线性代数选择题30道(含答案)

合集下载

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数练习题(有答案)

线性代数练习题(有答案)

《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

线性代数--综合测试答案

线性代数--综合测试答案

一、单项选择题1、已知3阶行列式D第1行的元素依次为1,2,-1,它们的余子式依次为2,-2,1,则D=A.-5B.-3C.3D.5D2、A.第1行的3倍加到第2行B.第2行的3倍加到第1行C.第1列的3倍加到第2列D.第2列的3倍加到第1列正确答案:C3、A.1B.2C.3D.4正确答案:B4、A.-2B.-1C.0D.1A5、A.-3B.-2C.2D.3正确答案:B6、已知3×4矩阵A的行向量组线性无关,则r(A)A.1B.2C.3D.4正确答案:C7、A.-1B.-2/3C.2/3D.1正确答案:A8、A.0B.1C.2D.3C 9、A.-108B.-12C.12D.108正确答案:D10、A.0B.1C.2D.-1正确答案:B11、A.2B.4C.8D.12正确答案:C12、A.-7B.-4C.4B13、A.1B.2C.3D.4正确答案:B14、A.13B.6C.5D.-5正确答案:D15、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1,b=1正确答案:D16、A.-2C.1D.2A17、齐次线性方程组Ax=0仅有零解的充分必要条件是矩阵A的A.列向量组线性相关B.列向量组线性无关C.行向量组线性相关D.行向量组线性无关B18、设非齐次线性方程组Ax=b,其中A为m*n阶矩阵,r(A)=r,则A.当r=n时,Ax=b有惟一解B.当r<n时,ax=b有无穷多解< p="" style="box-sizing: border-box;">C.当r=m时,Ax=b有解D.当m=n时,Ax=b有惟一解C19、设2阶矩阵A满足|2E+3A|=0,|E-A|=0,则|A+E|=A.-3/2B.-2/3C.2/3D.3/2C20、A.相似但不合同B.合同但不相似C.合同且相似D.不合同也不相似C21、A.相似且合同B.相似但不合同C.不相似但合同D.不相似且不合同正确答案:A22、A.1B.2C.3D.4正确答案:D 23、A.10B.2C.-10D.-2正确答案:A24、A.27B.243C.216D.81C25、A.3B.6C.9D.12正确答案:D26、若A,B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=A.5B.4C.3D.2正确答案:C27、A.6B.-6C.24D.-24正确答案:D28、A.m-nB.-m-nC.m+nD.-(m+n)正确答案:B29、A.-32B.-2C.2D.32正确答案:A30、A.1/2B.2C.4D.8正确答案:C31、A.8B.-8C.32D.-32正确答案:C32、A.a=4,b=0,c=1,d=4B.a=0,b=4,c=1,d=4C.a=4,b=0,c=4,d=1D.a=0,b=4,c=4,d=1正确答案:A33、设A,B,C均为n阶方阵,AB=BA,BC=CB,则BAC=A.ACBB.CABC.CBAD.BCA正确答案:A34、A.A=EB.B=OC.A=BD.AB=BA正确答案:D35、A.4B.8C.12D.16正确答案:D36、A.-5B.-2C.2D.5正确答案:A37、A.1/nB.-1/nC.nD.-n正确答案:D 38、A.PAB.APC.QAD.AQ正确答案:B 39、A.(2,1,1)B.(0,-3,2)C.(1,1,0)D.(0,-1,0)B 40、A.a=0,b=0B.a=0,b=1C.a=1,b=0D.a=1/2,b=2正确答案:D41、A.2B.-2C.4D.-4正确答案:B 42、A.1B.2C.3D.4正确答案:C 43、A.4B.3C.2D.1A 44、A.1B.2C.3D.4正确答案:D 45、A.3B.2C.1D.0正确答案:B 46、A.-2B.2C.-1D.1正确答案:A47、A.4B.3C.2D.1正确答案:B48、设A为5阶方阵,且r(A)=2,则线性空间W={x|Ax=0}的维数是A.5B.4C.3D.2正确答案:C49、A.4B.3C.2D.1正确答案:C50、A.1B.2C.3D.4C。

线性代数考试试题

线性代数考试试题

线性代数考试试题一、选择题(每题3分,共30分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 向量空间V的一组基具有n个向量,那么V的维数是:A. 0B. nC. 1D. 不确定3. 如果A和B是两个n阶方阵,那么AB和BA的行列式的值:A. 总是相等B. 只有在A和B可交换时相等C. 只有在A和B都是对角矩阵时相等D. 无法确定是否相等4. 对于任意的n维向量x,下列哪个选项是正确的?A. x^T * x是一个标量B. x^T * x是一个矩阵C. x * x^T是一个矩阵D. x + x^T是一个向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在标量λ和非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在标量λ和非零向量v,使得vA=λv,则λ是A的特征值,v是A的特征向量C. 对于矩阵A,如果存在标量λ和非零向量v,使得A^2v=λv,则λ是A的特征值,v是A的特征向量D. 以上都不是6. 下列哪个矩阵是对称矩阵?A. [1, 0; 0, -1]B. [0, 1; 1, 0]C. [1, 2; 2, 1]D. [2, 3; 3, 2]7. 对于矩阵A,其迹(trace)是:A. A的对角线元素之和B. A的行列式C. A的逆矩阵的对角线元素之和D. A的秩8. 如果矩阵A是正交矩阵,那么下列哪个陈述是正确的?A. A的行列式为1B. A的行列式为-1C. A的逆矩阵等于A的转置D. A的逆矩阵等于A本身9. 对于任意矩阵A,下列哪个选项是正确的?A. |A| 是 A 的行列式B. A^T 是 A 的转置C. A^-1 是 A 的逆矩阵D. A^* 是 A 的共轭转置10. 在线性代数中,线性无关的向量集合可以:A. 构成一个向量空间B. 构成一个基C. 确定一个唯一的解D. 以上都是二、填空题(每题4分,共20分)11. 矩阵的秩是指__________________________。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。

(完整版)线性代数习题集(带答案)

(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。

(A) 0 (B )1- (C) 1 (D) 25。

=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.η1+η2是Ax=b的一个解
C.η1-η2是Ax=0的一个解
D.2η1-η2是Ax=b的一个解
4.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量
的个数为k,则必有( )
A. k≤3
B. k<3
C. k=3
D. k>3
5.下列矩阵中是正定矩阵的为( )
A.
B.
C.
D.
6.下列矩阵中,( )不是初等矩阵。
A、
B、
C、
D、
两个n阶正交阵,则下列结论不正确的是[ ]
A、是正交阵
B、 AB是正交阵
C、是正交阵
D、是正交阵
线性表示,则[ ]
A、秩, B、秩,
C、不能确定秩 D、以上结论都不正确
26.设均为n维向量,又线性相关,线性无关,则下列正确的是( )
A.线性相关
B.线性无关
C.可由线性表示
D.可由线性表示
13. 设分块矩阵,其中的子块A1, A2为方阵,O为零矩阵,若A可逆,则
()
(A) A1可逆,A2不一定可逆
(B) A2可逆,A1不一定可逆
(C) A1,A2都可逆
(D) A1,A2都不一定可逆
14. 用初等矩阵左乘矩阵,相当于对A进行如下何种初等变换 ( ) (A) (B) (C) (D)
15. 非齐次线性方程组在以下哪种情形下有无穷多解. ( )
A.A=0 B.A=E
C.r(A)=n D.0<r(A)<(n)
19.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确
的是( )
A.Ax=0只有零解 B.Ax=0的基础解系含r(A)个解向量
C.Ax=0的基础解系含n-r(A)个解向量 D.Ax=0没有解
20.设是非齐次线性方程组Ax=b的两个不同的解,则( )
仅有零解。 10.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向
量,则( ) A.A与B相似 B.
,但|A-B|=0
C.A=B
D.A与B不一定相似,但|A|=|B|
11. 已知矩阵,则
12. 设四阶行列式,则其中x的一次项的系数为 ( ) (B) -1 (C) 2 (D) -2
(A) 1
BDCDA
11----15 CACBC 16----20 ABACC
21----25 DADAA 26----30 CBDCC
(A) (B)
(C) (D)
16.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩
阵X=( ) A.A-1CB-1 C.B-1A-1C
B.CA-1B-1 D.CB-1A-1
17.设是四维向量,则( )
A.一定线性无关 B.一定线性相关
C.一定可以由线性表示 D.一定可以由线性表出
18.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )
A.
B.
C.
D.
7.设向量组
线性无关,则下列向量组中线性无关的是( A.
)。
B.
C.
D.
8.设A为n阶方阵,且
。则
( ) A.
B.
C.
D.
9.设

矩阵,则有( A.若
)。
,则
有无穷多解; B.若
,则
有非零解,且基础解系含有
个线性无关解向量; C.若

阶子式不为零,则
有唯一解; D.若

阶子式不为零,则
A.是Ax=b的解 B.是Ax=b的解
C.是Ax=b的解 D.是Ax=b的解
21、如果矩阵A满足,则( )
A、A=0
B、A=E C、A=0或A=E
中,方程的个数少于未知量的个数,则( )
A、有无穷多解
B、仅有零解
C、有无穷多解
D、有唯一解
的基础解系,则下列向量组中,不是的基
D、A不可逆或不可逆
础解系的是[ ]
27.若A为( ),则A必为方阵.
A.分块矩阵
B. 可逆矩阵
C. 转置矩阵
D.线性方程组的系数矩阵
28.当k满足(
)时,
只有零解.
A. k=2或k=-2
B. k≠2
C. k≠-2
D. k≠2且k≠-2
29.设A为n阶可逆阵,则下列(
)恒成立.
A.(2A)-1=2A-1
B.(2A-1)T=(2AT)-1
线性代数选择题30道(含答案)
1.设矩阵A=,则A-1等于( )
A.
B.
C.
D.
2.设A是方阵,如有矩阵关系式AB=AC,则必有( )
A. A =0
B. BC时A=0
C. A0时B=C
D. |A|0时B=C
3.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论
错误的是( )
A.η1+η2是Ax=0的一个解
C.[(A-1)-1]T=[(AT)-1]-1
பைடு நூலகம்
D.[(AT)T]-1=[(A-
1)-1]T
30.设A是n阶方阵,则A能与n阶对角阵相似的充要条件是(
).
A. A是对角阵
B. A有n个互不相同的特征向

C. A有n个线性无关的特征向量
D. A有n个互不相同的特征值
参考答案:1----5 BDAAC
6----10
相关文档
最新文档