(完整word版)余弦定理及其应用

合集下载

正余弦定理及应用

正余弦定理及应用
由余弦定理:cosB=(a^2+c^2-b^2)/(2ac), cosA=(b^2+c^2-a^2)/(2bc)
所以所给条件化为:
a^3*(a^2+c^2-b^2)/(2ac)=b^3*(b^2+c^2-a^2)/(2bc)
两边约分并化简可得:a^2(a^2+c^2-b^2)=b^2(b^2+c^2-a^2)
a^2=a+2b+c
又a+2b=2c-3
∴a^2=2c-3+c
=3c-3
sinA:sinC=a:c=4:√13
a^2:c^2=16:13
3(c-1)/c^2=16/13
16c^2=39c-39
16c^2-39c+39=0
解c 取正值!
然后求a
再求b
再根据大边对大角 就知道啦!
注:a^2;b^2;c^2就是a的2次方、b的2次方、c的2次方;a*b、a*c就是a乘b、a乘c 。
1、在△ABC中,角ABC所对的边分别是abc,若b平方+c平方-bc=a平方,且a/b=根号3,则∠C的值为?
根据余弦定理得:
cosA=(b^2+c^2-a^2)/2bc......................1
联立得:BC=2,x=3^(1/2)
于是得到CosA=13*2^(1/2)/24,然后计算SinA即可
10、在△ABC中,角A,B,C所对的边是a,b,c,已知a^2-a=2(b+c),a+2b=2c-3
(1)若sinA:sinC=4:√13,求a,b,c
(2)求△ABC的最大角
a^2-a=2b+c

余弦定理的证明及其应用

余弦定理的证明及其应用

余弦定理的证明及其应用首先,我们根据向量的加法,得到等式a+b=ca=c-ba2=(c-b)2a2=b2+c2-2·b·ca2=b2+c2-2|b|·|c|·cosA (向量的数量积)a2=b2+c2-2bc·cosA得证其实余弦定理和勾股定理一样,都有很多种证明方法,但是最常用的还是这两种其实是我不会余弦定理的应用讲完了证明,我们来看看余弦定理的应用洛谷p2625 豪华游轮题目描述(这里不是向量…)有一条豪华游轮(其实就是条小木船),这种船可以执行4种指令:right X : 其中X是一个1到719的整数,这个命令使得船顺时针转动X度。

left X : 其中X是一个1到719的整数,这个命令使得船逆时针转动X度。

forward X : 其中X是一个整数(1到1000),使得船向正前方前进X的距离。

backward X : 其中X是一个整数(1到1000),使得船向正后方前进X的距离。

随意的写出了n个命令,找出一个种排列命令的方法,使得船最终到达的位置距离起点尽可能的远。

输入输出格式输入格式:第一行一个整数n(1 <= n <= 50),表示给出的命令数。

接下来n行,每行表示一个命令。

输出格式:一个浮点数,它能走的最远距离,四舍五入到小数点后6位。

这道题我们看到之后很快就能够反映出来,这个地方需要做一个贪心因为多次拐弯肯定比一次的要近,所以我们让forward走完,然后尽量转180度,然后把backward走完,这时候起点和终点之间的距离就是要算的答案了那么我们怎么来算他能最多转多少度才能让这个度数和180度的差最小呢?我们可以运用背包的思想f[i][j]表示前i个转圈的指令,能不能转到j度,转移其实很简单,大概是这样的:for(int i=1,i<=anglecnt;i++)for(intj=0;j<=360;j++){if(f[i-1][j]){f[i][j]=true;f[i][(j+angle[i]+360)%360]=true;}}那好了,我们现在知道了旋转角度,知道了两边的边长,那么我们就可以使用余弦定理了啊printf("%.6lf\n",sqrt(a*a+b*b-2*a*b*cos(degree*pi/180)));这里运用的是弧度制,如果不理解的话可以上网去搜一搜全代码大概是这样的# include<cstdio># include<algorithm>#include<cstring># include<cmath># include<climits># define Rep(i,a,b) for(int i=a;i<=b;i++)# define_Rep(i,a,b) for(int i=a;i>=b;i--)usingnamespacestd;constint N=55;constdouble pi=3.;intn,go,back,angle[N],a,b,degree=INT_MAX;boolf[N][1005];chars[N];intmain(){scanf("%d",&n);Rep(i,1,n){intx;scanf("%s%d",s,&x);if(s[0]=='f') a+=x;if(s[0]=='b') b+=-x;if(s[0]=='l') angle[++angle[0]]=x;if(s[0]=='r') angle[++angle[0]]=-x;}f[0][0]=true;Rep(i,1,angle[0])Rep(j,0,360){if(f[i -1][j]){f[i][j]=true;f[i][(j+angle[i]+360)%360]=true;}}Rep(i,0,360)if( f[angle[0]][i]) degree=min(degree,abs(180-i));printf("%.6lf\n",sqrt(a*a+b*b-2*a*b*cos(degree*pi/180)));return0;}。

余弦定理在生活中的应用

余弦定理在生活中的应用

余弦定理在生活中的应用一、余弦定理内容回顾1. 对于三角形ABC,设a、b、c分别为角A、B、C所对的边,则余弦定理有以下三种形式:- a^2=b^2+c^2-2bccos A- b^2=a^2+c^2-2accos B- c^2=a^2+b^2-2abcos C2. 余弦定理的作用- 已知三角形的两边及其夹角,可以求出第三边。

- 已知三角形的三边,可以求出三角形的三个角。

二、在测量中的应用1. 测量不可到达两点间的距离- 例:A、B两点被一个池塘隔开,无法直接测量它们之间的距离。

我们可以在池塘外选一点C,测得AC = m米,BC=n米,∠ ACB=θ。

- 根据余弦定理AB^2=AC^2+BC^2-2AC· BC·cos∠ ACB,即AB=√(m^2)+n^{2-2mncosθ}。

这样就可以计算出A、B两点间的距离。

2. 测量建筑物的高度- 假设要测量一座大楼的高度h。

在大楼底部的水平地面上选一点A,在距离A 点d米的地方再选一点B,然后测量出∠ BAC=α,∠ ABC = β。

- 设大楼高度h对应的边为BC,根据三角形内角和为180^∘,可得∠ACB=180^∘-α-β。

- 在 ABC中,已知AB = d,根据正弦定理(AB)/(sin∠ ACB)=(BC)/(sin∠BAC),可求出BC的长度。

再根据h = BCsinβ求出大楼的高度。

这里正弦定理求出BC的过程中,若先求出sin∠ ACB=sin(α + β),在计算BC时可能会涉及到较为复杂的三角函数运算。

如果我们用余弦定理,先根据AC^2=AB^2+BC^2-2AB· BC·cos∠ABC,设AC = x,则x^2=d^2+BC^2-2d· BC·cosβ,再结合(h)/(x)=tanα,联立方程求解h,有时会更简便。

三、在导航中的应用1. 飞机航线规划- 飞机从机场A飞往机场B,由于风向等因素,飞机实际飞行的路线是一个三角形的路径。

初中余弦定理及其应用知识点

初中余弦定理及其应用知识点

初中余弦定理及其应用知识点余弦定理是初中数学中的一个重要定理,用于解决不规则三角形中的角度和边长关系问题。

通过理解和运用余弦定理,我们可以解决很多实际问题,如测量无法直接测量的距离、计算航海中的航线等。

本文将介绍余弦定理的概念和公式,并且讨论其在实际应用中的一些知识点。

概述余弦定理是三角形中的一个关键定理,用于计算三角形中的边长和角度关系。

对于任意三角形ABC,设边a、b、c的对应的角分别为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosCb² = a² + c² - 2ac·cosBa² = b² + c² - 2bc·cosA通过这个定理,我们可以计算出未知边长或角度,解决各种复杂的三角形问题。

应用示例1. 确定未知边长如果我们已知一个三角形的两个边长和它们之间的夹角,可以使用余弦定理来计算第三条边的长度。

例如,已知一个三角形的两个边长分别为5cm和7cm,夹角为60°,我们可以使用余弦定理来计算第三条边的长度:c² = 5² + 7² - 2×5×7×cos60°,计算结果为c² = 54,因此c≈7.35cm。

2. 计算夹角如果我们已知一个三角形的三条边长,可以使用余弦定理来计算任意一个角的大小。

例如,已知一个三角形的三条边长分别为3cm、4cm和5cm,我们可以使用余弦定理来计算角A的大小:cosA = (4² + 5² -3²) / (2×4×5),计算结果为cosA = 0.6,因此角A的大小为cos^(-1)(0.6)≈53.13°。

3. 判断三角形的形状通过余弦定理,我们可以判断一个三角形是锐角三角形、直角三角形还是钝角三角形。

(完整word)高中数学余弦定理教案

(完整word)高中数学余弦定理教案

1、1、 2 余弦定理一、【学习目标】1.掌握余弦定理的两种表示形式及其推导过程;2.会用余弦定理解决详细问题;3.经过余弦定理的向量法证明领会向量工具性.【学习成效】:教课目的的给出有益于学生整体的掌握讲堂.二、【教课内容和要求及教课过程】阅读教材第 5—7 页内容,而后回答以下问题(余弦定理)<1>余弦定理及其推导过程?<2>余弦定理及余弦定理的应用?结论:<1>在中,AB、BC、CA的长分别为c、a、b.由向量加法得:<2>余弦定理:三角形任何一边的平方等于其余两边平方的和减去这两边与它们夹角的余弦的积的两倍.余弦定理还可作哪些变形呢?[ 理解定理 ](1)余弦定理的基本作用为:①已知三角形三边求角;②已知两边和它们的夹角,求第三边。

[ 例题剖析 ]例1评论:五个量中两边及夹角求其余两个量。

例 2 评论:已知三边求三角。

【学习成效】:学生简单理解和掌握。

三、【练习与稳固】依据今日所学习的内容,达成以下练习练习一:教材第 8 页练习第1、 2 题四、【作业】教材第 10 页练习第3---4题.五、【小结】(1)余弦定理合用任何三角形。

(2)余弦定理的作用:已知两边及两边夹角求第三边;已知三边求三角;判断三角形形状。

( 3)由余弦定理可知六、【教课反省】本节课要点理解余弦定理的运用.要求记着定理。

习题优选一、选择题1.在中,已知角则角 A 的值是()A.15°B.75°C.105°D.75°或 15°2.中,则此三角形有()A.一解 B .两解 C .无解 D .不确立3.若是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在中,已知则AD长为()A.B.C.D.5.在,面积,则BC长为()A.B.75 C .51D.496.钝角的三边长为连续自然数,则这三边长为()A. 1、2、3、B.2、3、4C. 3、 4、5D. 4、 5、67.在中,,则A等于()A.60°B.45° C .120°D.30°8.在中,,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D .等边三角形9.在中,,则等于()A.B.C.D.10.在中,,则的值为()A.B.C.D.11.在中,三边与面积S的关系式为则角C为()A.30°B.45°C.60°D.90°12.在中,是的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件二、填空题13.在中,,则14.若的三个内角成等差数列,且最大边为最小边的 2 倍,则三内角之比为 ________。

余弦定理及正弦定理的应用

余弦定理及正弦定理的应用

余弦定理及正弦定理的应用余弦定理和正弦定理是解决三角形相关问题的重要工具。

它们被广泛应用于测量、导航、工程等领域。

下面将分别介绍余弦定理和正弦定理,并说明它们在实际应用中的具体运用。

一、余弦定理余弦定理描述了一个三角形的边与夹角之间的关系。

对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。

根据余弦定理,可以得到以下等式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC余弦定理可以用于解决以下问题:1. 测量三角形边长:如果已知三角形的两个边长和它们之间的夹角,可以利用余弦定理计算出第三条边的长度。

2. 计算三角形的夹角:如果已知三角形的三条边长,可以利用余弦定理的逆运算求解三个夹角的大小。

3. 解决航海导航问题:根据已知的方位角和航程,可以利用余弦定理计算船只的坐标位置。

二、正弦定理正弦定理描述了三角形边与其对应角的正弦值之间的关系。

对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。

根据正弦定理,可以得到以下等式:a/sinA = b/sinB = c/sinC正弦定理可以用于解决以下问题:1. 求解三角形的面积:如果已知三角形的两边和它们之间的夹角,可以利用正弦定理求解三角形的面积。

2. 判定三角形类型:根据三边的长度和正弦定理,可以判断三角形是锐角三角形、直角三角形还是钝角三角形。

3. 解决建筑工程问题:在建筑测量中,需利用正弦定理计算高度、距离等未知量。

综上所述,余弦定理和正弦定理是解决三角形相关问题的重要工具。

通过运用这些定理,我们可以计算三角形的边长、夹角,求解三角形的面积,判断三角形的类型等。

在测量、导航、工程等领域,都离不开这两个定理的应用。

(完整word版)余弦定理公式

(完整word版)余弦定理公式
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救 甲船立即前往救援,同时把消息告知在甲船的南偏西30 ,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到 )?
[解]连接BC,由余弦定理得
BC2=202+102-2×20×10COS120°=700
(1) 试将△ 、△ 的面积(分别记为 与 )表示为 的函数;
(2)求 的最大值与最小值。
解:
(1)因为 为边长为 的正三角形 的中心,
所以
由正弦定理
因为 ,所以当 时, 的最大值 ;
当 时, 的最小值 .
(2)已知两边和其中一边的对角,求另一边的对角;
有三种情况:bsinA〈a<b时有两解;a=bsinA或a=b时有解;a<bsinA时无解。
5.利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
6.熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力
解:由正弦定理得:sinA= ,因为B=45°〈90°且b<a,
所以有两解A=60°或A=120°
(1)当A=60°时,C=180°-(A+B)=75°,c= ,
(2)当A=120°时,C=180°—(A+B)=15°,c=
解题方法:已知两边和其中一边的对角解三角形问题,用正弦定理求解,必需注意解的情况的讨论.
1.三角形基本公式:
(1)内角和定理:A+B+C=180°,sin(A+B)=sinC,cos(A+B)= -cosC,

计算余弦定理

计算余弦定理

计算余弦定理余弦定理是三角学中的重要定理,用于计算三角形的边长或角度。

它可以帮助我们解决许多与三角形相关的问题。

下面,我们将详细介绍余弦定理以及其应用。

余弦定理的表述如下:在一个三角形ABC中,设边长分别为a,b,c,对应角度分别为A,B,C。

则有以下关系成立:a^2 = b^2 + c^2 - 2bc * cos Ab^2 = a^2 + c^2 - 2ac * cos Bc^2 = a^2 + b^2 - 2ab * cos C这就是余弦定理的通用表达式。

它可以应用于任意三角形,并且可以用来计算任意一边的长度,只要已知两边的长度和它们之间的夹角。

下面,我们举例说明余弦定理的应用。

假设我们有一个三角形ABC,已知边长AB = 5,AC = 6,夹角BAC = 60°,我们可以使用余弦定理来计算边长BC。

根据余弦定理,我们有:BC^2 = 5^2 + 6^2 - 2 * 5 * 6 * cos 60°BC^2 = 25 + 36 - 60 * cos 60°BC^2 = 61 - 30 = 31BC = √31因此,边长BC的长度为√31。

余弦定理还可以用来计算三角形的角度。

假设我们知道一个三角形的边长分别为3、4、5,我们可以使用余弦定理来计算它的角度。

根据余弦定理,我们有:cos A = (b^2 + c^2 - a^2) / (2bc)cos A = (4^2 + 5^2 - 3^2) / (2 * 4 * 5)cos A = (16 + 25 - 9) / 40cos A = 32 / 40cos A = 0.8通过反余弦函数,我们可以求得角度A的值为cos^(-1)0.8 ≈ 36.87°。

因此,在这个三角形中,角A的大小约为36.87°。

总结一下,余弦定理是一个非常实用的工具,可以用来计算三角形的边长和角度。

它的应用范围十分广泛,不仅仅局限于特定类型的三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余弦定理及其应用
【教学目标】
【知识与技能目标】
(1)了解并掌握余弦定理及其推导过程.
(2)会利用余弦定理来求解简单的斜三角形中有关边、角方面的问题.
(3)能利用计算器进行简单的计算(反三角).
【过程与能力目标】
(1)用向量的方法证明余弦定理,不仅可以体现向量的工具性,更能加深对向量知识应用的认识.
(2)通过引导、启发、诱导学生发现并且顺利推导出余弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力.
【情感与态度目标】
通过三角函数、余弦定理、向量数量积等知识间的联系,来体现事物之间的普遍联系与辩证统一.
【教学重点】
余弦定理的证明及应用.
【教学难点】
(1)用向量知识证明余弦定理时的思路分析与探索.
(2)余弦定理在解三角形时的应用思路.
【教学过程】
一、引入
问:在R t △ABC 中,若C=090,三边之间满足什么关系? 答:222b a c += 问:若C ≠090,三边之间是否还满足上述关系?
答:应该不会有了!
问:何以见得? 答:假如b a ,不变,将A 、B 往里压缩,则C <090,且222b a c +<;
同理,假如b a ,不变,将A 、B 往外拉伸,则C >090,且222b a c +>. 师:非常正确!那么,这样的变化有没有什么规律呢?
答:规律肯定会有,否则,您就不会拿它来说事了.
问:仔细观察,然后想想,到底会有什么规律呢?
答:有点象向量的加法或减法,→→→+=a c b 或→→→-=c b a .
A
C
B
a
b
c A C B a b c
【探求】 设△ABC 的三边长分别为c b a ,,,
由于→→→+=BC AB AC
B
ac c a b a B ac c BC
B B
C AB AB b BC
BC BC AB AB AB AC BC AB BC AB AC AC cos 2cos 2)180cos(22)
()(2222
220222-+=+-=+-+=∴•+•+•=+•+=•∴→→→→→→→→→→→→→→→→→即即
问:仔细观察这个式子,你能否找出它的内在特点?
答:能!式子中有三边一角,具体包括如下三个方面:
第一、左边是什么边,右边就是什么角;
第二、左边有什么边,右边就没有什么边;
第三、边是平方和,乘积那里是“减号”.
师:很好!那么,你能否仿照这个形式写出类似的另外两个?
答:可以!它们是:A bc c b a cos 2222-+=和C abc b a c cos 2222-+=.
【总结】这就是我们今天要讲的余弦定理,现在,让我们来继续研究它的结构特点以及其应用问题.
板书课题 余弦定理及其应用
二、新课
(一)余弦定理的文字表述:
三角形的任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的两倍.
(二)余弦定理的另一种表述形式:
bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab
c b a C 2cos 2
22-+= (三)归纳
1. 熟悉定理的结构,注意“平方”“夹角”“余弦”等;
2. 每个式子中都有四个量,知道其中的三个就可以求另外的一个;
3. 当夹角为090(即三角形为直角三角形)时即为勾股定理 (特例).
A C
B a b c
(四)余弦定理的适用范围
1. 已知三边求角;
2. 已知两边及其夹角求第三边.
三、应用
例1.在△ABC 中,已知3,5,7===c b a ,求这个三角形的最大内角.
【分析】根据大边对大角的原则,知:A 为最大.
解:C B A c b a >>⇒>>由,
2
1352499252cos 222-=⨯⨯-+=-+=bc a c b A Θ,∴A =0120, 即该三角形的最大内角等于0120.
练习1.已知△ABC 的三边长分别是37,4,3===c b a ,求三角形的最大内角. 答案:0
120. 思考:?
形状,如何判断该三角形的,,的三边长为已知 c b a ABC ∆ 提示:求出与最大边相对应的角的余弦值,再与0进行比较,判定标准如下:
①若>0,则为锐角三角形;
②若=0,则为直角三角形;
③若<0,则为钝角三角形.
例2.在△ABC 中,,4
,26,32π
=+==B c a 求b 及A . 【分析】已知两边夹角,可以用公式B ac c a b cos 2222-+=直接求出b ;然后用公式bc
a c
b A 2cos 2
22-+=即可求出角A . 解:由B ac c a b cos 2222-+=得:
,84cos )26(322)26()32(222=+⨯⨯-++=π
b 解得22=b ; 又∵b
c a c b A 2cos 222-+=21)
26(222)32()26()22(222=+⨯⨯-++=, ∴A=3
π.
例3.已知△ABC 中,)13(:6:2::+=c b a ,解此三角形.
【分析】知道边的比值,可以设其公约数为k,因为,在后面的运算中又可以同时约分将其约掉,原则上一般先求最小的角;当然,也可以先求最大的角. 解法一:设其三边的公约数为k ,则k c k b k a )13(,6,2+===, 由bc a c b A 2cos 222-+=得2
2)13(62)2(])13[()6(cos 222=+⨯⨯-++=k k k k k A ∴045=A ; 由ac b c a B 2cos 2
22-+=得21
)13(22)6(])13[()2(cos 2
22=+⨯⨯-++=k k k k k B ,
∴B=060; 因此C=0000075)6045(180)(180=+-=+-B A .
解法二:设其三边的公约数为k ,则k c k b k a )13(,6,2+===, 由ab c b a C 2cos 222-+=得k k k k k C 622])13[()6()2(cos 2
22⨯⨯+-+= 即426cos -=C ,(此时可用计算器的第二功能求42
6
-的反余弦)
00000075cos )3045cos(30sin 45sin 30cos 45cos 2
1
22
23
22426=+=-=⨯-⨯=-又因为 ∴C=075; 由ac b c a B 2cos 222-+=得21
)13(22)6(])13[()2(cos 222=+⨯⨯-++=k k k k k B ,
∴B=060;∴A=0000045)7560(180)(180=+-=+-C B .
例4.已知△ABC 中,B c b c b a A 及求,,8,7,1200=+==.
【分析】这种题型一般都要归结为解方程组.
解:由A bc c b a cos 2222-+=得0222120cos 27bc c b -+=,
即4922=++bc c b 1549849)(22=-=⇒=-+⇒bc bc c b ,
由⎩⎨⎧==⎩⎨⎧==⇒⎩⎨⎧==+5
335158
c b c b bc c b 或,分类讨论如下:
⑴当5=b 时,3,7==c a ,由ac b c a B 2cos 222-+=得: 14
11372537cos 222=⨯⨯-+=B 02.38=⇒B ⑵当3=b 时,5,7==c a ,由ac
b c a B 2cos 2
22-+=得: 14
13572357cos 222=⨯⨯-+=B 08.21=⇒B 即02.38,3,5===B c b 或0
8.21,5,3===B c b 练习2.在△ABC 中,15,8,2==+=+ac c a B C A ,求b .
提示:∵060=B ,193)(cos 22222=-+=-+=ac c a B ac c a b ,∴19=b .
练习3.在棱长为1的正方体1111D C B A ABCD -中,M 、N 分别为11B A 与1BB 的中点,那么直线AM 与CN 所成角的余弦值是( )
5
2)(53)(1010)(2
3
)(D C B A
提示:取1CC AB 、中点F E 、,连F B E B 11和,则26,2511==
=EF F B E B ; 答案:(D)
四、课堂小结: 略
五、反思 略
六、课后练习 略
七、实践活动 参阅《解三角形》
B 1
(练习3图) A 1 A B C 1 D 1
C D
M
N。

相关文档
最新文档