八年级期中考试试卷答案
人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是()A .B .C .D .2.若一个三角形的三边长分别为3,7,x ,则x 的值可能是()A .6B .3C .2D .113.点M (1,2)关于x 轴对称的点的坐标为()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.如图,两个三角形全等,则∠α等于()A .50°B .58°C .60°D .72°5.在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A .正三角形B .正四边形C .正六边形D .正八边形6.如图,在ABC 中,AB AC =,D 是BC 的中点,下列结论不一定正确的是()A .BC ∠=∠B .2AB BD =C .12∠=∠D .AD BC ⊥7.如图,已知∠ABC =∠BAD ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是()A .AC =BDB .∠C =∠D C .AD =BC D .∠ABD =∠BAC8.如图,小明从点A 出发,沿直线前进8米后向左转60︒,再沿直线前进8米,又向左转60︒,…,照这样走下去,他第一次回到出发点A时,走过的总路程为()A.48米B.80米C.96米D.无限长9.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS10.如图,AB∥CD,AD∥BC,AE⊥BD,CF⊥BD垂足分别为E、F两点,则图中全等的三角形有()A.1对B.2对C.3对D.4对二、填空题11.八边形的内角和为________度.12.如图,点A、D、B、E在同一直线上,若△ABC≌△EDF,AB=5,BD=3,则AE=____.13.若等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为____.14.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向行至点C,则∠ABC=_________度.15.如图,DE是∆ABC的边AB的垂直平分线,点D为垂足,DE交AC于点E,且AC=8,BC=5,则∆BEC的周长是_________.16.如图,把一张长方形的纸沿对角线折叠,若118∠=︒,则BACABC∠=___.三、解答题17.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.18.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.19.如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:(1)把△ABC向右平移4个单位长度得到的△A1B1C1;(2)再作与△A1B1C1关于x轴对称的△A2B2C2.20.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.22.如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?证明你的结论;(2)求∠CAD的度数;(3)当以点C、A、E为顶点的三角形是等腰三角形,求OC的长.23.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.24.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.25.(1)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:OP垂直平分DE;(2)如图1,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA于D,PE⊥OB于E.F 是OC上的另一点,连接DF、EF.求证:DF=EF(3)如图2,若∠PDO+∠PEO=180°,PD=PE,求证:OP平分∠AOB.参考答案1.B【解析】【详解】由轴对称图形的定义:“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形”分析可知,上述四个图形中,A、C、D都是轴对称图形,只有B不是轴对称图形.故选B.2.A【解析】【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.C【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2).故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.D【解析】【分析】由全等三角形的对应角相等,即可得到答案.【详解】解:根据题意,如图:∵图中的两个三角形是全等三角形,∴第一个三角形中,边长为a的对角是72°,∴在第二个三角形中,边长为a的对角也是72°,∴∠α=72°;故选:D.【点睛】本题考查了全等三角形的性质,解题的关键是掌握全等三角形的对应角相等.5.D【解析】【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【详解】解:A.正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意;B.正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;C.正六边形的一个内角度数为180﹣360÷6=60°,是360°的约数,能密铺平面,不符合题意;D.正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;故选:D.【点睛】本题主要考查平面密铺的问题,解答此题的关键是熟练掌握知识点:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.6.B【解析】【分析】根据等腰三角形“三线合一”的性质解答,即可得到A、C、D三项,但得不到B项.【详解】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.7.A【解析】【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC≌△BAD即可.【详解】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A .【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.8.A【解析】【分析】根据题意,小明走过的路程是正多边形,先用360︒除以60︒求出边数,然后再乘以8米即可.【详解】小明每次都是沿直线前景8米后向左转60度,∴他走过的图形是正多边形,∴边数360606n =︒÷︒=,∴他第一次回到出发点A 时,一共走了6848⨯=(米).故选:A【点睛】本题考查了正多边形的边数的求法,根据题意判断出小明走过的图形是正多边形是解题关键.9.D【解析】【分析】根据全等三角形的判定可作出选择.【详解】解:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .∴AE 是∠PRQ 的平分线故选D .【点睛】本题考查全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是10.C【解析】【分析】根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【详解】解:∵AB ∥CD ,AD ∥BC ,∴ABD CDF ∠=∠,ADB CBD ∠=∠,∴在△ABD 和△CDB 中,BD DB ABD CDB ADB CBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴()ABD CDB ASA △≌△;∴AB CD =,AD BC =,∴在△ABE 和△CDF 中,AB CD ABD CDF AEB CFD =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()ABE CDF AAS △≌△;∴在△ADE 和△CBF 中,AD BC ADB CBD AED CFB =⎧⎪∠=∠⎨⎪∠=∠⎩,∴()AED CFB AAS △≌△,则图中全等的三角形有:△ABE ≌△CDF ,△ADE ≌△CBF ,△ABD ≌△CDB ,共3对.故选:C .【点睛】此题考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL(直角三角形).【解析】【详解】解:八边形的内角和=180(82)1080︒︒⨯-=,故答案为:1080.12.7【解析】【分析】根据△ABC ≌△EDF ,得到AB=ED ,然后求得AD=BE ,根据线段之间的关系即可求出AE 的长度.【详解】∵△ABC ≌△EDF∴AB=ED=5,∴AB-DB=ED-DB∴AD=EB=2∴AE=AB+BE=7.故答案为:7.【点睛】此题考查了三角形全等的性质,解题的关键是熟练掌握三角形全等的性质.全等三角形的性质:全等三角形对应边相等,对应角相等.13.3【解析】【分析】分边长为3的边为腰和边长为3的边为底边两种情况,再根据三角形的周长公式、三角形的三边关系定理即可得.【详解】由题意,分以下两种情况:(1)当边长为3的边为腰时,则这个等腰三角形的底边长为13337--=,337+<,即此时三边长不满足三角形的三边关系定理,∴这个等腰三角形的底边长不能为7;(2)当边长为3的边为底边时,则这个等腰三角形的腰长为1335 2-=,此时355+>,满足三角形的三边关系定理;综上,这个等腰三角形的底边长为3,故答案为:3.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,熟练掌握等腰三角形的定义是解题关键.14.60【解析】【详解】如图,由题意可知∠EAB=45°,∠DBC=15°,AE∥BD,∴∠ABD=∠EAB=45°,∴∠ABC=∠ABD+∠DBC=45°+15°=60°.故答案为:60【点睛】解本题需注意两点:(1)东北方向是指北偏东45°方向;(2)在同一平面内,从一个点引出的表示正北方向的射线和从另一个点引出的表示正南方向的射线是互相平行的.15.13【解析】【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【详解】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE=BE ,∵AC=8,BC=5,∴△BEC 的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案为:13.【点睛】本题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.16.31°【解析】【分析】根据折叠的性质可以判断出ABC 是等腰三角形,再根据三角形内角和为180°求解即可.【详解】解:将翻折后的图形如图所示:∵四边形ADCF 是长方形,∴CD AF ∥,∴FAC BCA ∠=∠,由折叠的性质得:FAC EAC ∠=∠,∴BAC BCA ∠=∠,∵118ABC ∠=︒∴31BAC BCA ∠=∠=︒故答案为:31︒【点睛】本题考查了等腰三角形的性质和三角形的内角和,正确理解知识点是解题的关键.17.∠DAE =14°,∠AEC =76°.【解析】【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC ﹣∠DAC ,∠AEC =90°﹣∠EAD .【详解】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 是角平分线,∴∠EAC =12∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°,∠AEC =90°﹣14°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义,属于简单题,熟悉三角形的内角和是180°是解题关键.18.见解析.【解析】【分析】根据等角对等边,可得DB =CD ,从而可利用SAS 证得△ABD ≌△ACD ,即可求证.【详解】证明:∵∠1=∠2,∴DB =CD ,在△ABD 和△ACD 中,34AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴AB=AC.【点睛】本题主要考查了等腰三角形的判定,全等三角形的判定和性质,熟练掌握等腰三角形的判定定理,全等三角形的判定定理和性质定理是解题的关键.19.(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用平移的性质可画出图形;(2)利用关于x轴对称的点的性质画出图形即可.【详解】(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:【点睛】本题考查了平移的性质及轴对称的性质,解题的关键是掌握变换的规律.20.(1)见解析;(2)100°.【解析】【分析】(1)只要证明△ABD≌△ACE(AAS),即可证明BD=CE;(2)利用四边形内角和定理即可解决问题.【详解】(1)证明:∵BD、CE是高,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,A A ADB AEC AB AC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD△ACE(AAS),∴BD=CE.(2)∵∠A=80°,∠ADB=∠AEC=90°,∴∠BOC=360°-80°-90°-90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.21.(1)见解析(2)25°【解析】【分析】(1)因为这两个三角形是直角三角形,BC=BD ,因为AD ∥BC ,还能推出∠ADB=∠EBC ,从而能证明:△ABD ≌△ECB .(2)因为∠DBC=50°,BC=BD ,可求出∠BDC 的度数,进而求出∠DCE 的度数.【详解】(1)证明:∵AD ∥BC ,∴∠ADB=∠EBC .∵CE ⊥BD ,∠A=90°,∴∠A=∠CEB ,又∵BC=BD ,∴△ABD ≌△ECB ;(2)解:∵∠DBC=50°,BC=BD ,∴∠EDC=12(180°-50°)=65°,又∵CE ⊥BD ,∴∠CED=90°,∴∠DCE=90°-∠EDC=90°-65°=25°.22.(1)△OBC ≌△ABD ,证明见解析;(2)∠CAD=60°;(3)当OC 等于3时,以点C 、A 、E 为顶点的三角形AEC 是等腰三角形.【解析】(1)根据等边三角形的性质得到OB=AB ,BC=BD ,然后根据SAS 证明三角形全等的方法即可证明△OBC ≌△ABD ;(2)根据(1)中证明的△OBC ≌△ABD ,可得OCB ADB ∠=∠,然后根据三角形内角和即可求得60CAD CBD ∠=∠=︒;(3)根据(2)求得的60CAD ∠=︒可得60OAE ∠=︒,然后根据OA 的长度和30°角直角三角形的性质可求得AE=2,然后根据△AEC 是等腰三角形求出AC 的长度,即可求出OC 的长.【详解】(1)△OBC ≌△ABD理由如下:∵△OAB 与△CBD 是等边三角形∴OB =AB ,BC =BD ,∠OBA =∠CBD =60°∴∠OBA+∠ABC =∠CBD+∠ABC ,即∠OBC =∠ABD∴在△OBC 与△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩∴△OBC ≌△ABD(SAS),(2)如图所示,设AD 交BC 于点F,解:∵△OBC ≌△ABD ,∴OCB ADB ∠=∠,又∵AFC BFD ∠=∠,∴∠CAD=∠CBD=60°;(3)解:∵60OAE CAD ∠=∠=︒∴∠EAC=120°,30OEA ∠=︒,∴22AE OA ==,∴以A ,E ,C 为顶点的三角形是等腰三角形时,只能是以AE 和AC 为腰∴AC=AE=2,∴OC=OA+AC=1+2=3,所以当OC 等于3时,三角形AEC 是等腰三角形.【点睛】此题考查了三角形全等的性质和判定,30°角直角三角形的性质和等腰三角形的性质等知识,解题的关键是根据题意证明出△OBC ≌△ABD .23.见解析【解析】【分析】由CD ∥BE ,可证得∠ACD=∠B ,然后由C 是线段AB 的中点,CD=BE ,利用SAS 即可证得△ACD ≌△CBE ,证得结论.【详解】∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠B ,在△ACD 和△CBE 中,∵AC=CB ,∠ACD=∠B ,CD=BE ,∴△ACD ≌△CBE (SAS ),∴∠D=∠E .24.(1)见解析;(2)∠DEF =70°.【解析】【分析】(1)求出EC=DB ,∠B=∠C ,根据SAS 推出△BED ≌△CFE ,根据全等三角形的性质得出DE=EF 即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC ,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵AB =AD+BD ,AB =AD+EC ,∴BD =EC ,在△DBE 和△ECF 中,BE CF B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△ECF (SAS )∴DE =EF ,∴△DEF 是等腰三角形;(2)∵∠A =40°,∴∠B =∠C =1(18040)2- =70°,∴∠BDE+∠DEB =110°,又∵△DBE ≌△ECF ,∴∠BDE =∠FEC ,∴∠FEC+∠DEB =110°,∴∠DEF =70°.25.(1)见解析;(2)见解析;(3)见解析.【解析】(1)根据HL 证明Rt △OPD ≌Rt △OPE ,得OD=OE 可得结论;(2)根据SAS 证明△ODF ≌△OEF 即可;(3)先过点P 作PM ⊥OA ,PN ⊥OE ,证明△PMD ≌△PNE ,根据全等三角形的性质即可解决问题.【详解】(1)证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PD =PE ,在Rt △OPD 和Rt △OPE 中,OP OP PD PE =⎧⎨=⎩,21∴Rt △OPD ≌Rt △OPE (HL ),∴OD=OE ,∴OP 垂直平分DE ,(2)由(1)知Rt △OPD ≌Rt △OPE ∴OD =OE ,在△ODF 和△OEF 中,PD PEDPF EPF PF PF=⎧⎪∠=∠⎨⎪=⎩,∴△ODF ≌△OEF (SAS ),∴DF =EF .(3)过点P 作PM ⊥OA ,PN ⊥OB,∵∠PDO+∠PEO=180°,∠PDO+∠PDM=180°∴∠PDM=∠PEN;在△PMD 和△PNE 中,PMD PNEPDM PEN PD PE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PMD ≌△PNE (AAS )∴PM=PN ;∵PM ⊥OA ,PN ⊥OB,∴OP 平分∠AOB。
2024-2025学年第一学期期中考试八年级地理学科试卷(含答案)

2024-2025学年第一学期期中考试八年级地理学科试卷本试卷共8页,32小题,满分100分。
考试用时60分钟。
一、选择题:本大题共30小题,每小题2分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
致敬默默守护国土边疆的人。
图1为我国部分哨所分布图,完成1-3题。
1.华阳礁哨所是有中国军人驻守的最南部岛礁,该哨所位于()A.广东省 B.台湾省 C.广西壮族自治区 D.海南省2.图中位于热带的哨所是()A.斯姆哈纳哨所 B.华阳礁哨所C.北极哨所 D.乌苏里哨所3.北极哨所位于黑龙江省漠河县北极村,是我国与哪个相邻国家的国界处()A.朝鲜 B.日本 C.印度 D.俄罗斯图1从淄博出圈的烧烤、哈尔滨火热的冰雪旅游,天水美味的麻辣烫,再到新晋顶流大连港东五街浪漫的“大船”……这两年,新的网红城市不断出现,已成为人们热衷打卡的旅游地,这为当地经济的发展注入新活力。
图2为我国行政区划图,完成4-6小题。
@地理教研联盟公众号图24.这两年的新晋网红城市不再集中分布于省会城市。
材料中的旅游地所在的省级行政区与其省会城市搭配正确的是()A.淄博一山东省一青岛B.哈尔滨—吉林省—长春C.天水一甘肃省—兰州D.大连—沈阳省—辽宁5.我国南北、东西旅游资源差异大,其形成的主要原因是我国()A.疆域辽阔,海陆兼备B.人口众多,民族团结C.地形复杂,资源丰富D.温带为主,季风显著6.我国各地大力发展旅游的意义是()①增加旅游收入②增加就业岗位③促进文化交流④缓解环境压力A.①③④ B.①②③C.①②④D.②③④我国地域辽阔,人口分布不均,以黑河-腾冲线为界,人口东密西疏,图3为2000年-2020年的中国城市人口重心移动轨迹示意图,据此完成7-8题。
图37.2000年中国城市人口重心约位于()A.32.57°N,114.52°E B.32.57°S,114.52°EC.32.57°N,114.52°W D.32.57°S,114.52°W8.2010年-2020年,中国城市人口重心的迁移方向是()A.向东南B.向西南C.向西北D.向东北剪纸是我国最古老的民间艺术之一,它可以反映当地自然与人文习俗。
运城中学2023-2024学年八年级上学期期中考试数学试卷(含解析)

2023-2024学年山西省运城中学八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列根式是最简二次根式的是( )A.B.C.D.解析:解:A、,故此选项不符合题意;B、是最简二次根式,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选:B.2.(3分)下列说法中正确的是( )A.带根号的数都是无理数B.绝对值最小的实数是0C.算术平方根等于本身的数只有1D.负数没有立方根解析:解:=2,它是有理数,则A不符合题意;绝对值最小的实数是0,则B符合题意;算术平方根等于本身的数是0和1,则C不符合题意;任意实数都有立方根,则D不符合题意;故选:B.3.(3分)信息课上,小文同学利用计算机软件绘制了美丽的蝴蝶,如图,在绘图过程中,小文建立平面直角坐标系,先画出一半图形,利用对称性画出另一半.若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为( )A.(3,2)B.(2,3)C.(3,﹣2)D.(﹣3,﹣2)解析:解:若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为(3,2).故选:A.4.(3分)已知△ABC的三边为a,b,c,下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.b2=(a+c)(a﹣c)C.∠A﹣∠B=∠C D.解析:解:A、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴最大角∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;B、∵b2=(a+c)(a﹣c),∴b2=(a+c)(a﹣c)=a2﹣c2,即b2+c2=a2,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A﹣∠B=∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、∵,设a=x>0,则,,即有b2+a2=c2,∴此三角形是直角三角形,故本选项不符合题意;故选:A.5.(3分)如图,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点B,若该圆柱体的底面周长是8厘米,高是3厘米,则蚂蚁爬行的最短距离为( )A.6厘米B.厘米C.厘米D.5厘米解析:解:圆柱体的侧面展开图如图所示,连接AB,∵圆柱体的底面周长是8厘米,高是3厘米,∴AC=3cm,BC=8=4(cm),∴蚂蚁爬行的最短距离AB==5(cm).故选:D.6.(3分)假期小敏一家自驾游山西,爸爸开车到加油站加油,小敏发现加油机上的数据显示牌(如图)金额随着数量的变化而变化,则下列判断正确的是( )A.金额是自变量B.单价是自变量C.168.8和20是常量D.金额是数量的函数解析:解:单价是常量,金额和数量是变量,金额是数量的函数,故选项D符合题意.故选:D.7.(3分)下列四个选项中,符合直线y=﹣x+2的性质的选项是( )A.经过第一、三、四象限B.y随x的增大而增大C.函数图象必经过点(1,1)D.与y轴交于点(0,﹣2)解析:解:∵直线解析式为y=﹣x+2,﹣1<0,2>0,∴直线经过第一、二、四选项,y随x增大而减小,故A、B不符合题意;当x=1时,y=﹣1+2=1,即函数经过点(1,1),故C符合题意;当x=0时,y=2,即直线与y轴交于点(0,2),故D不符合题意;故选:C.8.(3分)按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.B.C.2D.3解析:解:由所给的程序可知,当输入64时,=8,∵8是有理数,∴取其立方根可得到,=2,∵2是有理数,∴取其算术平方根可得到,∵是无理数,∴y=.故选:A.9.(3分)如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以点B为圆心,AB的长为半径画弧,交数轴于点D,则点D表示的数是( )A.B.C.D.解析:解:在△ABC中,∠ACB=90°,BC=2,AC=1,则AB===,由题意得BD=AB=,∴CD=﹣2,∵点C表示的数是0,∴点D表示的数是﹣(﹣2),即2﹣,10.(3分)清徐葡萄驰名华夏,是山西的著名传统水果之一.店庆来临之际,某超市对清徐葡萄采取促销方式,购买数量超过5千克后,超过的部分给予优惠,水果的购买数量x(kg)与所需金额y(元)的函数关系如图所示.小丽用120元去购买该种水果,则她购买的数量为( )A.20kg B.21kg C.22kg D.23kg解析:解:设超过部分的函数解析式为y=kx+b,将点(5,30),(15,80)代入得:,解得:,∴超过部分的函数解析式为y=5x+5,当y=120时,即5x+5=120,解得:x=23,∴小丽购买的数量为23kg,故选:D.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)要使代数式有意义,则x可以取的最小整数是 3 .解析:解:要使代数式有意义,那么x﹣3≥0,则x≥3,故x可以取的最小整数是3,故答案为:3.12.(3分)P1(﹣1,y1),P2(3,y2)是一次函数y=2x﹣3图象上的两点,则y1 < y2.(填“>.“=”或“<”)解析:解:∵k=2>0,∴y随x的增大而增大,∴y1<y2.故答案为:<.13.(3分)一个立方体的体积是4,则它的棱长是 .解析:解:设立方体的棱长为a,则a3=4,∴a=,故答案为:.14.(3分)如图,直线y=2x与y=kx+b相交于点P(1,2),则关于x的方程kx+b=2x的解是 x=1 .解析:解:∵直线y=2x与y=kx+b相交于点P(1,2),∴方程kx+b=2x的解,即为直线y=2x与y=kx+b的交点的横坐标的值,∴方程kx+b=2x的解为x=1,故答案为:x=1.15.(3分)如图,在长方形ABCD中,AB=5,BC=4,F是BC边上的一点,将△CDF沿着DF翻折,点C恰好落在AB边上的点E处,则阴影部分的面积为 .解析:解:∵四边形ABCD是矩形,AB=5,BC=4,∴AD=BC=4,CD=AB=5,∠A=∠B=∠C=90°,由折叠得ED=CD=5,EF=CF=4﹣BF,∴AE===3,∴BE=AB﹣AE=5﹣3=2,∵BE2+BF2=EF2,∴22+BF2=(4﹣BF)2,解得BF=,S阴影=S△AED+S△BEF=×4×3+××2=,故答案为:.三、解答题16.(10分)计算:(1);(2).解析:解:(1)=2﹣3﹣=;(2)=3=9+5﹣1=13.17.(7分)定义一种新运算,分别用[x]和(x)表示实数x的整数部分和小数部分.例如:[3.5]=3,(3.5)=0.5;,﹣1.(1)= 3 ,= ﹣3 .(2)如果,,求a+b﹣的平方根.解析:解:(1)∵9<10<16,∴34,∴[]=3,()=﹣3,故答案为:3,﹣3;(2)∵2,6,∴a=()=,b=[]=6,∴a+b﹣==4,∴a+b﹣的平方根是±2.18.(9分)如图,这是某学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(3,a),实验楼的坐标为(b,﹣1).(1)请在图中画出平面直角坐标系.(2)a= 1 ,b= ﹣2 .(3)若图书馆的坐标为(2,3),请在(1)中所画的平面直角坐标系中标出图书馆的位置.解析:解:(1)坐标系如图;(2)艺术楼的坐标为(3,1),实验楼的坐标为(﹣1,﹣1).故答案为:1,﹣1;(3)图书馆的位置如图所示.19.(9分)为进一步改善校园环境和面貌,消除校园安全隐患,提升校园环境品质,完善基础设施建设,某学校利用暑假全力做好教学条件提升改造工程.如图,某教室外部墙面MN上有破损处(看作点A),现维修师傅需借助梯子DE完成维修工作.梯子的长度为4.5m,将其斜靠在这面墙上,测得梯子底部E离墙角N处2.7m,维修师傅爬到梯子顶部使用仪器测量,此时的梯于顶部D面最损处A相距1m.(1)求教室外墙面破损处A距离地面NE的高度.(2)为了方便施工,需要将梯子底部向内移动至离墙角处,求此时梯子顶部距离墙面破损处A 的高度.解析:解:(1)由题意知,DE=4.5m,EN=2.7m,∴DN==3.6(m),∴AN=AD+DN=1+3.6=4.6(m),即教室外墙面破损处A距离地面NE的高度为4.6m;(2)如图,由题意可知,BN=,BD'=DE=4.5m,∴D'N==1.6(m),∴D'D=1.6﹣1=0.6(m),即此时梯子顶部距离墙面破损处A的高度为0.6m.20.(8分)在平面直角坐标系中,已知点M(m﹣2,2m﹣5),点N(5,1).(1)若MN∥x轴,求MN的长.(2)若点M到x轴的距离等于3,求点M的坐标.解析:解:(1)∵MN∥x轴,∴点M与点N的纵坐标相等,∴2m﹣5=1,∴m=3,∴M(﹣1,1),∵N(5,1),∴MN=6.(2)点M(m﹣2,2m﹣5),且点M到x轴的距离等于3,∴|2m﹣5|=3,解得:m=4或m=1,∴M点的坐标为(2,3)或(﹣1,﹣3).21.(7分)阅读与思考材料1:点A(x1,y1),B(x2,y2)的中点坐标为.例如:点(1,5),(3,﹣1)的中点坐标为,即(2,2).材料2:一次函数y=k1x+b1,y=k2x+b2的图象相互垂直,则k1•k2=﹣1.例如:直线l1:y=2x+3与直线l2:y=kx+2互相垂直,于是2k=﹣1,解得.如图,在等腰△AOB中,OB=AB,点A的坐标为(4,2),BC⊥OA,根据以上两则材料的结论,解答以下问题:(1)求点C的坐标.(2)求直线BC的表达式.解析:解:(1)在等腰△AOB中,OB=AB,BC⊥OA,∴OC=AC,∵点A的坐标为(4,2),∴C(2,1);(2)∵点A的坐标为(4,2),∴直线OA的解析式为y=,∵BC⊥OA,∴设直线BC的解析式为y=﹣2x+b,把点C(2,1)代入得,1=﹣4+b,∴b=5,∴直线BC的表达式为y=﹣2x+5.22.(12分)综合与实践勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.如图2,直角三角形的两条直角边分别为a,b,斜边为c.(1)如图3,以直角三角形的三边a,b,c为边,分别向外部作正方形,直接写出S1,S2,S3满足的关系: S1+S2=S3 .(2)如图4,以Rt△ABC的三边为直径,分别向外部作半圆,请判断S1,S2,S3的关系并证明.(3)如图5,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为80,OC=5,直接写出该飞镖状图案的面积.解析:解:(1)S1=a2,S2=b2,S3=c2,由勾股定理得,a2+b2=c2,∴S1+S2=S3,故答案为:S1+S2=S3;(2)S1=π()2=,S2=π()2=,S3=π()2=,由勾股定理得,a2+b2=c2,∴+=,∴S1+S2=S3;(3)由题意知,外围轮廓(实线)的周长为80,且四个直角三角形是全等的,∴AB+AC=20,∵OC=5,∴OB=OC=5,设AC为x,则AB=20﹣x,AO=x+5,在Rt△ABO中,由勾股定理可得,(x+5)2+52=(20﹣x)2,解得:x=7,∴AO=12,△ABO的面积=×5×12=30,∵该飞镖状图案的面积由四个直角三角形面积组成,∴该飞镖状图案的面积=30×4=120.23.(13分)综合与探究如图,直线与x轴,y轴分别相交于A,B两点.(1)点A的坐标为 (﹣8,0) ;点B的坐标为 (0,6) .(2)过点C(﹣3,0)作直线CD∥AB,交y轴于点D,连接BC,求△BCD的面积.(3)在x轴负半轴上是否存在一点P,使得△ABP是以AP为腰的等腰三角形?若存在,求出此时点P 的坐标;若不存在,请说明理由.解析:解:(1)令x=0,y=6,∴B(0,6),令y=0,,∴x=﹣8,∴A(﹣8,0).故答案为:(﹣8,0),(0,6);(2)如图,∵C(﹣3,0),A(﹣8,0),B(0,6);∴OC=3,OA=8,OB=6,∵CD∥AB,∴△OCD∽△OAB,∴,∴,∴OD=,∴BD=OB﹣OD=6﹣=,∴BD•OC==;(3)①P在A的左侧,∵AO=8,OB=6,∴AB==10,∵△ABP是以AP为腰的等腰三角形,∴AB=AP=10,∴PO=18,∴P(﹣18,0).②P在OA之间,AP=BP时,设P(m,0),BP=AP=m+8,在Rt△BOP中,由勾股定理得,OB2+OP2=BP2,即62+m2=(8+m)2,解得m=﹣,∴P点坐标为(﹣,0)综上所述P点坐标为(﹣,0)或(﹣18,0).。
2023-2024学年全国初中八年级上语文人教版期中考试试卷(含答案解析)

一、选择题(每题2分,共30分)1. 下列词语中,注音有误的一项是()A. 应和(hè)B. 竣工(jùn)C. 惩罚(chéng)D. 狰狞(zhēng)答案:D2. 下列词语中,没有错别字的一项是()A. 狼藉喜出忘外B. 狡黠忧心忡忡C. 呵责轻歌慢舞D. 羁绊呕心沥血答案:D3. 下列句子中,加点词语使用有误的一项是()A. 这场比赛,我方险些失利,队员们心情都很沮丧。
B. 我们来到郊外,小鸟在枝头欢唱,蝴蝶在花间翩翩起舞,一派生机勃勃的景象。
C. 这位明星一出场,粉丝们欢呼雀跃,现场顿时鸦雀无声。
D. 他穿着一件黑色上衣,搭配一条蓝色牛仔裤,显得非常帅气。
答案:C4. 下列句子中,没有语病的一项是()A. 通过这次活动,使同学们增长了知识,提高了能力。
B. 老师要求同学们写一篇关于家乡变化的作文,李华同学写了一篇生动的文章。
C. 为了防止疫情不再反弹,我们必须加强防控措施。
D. 他穿着一件灰色上衣,戴着一顶蓝色帽子,走起路来大摇大摆。
答案:B5. 下列句子中,加点词语的解释有误的一项是()A. 看到这幅画,我不禁想起了往事。
(不禁:表示忍不住)B. 这部电影非常感人,观众们纷纷泪流满面。
(纷纷:表示一个接一个)C. 这位老师讲课生动有趣,深受同学们的喜爱。
(深受:表示很受)D. 他做事认真负责,从不马虎。
(马虎:表示不细心)答案:B6. 下列句子中,没有使用修辞手法的一项是()A. 月亮升起来了,照亮了整个大地。
B. 这位歌手的歌声如泉水般清澈。
C. 他的脸红得像苹果。
D. 春天来了,小草从土里探出头来。
答案:A7. 下列句子中,表达得体的一项是()A. 老师,请问您这道题怎么做?B. 爸爸,我想要一辆自行车,您给我买一辆吧。
C. 妈妈,我饿了,您去给我做饭吧。
D. 同学,你的书掉了,我帮你捡起来。
答案:D二、判断题(每题1分,共20分)8. 《背影》的作者是鲁迅。
人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
河北省唐山市滦州市2024-2025学年八年级上学期11月期中考试语文试题(含答案)

2024~2025学年度第一学期期中考试八年级语文试卷本试卷共8页。
总分120分,考试时间120分钟。
第一部分(1~2题 15分)河北省秦皇岛市举办“纪念‘爱我中华修我长城’题词40周年暨秦皇岛长城保护利用成果主题展”,借此契机,你所在的学校开展了“爱我中华护我长城”的研学活动。
1. 阅读下面文字,回答后面的问题。
(9分)秦皇岛,这方古老而壮丽的土地,其长城遗迹最早可追溯至南北朝北齐时期,但最为世人所知的,莫过于那保存相对完整的明长城。
明长城的最东端是素有“天下第一关”美称的山海关,它作为军事要塞,(kùsì)护国将军,巍峨挺拔,(qìyǔ)轩昂,千百年来守护着这片土地。
城郭内外,城墙蜿蜒,宛如一条巨龙,气势恢宏;残损的城墙与连绵不断的烽火台诉说着历史的沧桑, (呈现/彰显)着古人的智慧。
而今,随着长城各项保护工作的开展,使我们再一次将这段历史铭记。
(1) 根据文段中拼音写出相应的词语。
(2分)①(kùsì)②(qìyǔ)(2)文段中加点字的读音,正确的一项是……………………………………( )(2分)A. 要塞(sài) 宛如(wān)B. 要塞(sāi)宛如(wān)C. 要塞(sāi)宛如(wǎn)D. 要塞(sài) 宛如(wǎn)(3)从文段的括号内选择符合语境的词语,填入横线处。
(1分)(4)文中加横线的句子有语病,请提出修改意见。
(2分)修改意见:(5)考古学家、著名的长城专家罗哲文,写了一副题为《长城赞》的长对联:上联:起春秋,历秦汉,及辽金,至元明,上下两千年。
数不清将帅吏卒,黎庶百工,费尽移山心力,修筑此伟大工程。
坚强毅力,聪明智慧,血汗辛勤,为中华留下巍峨丰碑。
下联:跨峻岭,穿荒原,横瀚海,经绝壁,纵横十万里。
望不断长龙烽垛,雄关隘口,犹如玉带明珠,点缀成江山锦绣。
起伏奔腾,飞舞盘旋,太空遥见,给世界增添壮丽奇观。
山东省临沂市兰山区2023-2024学年八年级上学期期中考试语文试卷(含答案)

2023~2024学年度上学期期中阶段质量检测试题八年级语文2023.11注意事项:1.本试卷分试题卷和答题卡两部分。
试题卷1至8页,答题卡1至4页。
总分120 分,考试时间120分钟,2.答卷前考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置。
3.考生必须用0.5毫米黑色墨水签字笔将答案全部涂或写在答题卡规定的区域内,做到字迹工整,卷面整洁。
在试题卷上答题不得分。
考试结束后,将答题卡交回。
试题卷一、积累运用(22分)1.下列词语中加点字的注音全都正确的一项是( )(2分)A.诘责(jié)悄然(qiāo)胆怯(qiè)锐不可当(dāng)B.锃亮(zèng)佃农(diàn)绯红(fēi)惨绝人寰(huán)C.解剖(pāo)镌刻(juān)黝黑(yǒu)深恶痛疾(wù)D.要塞(sài) 教诲(huì)2.下列词语中没有错别字的一项是(炽热(zhì))(2.分)殚精竭虑(dān)A.燥热畸形粗制滥造摧枯拉朽B. 匿名泻气藏污纳垢为富不仁C. 湎怀浩瀚振聋发聩鹤立鸡群D. 遗嘱娴熟屏息敛声诚皇诚恐3.下列句子中加点的成语使用不正确的一项是( ) ( 2 分)A.朗读时一定要注意语调的抑扬顿挫,这样才能把作品的内容形象生动地通过语言表现出来。
B.当我因为考试失利而懊恼的时候,母亲总会和颜悦色地鼓励我,告诉我只要努力了就好。
C.语文老师经常在课堂上提醒我们,写字时一定要正襟危坐,眼睛要距离书本一尺远。
D. 工匠精神既是一种兢兢业业、一丝不苟的职业态度,也是一种没有最好、只有更好的极致追求。
4.下列关于文学文化常识的表述不正确的一项是( )(2分)A.《记承天寺夜游》作者苏轼,字子瞻,号东坡居士,北宋文学家。
“唐宋八大家”之一,与父苏洵、弟苏辙合称“三苏”。
八年级语文试题第1页(共8页)B. 消息是迅速、简要地报道新近发生的事件的一种新闻体裁,一般包括标题、导语、主体、背景和结语五部分,具有时效性和真实性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级期中语文答案
1)会当凌绝顶,一览众山小。
2)烽火连三月,家书抵万金。
3)予独爱莲之出淤泥而不染,濯清涟而不妖。
4)如闻泣幽咽
5)感时花溅泪
6)略
2、B
3、D
4、C
5、C
6.(1)叹舟中人穿越时空(2)机灵鬼妙思巧称巨象
7.示例:“文化部门查禁四款电脑游戏“或“文化部要求查禁四款非法电脑游戏”
8. 写出了秋夜的漫长、幽静、清冷、孤独。
9. 凄清孤寂(1分)。
寂寞悠思的心情(2分)
10.有良田美池桑竹之属
11、隐隐约约通“邀”,邀请不用说妻子和儿女
12、D 13、世外桃源、豁然开朗、阡陌交通、黄发垂髫、落英缤纷、怡然自乐、鸡犬相闻、无人问津、与世隔绝
14、(1)田间小路交错相通(村落间)鸡鸣狗叫的声音能相互听见
(2)老人和孩子充满喜悦之情,显得心满意足。
16. 关爱子女;善于引导教育子女。
或者“.(1)母亲爱孩子(2)母亲勇于承认错误”
17. 不能听天由命,要用自己的双手开掘出幸运之泉。
——如果一个人只安于听从上天的安排而忽略了自身的力量,是多么愚蠢。
无论什么时候,一个人都没有理由听天由命。
其实每个人的生命中都潜藏着许多好机会,但你只能靠自己的双手去挖掘。
天会刮风天会下雨,但是永远不会掉下馅饼。
你只能用自己的双手,自己为自己创造出一眼源源不绝的幸运之泉。
(25字内)
18. 因为以前的我自暴自弃
19. 母亲对我的这种说法感到吃惊,感到迷惑不解。
20. 命运对于每个人都是公平的,我们不能自暴自弃。
感受:我们要善于抓住机遇,努力创造,不要听从命运的安排。
好的机会要由我们自己双手去挖掘。
21.一位共产党员为挽救他人生命毅然喝下有毒之水,英勇牺牲。
22、“他们押送的这位共产党员,是学医的,曾经在外国留过学。
23、此段说明了“这个共产党员”崇高精神和美好品质对爷爷的触动之大和影响之
深,侧面烘托了这位共产党员的高大形象。
八年级期中语文答案
7)会当凌绝顶,一览众山小。
8)烽火连三月,家书抵万金。
9)予独爱莲之出淤泥而不染,濯清涟而不妖。
10)如闻泣幽咽
11)感时花溅泪
12)略
2、B
3、D
4、C
5、C
6.(1)叹舟中人穿越时空(2)机灵鬼妙思巧称巨象
7.示例:“文化部门查禁四款电脑游戏“或“文化部要求查禁四款非法电脑游戏”
8. 写出了秋夜的漫长、幽静、清冷、孤独。
9. 凄清孤寂(1分)。
寂寞悠思的心情(2分)
10.有良田美池桑竹之属
11、隐隐约约通“邀”,邀请不用说妻子和儿女
12、D 13、世外桃源、豁然开朗、阡陌交通、黄发垂髫、落英缤纷、怡然自乐、鸡犬相闻、无人问津、与世隔绝
14、(1)田间小路交错相通(村落间)鸡鸣狗叫的声音能相互听见
(2)老人和孩子充满喜悦之情,显得心满意足。
16. 关爱子女;善于引导教育子女。
或者“.(1)母亲爱孩子(2)母亲勇于承认错误”
17. 不能听天由命,要用自己的双手开掘出幸运之泉。
——如果一个人只安于听从上天的安排而忽略了自身的力量,是多么愚蠢。
无论什么时候,一个人都没有理由听天由命。
其实每个人的生命中都潜藏着许多好机会,但你只能靠自己的双手去挖掘。
天会刮风天会下雨,但是永远不会掉下馅饼。
你只能用自己的双手,自己为自己创造出一眼源源不绝的幸运之泉。
(25字内)
18. 因为以前的我自暴自弃
19. 母亲对我的这种说法感到吃惊,感到迷惑不解。
20. 命运对于每个人都是公平的,我们不能自暴自弃。
感受:我们要善于抓住机遇,努力创造,不要听从命运的安排。
好的机会要由我们自己双手去挖掘。
第1页共2页
21.一位共产党员为挽救他人生命毅然喝下有毒之水,英勇牺牲。
22、“他们押送的这位共产党员,是学医的,曾经在外国留过学。
23、此段说明了“这个共产党员”崇高精神和美好品质对爷爷的触动之大和影响之
深,侧面烘托了这位共产党员的高大形象。
第2页共2页。