线性代数试题及答案汇编
线性代数试题线性代数试卷及答案大全(173页大合集)

属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。
A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。
A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。
A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。
A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。
答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。
答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。
答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。
答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。
线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数试题及答案

线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。
答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。
答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。
答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。
线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n)(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
)(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B )(C TTTB A AB =)( )(D 22))((B A B A B A -=-+三、计算题(本题总计60分。
1-3每小题8分,4-7每小题9分)1. 计算n 阶行列式22221=D 22222 22322 21222-nn 2222 。
2.设A 为三阶矩阵,*A 为A 的伴随矩阵,且21=A ,求*A A 2)3(1--.3.求矩阵的逆111211120A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭4. 讨论λ为何值时,非齐次线性方程组21231231231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩① 有唯一解; ②有无穷多解; ③无解。
5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。
⎪⎩⎪⎨⎧=++=+++=+++522132243143214321x x x x x x x x x x x 6.已知向量组()T 32011=α、()T53112=α、()T13113-=α、()T 94214=α、()T52115=α,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示.7. 求矩阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的特征值和特征向量.四、证明题(本题总计10分)设η为b AX =()0≠b 的一个解,12,n r ξξξ-为对应齐次线性方程组0=AX 的基础解系,证明12,,n r ξξξη-线性无关。
(答案一)一、填空题(本题总计20分,每小题 2 分)1~15;2、3;3、CA ;4、()n b A R A R ==),(;5、2;6、⎪⎪⎪⎭⎫⎝⎛123012001;7、()n A R <;8、0;9、3;10、1。
.二、选择题(本题总计 10 分,每小题 2分 1、D ;2、A ;3、D ;4、C ;5、B 三、计算题(本题总计60分,1-3每小题8分,4-7他每小题9分)1、解:D),,4,3(2n i r r i =-00021 00022 0012203022-n 20022-n ------3分 122r r - 00001 00022 - 00122- 03022--n 20022--n -------6分)!2(2)2()3(21)2(1--=-⨯-⨯⨯⨯⨯-⨯=n n n ----------8分 (此题的方法不唯一,可以酌情给分。
)解:(1)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=-11111111124121311211111111112A AB ------1分⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=222222222602222464⎪⎪⎪⎭⎫⎝⎛=420004242------5分(2)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-171111610239511311131122B A ⎪⎪⎪⎭⎫ ⎝⎛-------=161287113084--------8分 3. 设A 为三阶矩阵,*A 为A 的伴随矩阵,且21=A ,求*A A 2)3(1--. 因*A A =E E 21=A ,故411==-n A *A 3分 **A A A211==-A 5分 27164134342322)3(31-=⎪⎭⎫ ⎝⎛-=-=-=--****A A A A A 8分4、解: ⎪⎪⎪⎭⎫ ⎝⎛---=100111010011001001),(E A 1312r r r r ++⎪⎪⎪⎭⎫ ⎝⎛---101110011010001001---3分 23r r +⎪⎪⎪⎭⎫ ⎝⎛---112100011010001001)1()1()1(321-÷-÷-÷r r r ⎪⎪⎪⎭⎫ ⎝⎛------112100011010001001---6分故⎪⎪⎪⎭⎫ ⎝⎛------=-1120110011A -------8分 (利用*-=A A A 11公式求得结果也正确。
) 5、解;⎪⎪⎪⎭⎫ ⎝⎛=21111111),(λλλλλb A 131231rr r r r r λ--↔⎪⎪⎪⎭⎫⎝⎛------3222111011011λλλλλλλλλ23r r + ⎪⎪⎪⎭⎫ ⎝⎛-+-+---)1()1()1)(2(0011011222λλλλλλλλλλ---------3分(1)唯一解:3),()(==b A R A R21-≠≠λλ且 ------5分(2)无穷多解:3),()(<=b A R A R 1=λ --------7分(3)无解:),()(b A R A R ≠2-=λ --------9分 (利用其他方法求得结果也正确。
) 6、解:⎪⎪⎪⎭⎫⎝⎛=522011113221111),(b A −→−r ⎪⎪⎪⎭⎫⎝⎛---000003111052201--------3分 ⎩⎨⎧=--=++0022432431x x x x x x 基础解系为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=01121ξ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=10122ξ-----6分 ⎩⎨⎧-=--=++3522432431x x x x x x 令043==x x ,得一特解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0035η---7分 故原方程组的通解为: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=++101201120035212211k k k k ξξη,其中R k k ∈21,---9分(此题结果表示不唯一,只要正确可以给分。
)7、解:特征方程2110430(2)(1)12A E λλλλλλ---=--=--- 从而1232,1λλλ=== (4分)当12λ=时,由(2)0A E X -=得基础解系1(0,0,1)Tζ=,即对应于12λ=的全部特征向量为11k ζ1(0)k ≠ (7分)当231λλ==时,由()0A E X -=得基础解系2(1,2,1)Tζ=--,即对应于231λλ==的全部特征向量为22k ζ2(0)k ≠四、证明题(本题总计10 分) 证: 由12,n r ξξξ-为对应齐次线性方程组0=AX 的基础解系,则12,n r ξξξ-线性无关。
(3分)反证法:设12,,n r ξξξη-线性相关,则η可由12,n r ξξξ-线性表示,即:r r ξλξλη++= 11 (6分)因齐次线性方程组解的线性组合还是齐次线性方程组解,故η必是0=AX 的解。
这与已知条件η为b AX =()0≠b 的一个解相矛盾。
(9分). 有上可知,12,,n r ξξξη-线性无关。
(10分)(试卷二)一、填空题(本题总计 20 分,每小题 2 分) 1. 排列6573412的逆序数是 .2.函数()f x = 21112xxx x x---中3x 的系数是 . 3.设三阶方阵A 的行列式3A =,则*1()A -= A/3 . 4.n 元齐次线性方程组AX=0有非零解的充要条件是 .5.设向量(1,2,1)Tα=--,β=⎪⎪⎪⎭⎫ ⎝⎛-22λ正交,则λ= .6.三阶方阵A 的特征值为1,1-,2,则A = .7. 设1121021003A --⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则_________A *=.8. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________.9.设A 为n 阶方阵,且A =2 则1*1()3A A --+= . 10.已知20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于12B y -⎛⎫⎪=⎪ ⎪⎝⎭,则=x ,=y .二、选择题(本题总计 10 分,每小题 2 分)1. 设n 阶矩阵A 的行列式等于D ,则A -5等于 . (A) (5)nD - (B)-5D (C) 5D (D)1(5)n D --2. n 阶方阵A 与对角矩阵相似的充分必要条件是 .(A) 矩阵A 有n 个线性无关的特征向量 (B) 矩阵A 有n 个特征值 (C) 矩阵A 的行列式0A ≠ (D) 矩阵A 的特征方程没有重根3.A 为m n ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充要条件是 .(A)(,)R A b m < (B)()R A m < (C)()(,)R A R A b n == (D)()(,)R A R A b n =< 4.设向量组A 能由向量组B 线性表示,则( ) (A).)()(A R B R ≤(B).)()(A R B R <(C).)()(A R B R = (D).)()(A R B R ≥ 5. 向量组12,,,s ααα线性相关且秩为r ,则 .(A)r s = (B) r s < (C) r s > (D) s r ≤三、计算题(本题总计 60 分,每小题 10 分)1. 计算n 阶行列式: 22221=D 22222 22322 21222-nn 2222 .2.已知矩阵方程AX A X =+,求矩阵X ,其中220213010A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.3. 设n 阶方阵A 满足0422=--E A A ,证明3A E -可逆,并求1(3)A E --.4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:1234123412342342323883295234x x x x x x x x x x x x x x x +++=⎧⎪-++=⎪⎨-+--=-⎪⎪--=-⎩ 5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.123421234,1,3,5.2012αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.已知二次型:323121232221321844552),,(x x x x x x x x x x x x f --+++=,用正交变换化),,(321x x x f 为标准形,并求出其正交变换矩阵Q .四、证明题(本题总计 10 分,每小题 10 分)设11b a =, 212b a a =+,, 12r r b a a a =+++, 且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.(答案二)一、填空题(本题总计 20 分,每小题2 分)1. 172. -2 3.13A 4.()R A n <5.2λ=-6.-27.116A -或12110216003-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦8.29、21n)(-10、2,0-==y x 二、选择题(本题总计 10 分,每小题 2 分)1. A 2. A 3.C 4.D 5. B 三、计算题(本题总计 60 分,每小题 10分)1、解:D),,4,3(2n i r r i =-00021 00022 0012203022-n 20022-n ------4分122r r - 00001 00022 - 00122- 03022--n 20022--n -------7分)!2(2)2()3(21)2(1--=-⨯-⨯⨯⨯⨯-⨯=n n n ---------10分(此题的方法不唯一,可以酌情给分。