x λλλ+-+=⎧⎪-++=⎨⎪++-=⎩ 问当λ取何值时, 上述方程组(1)有唯一的零解﹔(2)有无穷多个解,并求出这些解. 五﹑(12分)求一个正交变换X PY =,把下列二次型化成标准形:222123123121323(,,)444f x x x x x x x x x x x x =+++++.六﹑(6分)已知平面上三条不同直线的方程分别为123: 230,: 230,: 230.l ax by c l bx cy a l cx ay b ++=++=++= 试证:这三条直线交于一点的充分必要条件为0a b c ++=.线性代数(A 卷)答案一﹑1. D 2. C 3. B 4. A 5. A二﹑1. 0 2. *1()A A -=- 3. 1 4. 3 5. 1或-16. ()()()c a c b b a ---7. 08. 111,,23---9. 405t -<< 10. 1142A I +三﹑1. 解 由AX X B =+得1()X A I B -=-. (2分) 下面求1()A I --. 由于110111011A I ⎛⎫⎪-= ⎪ ⎪⎝⎭(4分)而1()A I --=011111110-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. (7分)所以10111001()11101111100011X A I B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. (9分)2. 解1234234134124123=10234103411041210123123413411014121123= (4分) 123401131000440004-=-- (8分) 160= (9分) .3. 解 由于3112341234011301131301053307330733r r --⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪- ⎪ ⎪-- ⎪ ⎪----⎝⎭⎝⎭324212345011300212700424r r r r -⎛⎫⎪--- ⎪ ⎪+ ⎪--⎝⎭ 43123401132002120000r r -⎛⎫⎪-- ⎪+ ⎪ ⎪⎝⎭(6分) 故向量组的秩是 3 ,123,,ααα是它的一个最大无关组。

(9分) 四﹑解 方程组的系数行列式111111111A λλλ-=--2(1)(2)λλ=-+- (2分)①当2(1)(2)0A λλ=-+-≠,即1λ≠-且2λ≠时,方程组有唯一的零解; (4分) ②当1λ=-时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为12 1 21 1 11 2 A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,它有一个二阶子式123021-=-≠-,因此秩(A )2n =<(这里3n =),故方程组有无穷多个解.对A 施行初等行变换,可得到方程组的一般解为132333,,,x x x x x x =⎧⎪=⎨⎪=⎩ 其中3x 可取任意数; (7分) ③当2λ=时, 2(1)(2)0A λλ=-+-=,方程组的系数矩阵为11 1 11 1 11 1 A ⎛⎫⎪= ⎪ ⎪⎝⎭,显然,秩(A )1n =<(这里3n =),所以方程组也有无穷多个解.对A 施行初等行变换可得方程组的一般解为1232233,,,x x x x x x x =--⎧⎪=⎨⎪=⎩ 其中23,x x 可取任意数. (10分)五﹑ 解 二次型的矩阵为12 2 21 2 22 1 A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, (2分)因为特征多项式为212 221 2 (1)(5)22 1I A λλλλλλ----=---=+----, 所以特征值是1-(二重)和5. (4分)把特征值1λ=-代入齐次线性方程组()0I A X λ-=得1231231232220,2220,2220,x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩ 解此方程组可得矩阵A 的对应于特征值1λ=-的特征向量为12(1,0,1),(0,1,1)T T αα=-=-.利用施密特正交化方法将12,αα正交化:11(1,0,1)T βα==-, 211(,1,)22T β=--,再将12,ββ单位化得1(22T η=,2(T η=, (8分) 把特征值5λ=代入齐次线性方程组()0I A X λ-=得1231231234220,2420,2240,x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩ 解此方程组可得矩阵A 的对应于特征值5λ=的特征向量为3(1,1,1)T α=.再将3α单位化得3Tη=. (10分) 令123(,,)0P ηηη⎛⎫ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭则P 是一个正交矩阵,且满足1100010005T P AP P AP --⎛⎫⎪==- ⎪ ⎪⎝⎭.所以,正交变换X PY =为所求,它把二次型化成标准形222123123(,,)5f x x x y y y =--+. (12分)六﹑证明:必要性由123,,l l l 交于一点得方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有解,可知231()()230()10231a b cb c R A R A bc a a b c c a c a ba b=⇒=⇒++= (2分)由于2221211[()()()]01b cca b a c b a c a b=--+-+-≠,所以0a b c ++= (3分)充分性:0()a b c b a c ++=⇒=-+2222222()2[()][()]022312366()10231a bac b ac a c a c a c b c a b c a b c b c b c a b c a a b c c a c a b c a b a b ⎫⇒=-=-+=-++-≠⎪⎪⎪⎬⎪==++=⎪⎪⎭又因为()()2R A R A ⇒==, (5分) 因此方程组230230230ax by c bx cy a cx ay b ++=⎧⎪++=⎨⎪++=⎩有唯一解,即123,,l l l 交于一点. (6分)线性代数习题和答案第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a a a a 11122122=m ,aa a a 13112321=n ,则行列式aa a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

相关文档
最新文档