实验四微带线带通滤波器设计
实验四 微带短截线低通滤波器的设计

实验四 微带短截线低通滤波器的设计4.1 微带短截线低通滤波器设计基础4.1.1分布参数滤波元件的实现1. Richards 变换集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。
在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards 提出了一种变换方法,这种变换可以将集总元件变换成传输线段。
如图4.1所示,电感L 可等效为长为λ/8,特性阻抗为L 的短路线;电容C 可等效为长为λ/8,特性阻抗为1/C 的开路线。
图4.1 Richards 变换2. Kuroda 规则采用Richards 变换后,串联元件将变换为串联微带短截线,并联元件将变换为并联短截线。
由于串联微带短截线是不可实现的,所以需要将其转变为其它可实现的形式。
为了方便各种传输线结构之间的相互变换,Kuroda 提出了四个规则,如图4.2所示。
其中,2211/n Z Z =+;U.E.是单位元件,即电长度为λ/8、特性阻抗为UE Z 的传输线。
选用合适的Kuroda 规则,可以将串联短截线变换为容易实现的并联短截线。
图4.2 Kuroda 规则4.1.2 微带短截线低通滤波器设计步骤微带短截线低通滤波器的实现可分为四个步骤: 1. 根据设计要求进行低通滤波器原型设计;2. 采用Richard 变换将低通滤波器原型中的电感和电容转换为等效的λ/8串联和并联传输线;3. 应用Kuroda 规则将串联短截线转换为并联短截线;4. 阻抗和频率定标。
4.1.3 微带短截线低通滤波器设计实例设计一个3阶、0.5dB 等波纹低通滤波器,其截止频率为4GHz ,阻抗是50欧姆。
第一步 根据设计要求,查表得到低通滤波器原型。
111.5963g L == 221.0947g C == 331.5963g L ==第二步应用Richard变换将电感和电容转换为等效的串联和并联短截线。
微带线带通滤波器的制作

二、微帶線帶通濾波器工作原理
如圖1(a)(b)所示的步階阻抗諧振
器,分別為 λ g / 、4 λ g / 2的步
階阻抗諧振器,
θ
、
1
θ
表示電氣
2
長度, Z1 、 Z2 表示傳輸線的特性
阻抗,而步階阻抗諧振器阻抗比定義
為
Rz
≡
Z1
+
Z
Hale Waihona Puke ,長度比定義21為 u ≡ θ 2 / (θ 1 + θ 2 。) 當微帶線
8. P. A. Rizzi, Microwave Engineerung Passive Circuit,1988.
9. R. W. Rhea,HF Filter Design & Computer Simulation, 1994.
10. D. M. Pozar., Microwave Engineering wiley-interscience,2004.
想的集總元件,所以常以分散式元件 替代,而比較常見的諧振器主要有下 列幾種:patch 諧振器、四分之一波長 短路微帶線諧振器及二分之一波長開 路微帶線諧振器,其中二分之一波長 開路微帶線諧振器由於不需要穿孔、 製作容易,因此最常被應用在平面的 微帶線濾波器上[2]。
本文以模擬方式模擬微帶線帶通 濾波器,並再以 FR4 機板的參數以模 擬方式證明微帶線可以應用在被動元 件上,並且可有效的縮小化,且可使 用於高頻上,而在以實作與模擬比較 兩者結果的差別。
表 1 FR4 實作與模擬比較
中心頻率 頻寬
插入損耗 反射損耗
模擬結果 2.41GHZ 220MHZ -2.23dB -38.76dB
實作結果 2.49GHZ 140MHZ -4.84dB -12.08dB
微带带通滤波器设计

微带带通滤波器设计姓名: 杨凯学号:********** 姓名: 黄子宸学号:********** 姓名: 钱铖学号:********** ****: ***2014年5月目录摘要................................................................................................. - 1 - Abstract............................................................................................... - 1 - 第1 章引言 ...................................................................................... - 3 - §1.1 课题背景和意义 .................................................................. - 3 - §1.2 微带滤波器国内外研究情况............................................... - 5 - §1.3 滤波器的分类...................................................................... - 7 - §1.4 HFSS及ADS 介绍 .............................................................. - 8 - 第2章带通滤波器设计理论............................................................ - 9 - §2.1 带通滤波器的参数 .............................................................. - 9 - §2.2 带通滤波器的设计原型 .................................................... - 10 - §2.3 原型滤波器的元件值的归一化及其计算 ......................... - 12 - 第3章微带带通滤波器的设计与优化 .......................................... - 13 - §3.1 微带线和奇模、偶模特征阻抗......................................... - 13 - §3.2 S 参数 ............................................................................. - 16 - §3.3 设计指标及流程图 ............................................................ - 19 - §3.4 原理图设计........................................................................ - 19 -3.4.1 低通滤波器原型的参数的计算.................................. - 21 -3.4.2 奇模和偶模特性阻抗的计算...................................... - 22 -3.4.3 微带线尺寸的计算 ..................................................... - 23 -3.4.4 HFSS原理图绘制与仿真............................................ - 24 -3.4.5 ADS原理图绘制与仿真.............................................. - 25 -§3.5 微带带通滤波器的优化 .................................................... - 27 -3.5.1 对HFSS结果的优化 .................................................. - 27 -3.5.2 对ADS结果的优化.................................................... - 28 - 结束语............................................................................................... - 30 - 致谢............................................................................................... - 31 - 参考文献 ........................................................................................... - 32 -摘要本文首先介绍了微波滤波器的应用和当前的研究情况。
实验四微带线带通滤波器设计

实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。
平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。
1、滤波器的介绍滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。
射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。
滤波的性能指标:频率围:滤波器通过或截断信号的频率界限通带衰减:滤波器残存的反射以及滤波器元件的损耗引起阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带2、平行耦合微带线滤波器的理论当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。
平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。
当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。
每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。
如果将多个单元级联,级联后的网络可以具有良好的滤波特性。
二、耦合微带线滤波器的设计的流程1、确定滤波器指标2、计算查表确定滤波器级数N3、确定标准滤波器参数4、计算传输线奇偶模特性阻抗5、计算微带线尺寸6、仿真7、优化再仿真得到波形图设计参数要求:(1)中心频率:2.4GHz;(2)相对带宽:9%;(3)带波纹:<0.5dB;(4)在频率1.9GHz和2.9GHz处,衰减>20dB;(5)输入输出阻抗:50Ω。
(完整word版)微带线带通滤波器的ADS设计

应用ADS 设计微带线带通滤波器1、微带带通微带线的基本知识微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。
微带线带通滤波器的电路结构的主要形式有5种:1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。
2、平行耦合微带线带通滤波器窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。
但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。
3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。
这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。
这种滤波器的精确设计较难。
4、1/4 波长短路短截线滤波器5、半波长开路短截线滤波器下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。
2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。
整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。
关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。
但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。
微带线滤波器实验报告

微带线滤波器设计实验报告
班级:1402061班
学号:14020610004
姓名:戴济安
一、设计方法
采用平行耦合滤波器结构模型。
耦合微带线结构由两根平行放置、彼此靠得很近的微带线构成。
这种几何结构包括介质层和微带线,介质层厚度为h,相对介电常数为Er,平行耦合带通滤波器的结构图如图1。
微带线的奇模、偶模通过公共接地板产生耦合效应,这种耦合效应导致了奇模特性阻抗和偶模特性阻抗,构成分布参数元件,级联这些耦合微带线元件可得到带通滤波器的特性。
二、原理公式
各个参数的计算公式为:
三、设计指标
Ɛ
r =2.2 f
=2Ghz
L=1.0mm BW=5%~20% RL>10dB IL<1dB
四、优化参数与效果图
参数原图:
五、课程总结
这门课程的学习让我掌握了很多实际工程上的具体应用,对微波射频电路有一个感性的认识,并且理解了场和路之间的转化等效思想,在
之前学习的微波和射频电路课程的基础之上,我又知道了很多具体的器件及其应用,从书本的枯燥知识走入到实际的生产生活中来,对本专业要研究和解决的问题以及这个行业的情况更加了解。
微带线滤波器的设计是从网络上和书本上找了很多资料,并且通过HFSS软件仿真,因为是第一次做,所以整个过程困难重重,软件也是全英文操作很不容易上手,自己的电脑配置不够好,每一步都进行得很慢,最后终于做出了符合设计指标的滤波器。
所谓知易行难,看懂了原理到真的取设计、制作、调整好之间有着很大的差距,我们学习知识的目的是要解决实际生产中的问题,不能局限于书本,还要到实践当中,才能有更大的提高。
微带线带通滤波器的ADS设计共8页文档

应用ADS设计微带线带通滤波器1、微带带通微带线的基本知识微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。
微带线带通滤波器的电路结构的主要形式有5种:1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。
2、平行耦合微带线带通滤波器窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。
但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。
3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。
这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。
这种滤波器的精确设计较难。
4、1/4波长短路短截线滤波器5、半波长开路短截线滤波器下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。
2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。
整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。
关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。
但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。
微带线带通滤波器的设计

微带线带通滤波器的设计作者:张哲丰来源:《中国科技博览》2013年第16期[摘要]随着商用无线通信的迅猛发展,微波电路越来越得到重视和发展。
而微波带通滤波器作为微波器件的一种也得到了大力的发展,尤其是在接收机前端,带通滤波器性能的优劣直接影响到整个接收机性能的好坏,本文就滤波器的工作原理及一些相关理论做了简要概述,并提出微带线带通滤波器的设计细则。
[关键词]微带线带通滤波器设计中图分类号:TN713.5 文献标识码:A 文章编号:1009-914X(2013)16-0071-01随着时代的进步,无线通信技术迅猛发展,业务范围也不断扩大,人们对无线产品的需求日益增长,滤波器在产品电路中又扮演者重要的角色,新通信系统要求研究一种能在特定的频带内提取和检测出信号的新技术,这种新技术的发展进一步加速了滤波器技术的研究和发展。
1.滤波器的工作原理根据滤波器理论,所有类型的滤波器均可映射成归一化的低通滤波器。
因此带通滤波器的设计可以先从设计归一化低通滤波器开始,然后再映射成带通滤波器,微带滤波器当中最基本的滤波器就是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。
最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。
微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。
这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。
2.相关理论概述滤波器设计理论:低通滤波器的设计是基础,最普通的滤波器有低通、高通、带通、带阻衰减特性,可以从不同的角度对滤波器进行分类。
(1)高通滤波器可用带通滤波器(当通带高端很高时)代替;(2)带阻滤波器可看成低通滤波器与高通滤波器的组合;(3)低通滤波器是带通滤波器的特例;(4)低通滤波器原型可作为带通滤波器设计基础。
从最大平坦衰减特性曲线和切比雪夫特性曲线比较可以看出:若通带内允许的衰减量和电抗元件的数目一定时,则切比雪夫的滤波器的截止速率更快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四微带线带通滤波器
设计
Prepared on 24 November 2020
实验四:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真一、实验原理
滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。
平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。
1、滤波器的介绍
滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。
射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。
滤波的性能指标:
频率范围:滤波器通过或截断信号的频率界限
通带衰减:滤波器残存的反射以及滤波器元件的损耗引起
阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值
寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带
2、平行耦合微带线滤波器的理论
当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。
平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。
当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。
根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。
每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。
单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。
如果将多个单元级联,级联后的网络可以具有良好的滤波特性。
二、耦合微带线滤波器的设计的流程
1、确定滤波器指标
2、计算查表确定滤波器级数N
3、确定标准滤波器参数
4、计算传输线奇偶模特性阻抗
5、计算微带线尺寸
6、仿真
7、优化再仿真得到波形图
设计参数要求:
(1)中心频率:;
(2)相对带宽:9%;
(3)带内波纹:<;
(4)在频率和处,衰减>20dB;
(5)输入输出阻抗:50Ω。
三、具体设计步骤
第一步:先用设计向导设计原理图:
(1)打开ADS窗口,建立工程
(2)在原理图窗口中的工具栏中选择【DesignGuide】—>【Filter】—> 【Filter
Control Window】单击确定后,弹出向导设计窗口,选择Filter Assistant选项,在窗口中输入Fs1=,Fs2=,Fp1=,Fp2=,Ap=,As=,得到所需要的波形以及阶数N=3 把参数要求输进去得到原理图:
第二步:由生成原理图可以知道用三阶可以实现。
下面计算参数:
1、确定下边频和归一化带宽。
假设下边频为ω1、上变频为ω2、中心频率为ω0,归一化带宽为:Δ=(ω2-ω1)/ ω0,其中ω
=,Δ=9%得到ω2-ω1= GHz 又ω2+ω1= GHz
所以ω1= GHz ω2= GHz
(1)计算低通滤波器原型参数。
3阶、带内波纹小于的切比雪夫滤波器原型参数通过查表得 g1= ;g2= ; g3=
(2)计算每节奇偶模的特性阻抗,滤波器需要4节耦合微带线连级,由以下公式计算
(3)计算得到各个参数如下表所示:
说明:上表的阻抗单位都为欧姆,导体带的导体带的宽度、导体带的间隔藕合线的长度单位都为mm,相移角表示计算微带线的时候为90度。
四、设计平行耦合微带线带通滤波器原理图
(1)创建项目
启动ADS软件,弹出主视窗。
选择主视窗中的【file】菜单->【new project】,弹出【new project】对话框,在【new project】对话框输入项目名称和这个项目默认的长度单位。
(2)利用ADS的计算工具tools完成对微带滤波器的计算
ADS软件中的工具tools,可以对不同类型的传输线进行计算,使用者可以利用计算工具提供的图形化界面进行设计。
对于平行耦合微带线来说,可以进行物理尺寸和电参数之间的数值计算,若给定平行耦合微带线奇模和偶模的特性阻抗,可以计算平行耦合微带线导体带的角度和间隔距离。
下面利用ADS软件提供的计算工具,完成对平行耦合微带线的计算。
在原理图上,选择【tools】菜单->【LineCalc】->【Start LineCalc】命令,弹出【LineCalc】计算窗口。
如图示。
设置所需参数。
在【LineCalc】计算窗口选择如下:
Er=,表示微带线基板的相对介电常数为。
Mur=1,表示微带线的相对磁导率为1。
H=1mm,表示微带线基板的厚度为1mm。
Hu=+033,表示微带线的封装高度为+033。
T=0.05mm,表示微带线的导体厚度为0.05mm。
Cond=+7,表示微带线导体的电导率为+7。
TanD=,表示微带线的损耗角正切为.
Freq=,表示计算时采用的频率为.
Z e,表示计算时偶模的特性阻抗。
Z o,表示计算时奇模的特性阻抗。
这样通过计算工具可以依次算出微带线的尺寸
(3)设计微带线原理图
a、在原理图的元件面板列表中,选择微带线【TLines-Microstrip】,元件面板上出现与微带线对应的元件图标。
b、在微带线元件面板上选择Mcfil,4次插入原理图的画图区,Mcfil是一段长度的平行耦合微带线,可以设置这段平行耦合微带线的导体带宽度W,导体带间隔S和长度
L。
分别双击画图区的4个Mcfil,将4个Mcfil的数值根据列表中的数值设置,如图所示。
c、在微带线元件面板上选择MLIN,两次插入原理图的画图区,MLIN是一段长度的微带线,可以设置这段微带线的宽度W和长度L。
分别双击可以设置。
选择S参数仿真元件面板,在元件面板上选择负载终端Term,两次插入原理图,再插入两次地线,完成连线如下图
(4)原理图仿真
在仿真之前,首先设置S参数仿真控件SP,SP对原理图中的仿真参量给出取值范围,当S参数仿真控件SP确定后,就可以仿真了。
在S参数仿真元件面板【Simulation-S_Param】上,选择S参数仿真控件SP,插入原理图区,对S参数控件设置如下start=,stop=,step=
仿真后波形如下:
有上表中看出,虽然在和时满足要求,但在中心频率偏移了,而且通带的上限频率和下限频率都不满足,带内波纹也不满足。
所以要进行优化:
(5)原理图优化
修改平行微带线段的取值方式,将平行耦合微带线段的导体带宽度W、两个导体带的间隔S和耦合微带线的长度L设置为变量,并设置相邻平行耦合微带线的尺寸,分别在下面窗口中设置4段微带线
设置完成后,在原理图的工具栏选择【VAR】按钮,插入原理图的画图区。
在画图区双击VAR,弹出【Variables and Equations】对话框,在对话框中对变量w1、s1、l1、w2、s2、l2的范围进行设置w1(1 to 3) w2(1 to 4) s1 to s2 to l1(20 to 30) l2(20 to 30)得到在原理图中插入优化控件Optim,双击优化控件Optim,设置优化次数为100次在原理图中插入3个目标控件DOE GOAL,双击设置如下
最后所得的优化原理图为
最后通过工具栏中【Simulate】—>【Tuning】进行调谐得到仿真的波形图如下,优化后的值如下表:
从上图可以看出:
M3为中心频率为在中心,满足技术指标,
M1为上边频,m2为下边频 GHz,满足技术指标
在 GHz衰减大于20dB满足技术指标
带内波纹最大为小于满足技术指标
相对带宽9%满足技术指标
五、实验设计收获:。