新人教版八年级数学下册 第二学期期末测试卷

合集下载

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、单选题1x 的取值范围是()A .2x ≥-B .2x >-C .2x ≥D .2x >2.根据全国第七次人口普查统计公报的数据显示:汕尾市常住人口为2672819人,其中2672819用科学记数法表示为()A .526.7281910⨯B .52.67281910⨯C .62.67281910⨯D .70.267281910⨯3.下列计算正确的是()A B 3=-C .()22xy xy =D=4.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD 的长度是()A .2B .3C .4D .55.下列各式中是最简二次根式的是()AB C D 6.下列四点在函数32y x =+的图象上的点是()A .()1,1-B .()0,1.5-C .()2,0D .()1,1--7.根据疫情防控要求,所有乘坐高铁的乘客都须测量体温,在某个时间段有7名乘客的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这7名乘客体温的众数是()A .36.3B .36.8C .36.5D .36.78.在平行四边形ABCD 中,下列结论中,错误的是()A .AB CD=B .AC BD=C .当AC BD ⊥时,平行四边形ABCD 是菱形D .当90ABC ∠=︒,平行四边形ABCD 是矩形9.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为()A .96096054848x -=+B .96096054848x +=+C .960960548x-=D .96096054848x-=+10.如图,一次函数y =﹣x+4的图象与两坐标轴分别交于A 、B 两点,点C 是线段AB 上一动点(不与点A 、B 重合),过点C 分别作CD 、CE 垂直于x 轴、y 轴于点D 、E ,当点C 从点A 出发向点B 运动时,矩形CDOE 的周长()A .逐渐变大B .不变C .逐渐变小D .先变小后变大二、填空题11.已知一次函数()23y k x =-+,若y 值随x 值的增大而减少,则k 的取值范围是________.12.若菱形的两条对角线长分别是8cm 和10cm ,则该菱形的面积是________2cm .13.将正比例函数3y x =的图象沿y 轴向下平移2个单位后所得图象的解析式是________.14.如图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE=3,AB=8,则BF=_________.15.将函数y =122x -的图象向上平移_____个单位后,所得图象经过点(0,1).16.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于点H ,则DH =_____.三、解答题17.1012312021122-+18.先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中33x =19.如图,BD 是平行四边形ABCD 的对角线,30C ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DFB ∠的度数.20.今年3月22日“世界水日”,红星中学数学活动小组到某住宅区调查了解住宅区去年用水情况.该数学活动小组从住宅区中随机抽样调查了50个家庭去年每个月的用水情况,根据调查数据得到下面两张统计图:图1是去年50个家庭的月总用水量折线统计图,图2是去年50个家庭月总用水量的频数分布直方图(不完整).请根据下面统计图,回答下面问题:(1)根据图1的信息,补全频数分布直方图(图2);(2)去年50个家庭的月总用水量中,极差是________立方米,中位数是________立方米;(3)根据上面数据,估计去年该住宅区每个家庭平均每月的用水量是多少立方米?各边的中点,21.如图,D、E、F分别是ABCBC=,那么EF=________cm;(1)如果8cm(2)当AB和AC满足________时,四边形AFDE是菱形,并证明.22.为绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,够买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案.并求出该方案所需费用.23.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.24.如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.25.如图,把矩形OABC 放入平面直角坐标系xO 中,使OA 、OC 分别落在x 、y 轴的正半轴上,其中AB =15,对角线AC 所在直线解析式为y =﹣53x+b ,将矩形OABC 沿着BE 折叠,使点A 落在边OC 上的点D 处.(1)求点B 的坐标;(2)求EA 的长度;(3)点P 是y 轴上一动点,是否存在点P 使得△PBE 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.26.如图,矩形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠,点A 的对应点为点G .(1)填空:如图1,当点G 恰好落在BC 边上时,四边形ABGE 的形状是________;(2)如图2,当点G 落在矩形ABCD 内部时,延长BG 交DC 边于点F .连接EF .①证明:EDF EGF≌②若3AD ,试探索线段CD 与DF 的数量关系.参考答案1.A 【解析】根据二次根式的被开方数非负,解不等式即可完成.【详解】由题意,20x +≥,解得:2x ≥-故选:A .2.C 【解析】根据绝对值大于10的数用科学记数法的表示为a×10n 的形式即可求解,其中1≤|a|<10,n 为整数位数减1.【详解】解:2672819=62.67281910⨯.故选:C 3.D 【解析】根据二次根式的乘法运算法则对A 、D 选项进行判断,根据算术平方根的意义对B 选项进行判断,根据积的乘方对C 选项进行判断.【详解】解:A 选项错误,D 选项正确;=,故B 选项错误;()222xy x y =,故C 选项错误.故选:D .4.A 【解析】首先利用勾股定理可以算出AB 的长,再根据题意可得到AD=AC ,根据BD=AB-AD 即可算出答案.【详解】解:∵AC=3,BC=4,∴5AB ===,∵以点A 为圆心,AC 长为半径画弧,交AB 于点D ,∴AD=AC ,∴AD=3,∴BD=AB-AD=5-3=2.故选:A .5.B 【解析】根据最简二次根式的定义判断即可.【详解】解:A 5,被开方数含分母,不是最简二次根式,不符合题意;BC10=,被开方数含分母,不是最简二次根式,不符合题意;D=故选:B .6.D 【解析】只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【详解】解:A 、把(1,1)-代入32y x =+得:左边1=,右边3(1)21=⨯-+=-,左边≠右边,故A 选项错误;B 、把(0,1.5)-代入32y x =+得:左边 1.5=-,右边3022=⨯+=,左边≠右边,故B 选项错误.C 、把(2,0)代入32y x =+得:左边0=,右边3228=⨯+=,左边≠右边,故C 选项错误;D 、把(1,1)--代入32y x =+得:左边1=-,右边3(1)21=⨯-+=-,左边=右边,故D 选项正确;故选:D .7.C 【解析】根据一组数中出现次数最多的数为众数,进行选择即可得解.【详解】36.5,36.3,36.8,36.3,36.5,36.7,36.5中出现次数最多的数为36.5,故选:C .8.B 【解析】根据平行四边形的性质,菱形的判定,矩形的判定逐项判断即可.【详解】A.AB CD =,原选项正确,不符合题意;B.平行四边形对角线不一定相等,原选项错误,符合题意;C.当AC BD ⊥时,平行四边形ABCD 是菱形,原选项正确,不符合题意;D.当90ABC ∠=︒,平行四边形ABCD 是矩形,原选项正确,不符合题意;故选:B .9.D 【详解】解:原来所用的时间为:96048,实际所用的时间为:96048x +,所列方程为:96096054848x -=+.故选D .点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.10.B 【分析】根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .11.2k <【解析】先根据一次函数的性质得出关于k 的不等式,再解不等式即可求出k 的取值范围.【详解】解:∵一次函数y=(k-2)x+3中,函数值y 随自变量x 的增大而减小,∴k-2<0,解得k<2.故答案为:k<2.【点睛】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.12.40【解析】【分析】根据菱形的面积公式计算即可.【详解】解:这个菱形的面积为:12×8×10=40cm 2,故答案为:40【点睛】本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键.13.32y x =-【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:将正比例函数3y x =的图象向下平移2个单位,则平移后所得图象的解析式是32y x =-.故答案为32y x =-.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.6【解析】【详解】解:由折叠的性质知:AD=AF,DE=EF=8﹣3=5;在Rt△CEF中,EF=DE=5,CE=3,由勾股定理可得:CF=4,若设AD=AF=x,则BC=x,BF=x﹣4;在Rt△ABF中,由勾股定理可得:82+(x﹣4)2=x2,解得x=10,故BF=x﹣4=6.故答案为6.【点评】考查了勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.15.3【解析】【分析】根据一次函数平移“上加下减”,即可求出.【详解】解:函数y=122x 的图象与y轴的交点坐标是(0,-2),图象需要向上平移1-(-2)=3个单位才能经过点(0,1).故答案为3.【点睛】本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.16.24 5【解析】【分析】先根据菱形的性质求出AB,再求出菱形面积,即可求出DH的值.【详解】解:∵四边形ABCD是菱形,∴OA =OC =4,OB =OD =3,AC ⊥BD ,在Rt △AOB 中,AB 5,∵S 菱形ABCD =12•AC•BD ,S 菱形ABCD =DH•AB ,∴DH•5=12×6×8,∴DH =245.故答案为:245【点睛】本题考查了菱形的性质,熟练掌握菱形的性质和面积的两种表示方式是解题关键.17.12【解析】【分析】根据负整数指数幂、化简绝对值、零指数幂、二次根式化简,进行计算即可.【详解】解:原式111122=++-⨯12=.【点睛】本题考查实数的运算,能正确运用运算法则是解题的关键.18.31x +1【解析】【分析】根据分式运算法则先化简,再代入数值计算即可;也可以利用乘法分配律进行化简,再代入求值.【详解】解法一:解:原式()()211111x x x x ⎛⎫=+⋅+- -+⎝⎭()()211x x =++-221x x =++-31x =+当x =原式31=1=解法二:原式()()()()()()221111111x x x x x x x ⎡⎤+-=+-⎢⎥-+-+⎣⎦()223111x x x +=⋅--31x =+当3x =时,原式313=⨯+1=.【点睛】本题考查了分式的化简求值,解题关键是熟练运用分式运算法则进行准确化简,代入数值后正确计算.19.(1)见解析;(2)60︒【解析】【分析】(1)按照线段垂直平分线的尺规作图方法进行即可;(2)根据线段垂直平分线的性质定理可得AF=BF ,从而由等腰三角形的性质可得∠FBA=∠A ,再由三角形内外角的关系即可求得结果.【详解】(1)如图所示,EF 即为所求的线段AB 的垂直平分线(2)由四边形ABCD 是平行四边形可知30A C ∠=∠=︒由(1)可知EF 是AB 的垂直平分线∴AF BF=∴30FBA A ∠=∠=︒∴60DFB FBA A ∠=∠+∠=︒【点睛】本题考查了尺规作图法作线段的垂直平分线,线段垂直平分线的性质,平行四边形的性质,等腰三角形的性质等知识,要掌握几种常见的基本尺规作图方法.20.(1)见解析;(2)250,725;(3)314m 【解析】【分析】(1)根据折线统计图的数据可以将频数分布直方图补充完整;(2)极差是一组数据中最大值与最小值之间的差值;众数是一组数据中出现次数最多的数据;中位数的求法:给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数;(3)现计算出去年50户家庭年总用水量,再用去年50户家庭年总用水量除以户数再除以月数即可求得该住宅区今年每户家庭平均每月的用水量.【详解】解:(1)观察可知月总用水量为600米3的有2个月,月总用水量为700米3的有2个月,月总用水量为750米3的有4个月,补全的频数分布图如下图所示:(2)极差=800-550=250(米3);中位数为第6个数与第7个数的平均数(700+750)÷2=725(米3);(3)∵去年50户家庭年总用水量为:550+600×2+650+700×2+750×4+800×2=8400(米3)8400÷50÷12=14(米3)∴估计该住宅区今年每户家庭平均每月的用水量是14米3.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.21.(1)4;(2)AB AC =,证明见解析【解析】【分析】(1)根据中位线的性质即可求解;(2)当AB AC =时,四边形AFDE 是菱形.根据中位线的性质得到//DF AB ,12DF AB =,//DE AC ,12DE AC =,进而证明四边形AFDE 是平行四边形,根据AB AC =证明DE DF =,即可证明平行四边形AFDE 是菱形.【详解】解:(1)∵E 、F 分别是AB 、AC 的中点,∴EF 为△ABC 的中位线,∴142EF BC ==cm ,故答案为:4;(2)答:当AB AC =时,四边形AFDE 是菱形.证明:∵D 、F 分别是BC 、AC 的中点,∴//DF AB ,12DF AB =,又∵D 、E 分别是BC 、AB 的中点,∴//DE AC ,12DE AC =,∴四边形AFDE 是平行四边形,又∵AB AC =,∴DE DF =,∴平行四边形AFDE 是菱形.【点睛】本题考查了中位线的性质,菱形的判定,熟知中位线的性质和菱形的定义是解题的关键.22.(1)y=-20x+1890;(2)购买B 种树苗10棵,A 种树苗11棵,所需费用为1690元.【解析】【分析】(1)、根据题意得出函数解析式;(2)、首先根据题意得出x 的取值范围,然后根据函数的增减性得出答案.【详解】(1)、y=-20x+1890;(2)、由题意,知x <21-x .解,得x <10.5.又∵x≥1,∴x 的取值范围是:1≤x≤10且x 为整数.由(1)知:对于函数y=-20x+1890,y 随x 的增大而减小.∴当x=10时,y 有最小值:y 最小=-20×10+1890=1690.所以,使费用最省的方案是购买B 种树苗10棵,A 种树苗11棵.所需费用为1690元.【点睛】略23.(1)y=-x+5;(2)7.5;(3)点M 的坐标为(1705).【解析】【分析】(1)把P (1,4),Q (4,1)代入y=kx+b ,利用待定系数法即可求出此一次函数的解析式;(2)根据一次函数解析式求出点A 的坐标,再根据S △POQ=S △POA ﹣S △AOQ 即可求解;(3)作Q 点关于x 轴的对称点Q′,连接PQ′交x 轴于点M ,根据两点之间线段最短得出此时MP+MQ 的值最小.利用待定系数法求出直线PQ′的解析式,进而求出点M 的坐标即可.【详解】(1)把P (1,4),Q (4,1)代入一次函数解析式,得:441k b k b ⎧+=⎨+=⎩,解得:15k b =-⎧⎨=⎩,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A (5,0),∴S △POQ =S △POA -S △AOQ =11545110 2.57.522⨯⨯-⨯⨯=-=;(3)如图,作Q 点关于x 轴的对称点Q′,连接PQ′交x 轴于点M ,则MP+MQ 的值最小.∵Q (4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.则441m nm n+=⎧⎨+=-⎩,解得,53173mn⎧=-⎪⎪⎨⎪=⎪⎩,∴直线PQ′的解析式为51733y x=-+,∴当y=0时,517=033x-+,解得,175x=,∴点M的坐标为(170 5,).【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,轴对称﹣最短路线问题,熟练掌握待定系数法是解本题的关键.24.证明见解析【解析】【分析】可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=12AD,FC=12BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.【点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.25.(1)B(9,15);(2)5;(3)存在,P(0,60 13)【解析】【分析】(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=9,BD=AB=15,CD12,OD=15﹣12=3,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【详解】解:(1)∵AB=15,四边形OABC是矩形,∴OC=AB=15,∴C(0,15),代入y=y=﹣53x+b得到b=15,∴直线AC的解析式为y=﹣53x+15,令y=0,得到x=9,∴A(9,0),B(9,15).(2)在Rt△BCD中,BC=9,BD=AB=15,∴CD12,∴OD=15﹣12=3,设DE=AE=x,在Rt△DEO中,∵DE2=OD2+OE2,∴x2=32+(9﹣x)2,∴x=5,∴AE=5.(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.∵E(4,0),∴E′(﹣4,0),设直线BE′的解析式为y=kx+b,则有915, 40. k bk b+=⎧⎨+=⎩解得15136013 kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BE′的解析式为y=1513x+6013,∴P(0,60 13).故答案为(1)B(9,15);(2)5;(3)存在,P(0,60 13).【点睛】本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.26.(1)正方形;(2)①见解析;②43 CD DF=【解析】【分析】(1)先根据有三个角是直角得四边形ABGE是矩形,再由角平分线性质定理可知AE=EG,从而得四边形ABGE是正方形;(2)①在矩形ABCD中,AB=CD,AD=BC∠A=∠C=∠D=90°,由△ABE沿BE折叠得到△GBE,可得BG=AB,EG=AE=ED,∠A=∠BGE=90°,进而可证△EGF≌△EDF;②设AB=DC=a,则DF=b,在Rt△BCF中,由勾股定理可得4ab=3a²,进而可得43CD CF=.【详解】解:(1)正方形,理由如下:∵四边形ABCD 是矩形,∴∠A =∠ABC =90°,由折叠得:∠BGE =∠A =90°,∠ABE =∠EBG =45°,∴四边形ABGE 是矩形,∵∠ABE =∠EBG ,AE ⊥AB ,EG ⊥BG ,∴AE =EG ,∴矩形ABGE 是正方形;故答案为:正方形;(2)①证明:如图,在矩形ABCD 中,AB =CD ,AD =BC ∠A =∠C =∠D =90°,∵E 是AD 的中点,∴AE =DE ,∵△ABE 沿BE 折叠得到△GBE ,∴BG =AB ,EG =AE =ED ,∠A =∠BGE =90°,∴∠EGF =∠D =90°,在Rt △EGF 和Rt △EDF 中,∵EG =ED ,EF =EF ,∴△EGF ≌△EDF ;②设AB =DC =a ,DF =b ,∴AD =BC ,由①得:BF =AB +DF ,∴BF =a +b ,CF =a-b ,在Rt △BCF 中,由勾股定理得:222BC B F F C =+,∴())()222a b a b +=+-,∴4ab=3a²,∵a≠0,∴4b=3a,∴4DF=3CD,∴43CD CF.【点睛】此题属于四边形综合题,涉及的知识有:矩形的性质,折叠的性质,正方形的判定,全等三角形的判定与性质,勾股定理,熟练掌握判定与性质是解本题的关键.21。

新人教版八年级数学下册期末考试题及答案【完整】

新人教版八年级数学下册期末考试题及答案【完整】

新人教版八年级数学下册期末考试题及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.使x2-有意义的x的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、x2≥4、x>3.5、46、20三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、略.5、(1)2;(2)60︒;(3)见详解6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。

新人教版八年级数学下册期末考试及答案【完整】

新人教版八年级数学下册期末考试及答案【完整】

新人教版八年级数学下册期末考试及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.化简1x-)A x-B x C x-D x 5.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,12C.6,8,11 D.5,12,236.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.323(1)0m n-+=,则m-n的值为________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、C5、B6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、4415、96、6三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、3.3、(1)a≥2;(2)-5<x<14、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

新人教版八年级数学下册期末考试卷(完整)

新人教版八年级数学下册期末考试卷(完整)

新人教版八年级数学下册期末考试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4B .4C .﹣2D .2 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b 的结果是________.2.分解因式:22a 4a 2-+=__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、()2 2a1-3、2x(x﹣1)(x﹣2).4、145、96、8三、解答题(本大题共6小题,共72分)1、4x=2、1a b-+,-13、(1)略(2)1或24、(1)略;(2)4.5、(1)略(2)等腰三角形,理由略6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、单选题1.下列各式中,是最简二次根式的是()AB C D2的值等于()A .4B .2C .±2D .±43.若直角三角形中,斜边的长为13,一条直角边长为5.则另一条直角边为()A .8B .12C .20D .654.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A .60°B .90°C .120°D .45°5.下列各点在直线23y x =+的图象上是()A .(3,3)--B .(3,2)--C .(3,3)D .(3,2)6.下列计算结果正确的是()AB .-=C=D=7.下列说法中,错误的是()A .平行四边形的对角线互相平分B .菱形的对角线互相垂直C .矩形的对角线相等D .正方形的对角线不一定互相平分8.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A .18岁B .19岁C .20岁D .21岁9.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为()A .3:1B .4:1C .5:1D .6:110.一天早上小明步行上学,他离开家后不远便发现有东西忘在了家里,马上以相同的速度回家去,到家后因事收误一会,忙完后才离开,为了不迟到,小明跑步到了学校,则小明离学校的距离y 与离家的时间t 之间的函数关系的大致图象是()AB C D二、填空题111x -x 的取值范围是____.12.甲、乙、丙、丁四人进行100m 短跑训练,统计近期10次测试的平均成绩都是13.2s ,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.选手甲乙丙丁方差(S 2)0.0200.0190.0210.02213.将直线2y x =向下平移3个单位得到的直线为______.14.小明向东走80m 后,沿另一个方向又走了60m ,再沿第三个方向走100m 回到原点.小明向东走80m 后的方向是____.15.如图,已知在长方形ABCD 中,将△ABE 沿着AE 折叠至△AEF 的位置,点F 在对角线AC 上,若BE=3,EC=5,则线段CD 的长是__________.16.已知一次函数y=x+2与一次函数y=mx+n 的图象交于点P (a ,-2),则关于x 的方程x+2=mx+n 的解是__________.三、解答题17.计算:(1)(52)(52)(2)2(86)4818.已知一次函数y kx b =+,当2x =时y 的值为4,当2x =-时y 的值为2-,求一次函数解析式,并画出函数的图象.19.如图,四边形ABCD 中,AD ∥BC ,AC 、BD 相交于点O ,O 是AC 的中点.求证:四边形ABCD 是平行四边形.20.某人买来1000只小鸡,经过一段时间精心饲养,可以出售了.下表是这些鸡出售时质量的统计数据质量/kg 1.0 1.21.51.82.0频数111226320241102(1)求出售时这些鸡的平均质量;(2)质量在多少kg 的鸡最多?中间的鸡质量是多少kg ?(3)分析上表中的数据,写出一条你能得出的结论.21.某小组要求每两名同学之间都要写评语,小组所有同学一共写了42份评语,这个小组共有学生多少人?22.现有下面两种移动电话计费方式:方式一方式二月租费/(元/月)300本地通话费/(元/min )0.300.40(1)以x (单位:分钟)表示通话时间,y 单位:元)表示通话费用,分别就两种移动电话计费方式写出y 关于x 的函数解析式;(2)何时两种计费方式费用相等;(3)直接写出如何选择这两种计费方式更省钱.23.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,4CE =,F 为DE 的中点,若CEF △的周长为16.(1)求CF 的长;(2)求OF 的长.24.如图,在Rt ABC 中,90C = ∠,20AC BC ==,D 为BC 上一点,5BD =.点P 以每秒2个单位从点A 出发滑AC 向终点C 运动,同时点Q 以秒1个单位从点D 出发,沿BC 运动,当点P 到达终点时,P 、Q 同时停止运动.当点P 不与点A 重合时,过点P 作PE AB ⊥于点E ,连结PQ ,以PE 、PO 为邻边作PEFQ .设PEFQ 与ABC 重叠部分图形的而积为S ,点P 的运动时间为t /秒.(1)填空:AB 的长为.(2)当//PQ AB 时,求t 的值;(3)求S 与t 之间的函数关系式.25.如图,90B C CDF ∠=∠=∠= ,AE EF =,AE EF ⊥.G 为AB 上一点,DG 交EF 于点O ,45DOF ∠= .(1)求FEC BAE ∠=∠;(2)在图中找到与BE 相等的线段,并加以证明;(3)若4BE =,E F =,1AG =,求DF的长.26.已知函数()()22nx n x n y n nx x n +≥⎧⎪=⎨--<⎪⎩(n 为常数).(1)当2n =-时,①点(5)P a ,在此函数图象上,求a 的值;②求此函数的最大值;(2)已知线段AB 的两个端点坐标分别为(22)A ,、(42)B ,,当此函数的图象与线段AB 只有一个交点时,求n的取值范围.参考答案1.B【详解】解:=B.,是最简二次根式,选项正确;C.=D.=,选项错误.故选:B.2.B【详解】=2.故选B.【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键,正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3.B【解析】【分析】根据勾股定理解答即可.【详解】∵直角三角形中,斜边的长为13,一条直角边长为5,12,故选:B.【点睛】此题主要考查了勾股定理,正确把握勾股定理是解题关键.4.A【解析】【分析】首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.【详解】设平行四边形中两个内角的度数分别是x°,2x°,则x+2x=180,解得:x=60,∴其中较小的内角是:60°.故选A.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.5.A【解析】【分析】分别代入x=-3和x=3,求出与之对应的y值,再对照四个选项即可得出结论.【详解】当x=-3时,y=2x+3=-3,∴点(-3,-3)在函数y=2x+3的图象上,点(-3,-2)不在函数y=2x+3的图象上;当x=3时,y=2x+3=9,∴点(3,3)和点(3,2)不在函数y=2x+3的图象上;故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.6.B【解析】【分析】根据二次根式的乘、除法公式、合并同类二次根式法则和最简二次根式的定义逐一判断即可.【详解】÷=,本选项的结果不是最简,故本选项错误;解:A.B.-C.=D.=,故本选项错误.故选B.【点睛】此题考查的是二次根式的运算,掌握二次根式的乘、除法公式、合并同类二次根式法则和最简二次根式的定义是解决此题的关键.7.D【解析】【分析】用平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等进行判断即可.【详解】解:A.平行四边形的对角线互相平分,本选项正确;B.菱形的对角线互相垂直,本选项正确;C.矩形的对角线相等,本选项正确;D.正方形的对角线一定互相平分,故该选项错误.故选D.【点睛】本题考查特殊平行四边形的性质,掌握平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等的性质进行判断是解题关键.8.C【解析】【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.9.C【解析】【详解】如图所示,∵菱形的周长为8cm,∴菱形的边长为2cm,∵菱形的高为1cm,∴sinB=12 AE AB∴∠B=30°,∴∠C=150°,则该菱形两邻角度数比为5:1,故选C.10.B【解析】【分析】根据题意和各个选项中函数图象即可判断哪个选项是正确的.【详解】解:由题意可得,小明步行上学时小明离学校的距离在逐渐减小,而后离开家后不远便发现有东西忘在了家里,于是以相同的速度回家去拿时小明离学校的距离增大,到家后因事耽误一会,忙完后才离开,可知此时距离不变,小明跑步到学校时小明离学校的距离减小并且变化趋势较快.故选:B .【点睛】此题考查了函数的图象,根据题意分析图象是解题的关键.11.1≥x 【解析】【分析】根据二次根式的被开方数的非负性即可得.【详解】由二次根式的被开方数的非负性得:10x -≥,解得1≥x ,故答案为:1≥x .【点睛】本题考查了二次根式的定义,掌握理解二次根式的被开方数的非负性是解题关键.12.乙【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵2222S S S S >>>丁丙甲乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故答案为:乙.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.13.y =2x-3.【解析】【分析】根据平移后解析式的规律“左加右减自变量,上加下减常数项”进行求解即可.【详解】解:直线y=2x向下平移3个单位长度后得到的直线解析式为y=2x-3.故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,明确图象的平移变化规律是解题关键.14.向北或向南【解析】【分析】根据勾股定理的逆定理可得小明向东走80m后的方向与东西方向垂直【详解】解:∵802+602=1002∴小明走的路线构成直角三角形∴小明向东走80m后的方向与东西方向垂直∴小明向东走80m后的方向是向北或向南故答案为:向北或向南.【点睛】此题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解决此题的关键.15.6【解析】【分析】由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF=4.设AB=x,则AF=x,AC=x+4,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+4)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF==4.设AB=x,则AF=x,AC=x+4.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2,解得:x=6,∴AB=6.∵ABCD是矩形,∴CD=AB=6.故答案为6.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.x=-4【解析】【分析】先根据一次函数y=x+2的解析式求出点P的坐标,然后利用两个一次函数图象的交点与方程x+2=mx+n的解的关系即可得出答案.【详解】∵一次函数y=x+2与一次函数y=mx+n的图象交于点P(a,-2),a+=-,∴22a=-,解得4P--.∴(4,2)∵两个一次函数的图象的交点的横坐标为x+2=mx+n的解,x=-,∴关于x的方程x+2=mx+n的解是4x=-.故答案为:4【点睛】本题主要考查两个一次函数的交点与一元一次方程的解的关系,掌握两个一次函数的交点与一元一次方程的解的关系是解题的关键.17.(1)3;(2)16-【解析】【分析】(1)利用平方差公式计算二次根式的乘法即可得;(2)先计算二次根式的乘法、化简二次根式,再计算二次根式的加减法即可得.【详解】=-,(1)原式223=;(2)原式=16=-16=-【点睛】本题考查了二次根式的乘法与加减法,熟记二次根式的运算法则是解题关键.18.312y x =+,画出函数图像见解析.【解析】【分析】根据待定系数法求解析式,再描点画出函数图象即可.【详解】解:由题意得:4222k bk b =+⎧⎨-=-+⎩,解得:321k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为:312y x =+,由题可知,一次函数图象经过点(2,4),(-2,-2),由此画出图象如下.本题考查一次函数解析式的求法及图象画法,熟练掌握利用待定系数法求表达式的方法及一次函数图象的画法是解题的关键.19.见解析【解析】【分析】证明△AOD ≌△COB (AAS ),得OD=OB ,即可得出结论.【详解】解:证明:∵O 是AC 的中点,∴OA=OC ,∵AD ∥BC ,∴∠ADO=∠CBO ,在△AOD 和△COB 中,ADO CBO AOD COB OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COB (AAS ),∴OD=OB ,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定方法,证明△AOD ≌△COB 是解题的关键.20.(1)这些鸡的平均质量为1.5kg ;(2)质量在1.5kg 的鸡最多,中间的质量是1.5kg ;(3)答案见解析.【解析】【分析】(1)平均质量=总质量÷总只数;(2)根据众数的定义,出现次数最多的是1.5kg ;依据中位数的定义,把数据按照从小到大的顺序排列后,求出第500位和第501位数的平均数;(3)由极差的定义,鸡的最大质量与最小值之差为1kg .【详解】解:(1) 鸡的平均质量1111 1.2226 1.5320 1.8241 2.010210001.5⨯+⨯+⨯+⨯+⨯==,∴这些鸡的平均质量为1.5kg ,(2)质量在1.5kg 的鸡最多,把数据按照从小到大的顺序排列后,第500个数和第501个数都是1.5,因此中间的质量是1.5kg ,(3)鸡的最大质量与最小值之差为1kg (答案合理即可).【点睛】本题要理解并区分平均数、众数、中位数、极差、方差等的定义以及计算公式.21.7.【解析】【分析】设这个小组有学x 生人,每人要写评语(-1)x 份,则评语共有(-1)x x 份,再与总共42份评语建立等量关系,列出一元二次方程.【详解】解:设这个小组有学x 生人,由题意得:(1)42x x -=,整理的得:2420x x --=,解得17x =,26x =-(舍).答:这个小组共有学生7人.【点睛】本题是一元二次方程的应用,注意找准等量关系,另外注意与“握手原理”对比理解.22.(1)方式一:300.3y x =+;方式二:0.4y x =;(2)通话时间为分钟300时,两种计费方式一样;(3)当0300x ≤<时,选择方式二;当300x >时,选择方式一;当300x =时,两种方式都可以.【解析】【分析】(1)根据表格可知:通话费用=月租费+每分钟通话费×通话时间,即可求出结论;(2)令(1)中两种方式的通话费用相等,求出x 的值即可;(3)根据两种通话费用的大小关系分类讨论,列出不等式即可求出结论.【详解】解:(1)方式一:300.3y x=+方式二:0.4y x=(2)由题意得:300.30.4x x+=300x ∴=答:通话时间为300分钟时,两种计费方式一样.(3)当300.30.40x x x +>⎧⎨≥⎩,即0300x ≤<时,选择方式二更省钱;当300.30.4x x +<,即300x >时,选择方式一更省钱;当300x =时,两种方式都可以【点睛】此题考查的是一次函数的应用,掌握实际问题中的等量关系是解决此题的关键.23.(1)6;(2)2OF =.【解析】【分析】(1)由“直角三角形斜边上的中线等于斜边的一半”可知CF=EF ,再由CEF △的周长及第三边CE 的长度可以得到CF 的长;(2)由勾股定理可以求得正方形的边长BC ,进一步可以求得BE 长,再根据三角形中位线定理得到OF 的长.【详解】解:(1) 四边形ABCD 为正方形90BCD ∴∠= ,BC CD =,OB OD=F 为DE 的中点CF EF FD∴==4CE = ,CEF ∆的周长为1616462CF EF -∴===(2)90BCD ∠=CD ∴==4BE ∴=-F 为DE 的中点,OB OD=122OF BE ∴==.【点睛】本题考查正方形的应用,综合应用三角形和正方形知识是解题关键.24.(1)(2)t=5;(3)22353(05)945175(520)424t t x S t t x ⎧-≤<⎪=⎨-++≤≤⎪⎩.【解析】【分析】(1)在Rt ABC 中,利用勾股定理即可求得AB 的长;(2)Rt ABC ∆中,由等边对等角得到45B ∠= A=∠,由平行线的性质,得到45CPQ CQP ∠=∠= ,由等角对等边得到C P C Q =,从而AP QB =,找到等量关系即可求解;(3)分PEFQ 在Rt ABC 内部和PEFQ 与Rt ABC 部分相交两种情况讨论即可.【详解】(1)在Rt ABC 中,90C = ∠,20AC BC ==,AB =,故答案为:(2)经过t 秒,AP=2t ,BQ=t+5,Rt ABC ∆ 中,90C = ∠,20AC BC ==,45A B ∴∠=∠= ,//PQ AB ,45CPQ CQP ∴∠=∠= ,CP CQ ∴=,AP QB ∴=,25t t ∴=+,5t ∴=;(3)当05x <≤时,如图1,延长QF 交AB 于点H ,由(2)得222AE PE AP t ===,22(5)22QH HB t ===+,2220225)(353)EH AB AE BH t t ∴=--=-+=-,2222)3532S PE EH t t t t ∴=⨯=⨯-=-,当520x ≤≤时,如图2:25)QH t =+ ,2PE t =,23)EH t =-21()212522(2)(353)2222325223)42945175424S PE QH EH t t t t t t ∴=+⨯=++-+=⨯-=-++【点睛】此题考查了函数关系式的求法、三角形和梯形的面积的求法,也考查了分类讨论思想的应用,数形结合思想的应用,要熟练掌握.25.(1)证明见解析;(2)CD BE =,证明见解析;(3)3【解析】【分析】(1)根据题中的直角,利用两锐角的互余关系即可得到答案;(2)过点F 作FH BC ⊥交BC 于点H ,FH 与GD 交于点M ,可证EHF ABE ∆≅∆,从而得到答案;(3)分别延长BA 、DF 交于点N ,通过条件可知四边形BHFN 为矩形,四边形AGMF 为平行四边形,可求出AF GM ==Rt NGD ∆中,利用勾股定理即可得到答案.【详解】解:(1)AE EF⊥Q 90AEF ∠=90CEF AEB ∴∠+∠=90AEB EAB ∠+∠=CEF EAB∴∠+∠(2)CD BE=过点F 作FH BC ⊥交BC 于点H ,FH 与GD 交于点M90CHF ∴∠=又90C CDF ∠=∠=∴四边形HCDF 为矩形FH CD ∴=,90HFN ∠=在Rt EHF ∆和Rt ABE ∆中CEF EAB ∠=∠ ,AE EF=Rt EHF Rt ABE∴∆≅∆BE FH ∴=,EH AB=CD BE∴=(3)分别延长BA 、DF 交于点N90B BHF HFN ∠=∠=∠=∴四边形BHFN 为矩形4NB FH ∴==,6NF BH ==90EHF ∠= ,4FH =,E F =2EH AB∴===2NA BN AB ∴=-=1AG =3NG∴=AE EF=,AE EF⊥45AFE∴∠= ,210AF=45DOF∠=//AF GM∴∴四边形AGMF为平行四边形210AF GM∴==设DF x=21DM x∴=+6ND x∴=+,22101GD x=++在Rt NGD∆中222NG ND DG+=22223(6)(2101)x x∴++=++3x∴=即3DF=【点睛】本题考查了全等三角形的性质与判定,矩形的性质与判定,勾股定理,正确做出辅助线,熟练掌握判定定理是解题的关键.26.(1)①a=-12;②2;(2)22 53n≤≤.【解析】【分析】(1)①把n=-2带入求解即可得到a的值;②根据x的取值分类计算,求出此函数的最大值21即可;(2)将A ,B 代入函数求出n ,即可求出n 的取值范围;【详解】解:(1)①当2n =-时,22(2)1(2)--≥-⎧=⎨-+<-⎩x x y x x ,52>- ,∴点(5)P a ,在22y x =--上,25212a ∴=-⨯-=-;②当2x ≥-时,可得2x =-有最大值为()-2-2-2=2⨯,当2x -<时,1<2x -+,∴此函数的最大值为2,(2)将(22)A ,代入y nx n =+,得23n =,将(42)B ,代入y nx n =+,得25n =,2253n ∴≤≤,当0n <时,()()22nx n x n y nnx x n +≥⎧⎪=⎨--<⎪⎩(n 为常数),不过点A 、B ,综上,2253n ≤≤.【点睛】本题主要考查了一次函数的综合,准确求解是解题的关键.。

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末测试卷一、选择题(每题3分,共30分)1.函数y=xx-2的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2 2.下列二次根式中,最简二次根式是()A. 2B.12C.15 D.a23.下列运算正确的是()A.2+7=3 B.22×32=6 2C.24÷2=2 3 D.32-2=34.当b<0时,一次函数y=x+b的图象大致是()5.若直角三角形两边长为12和5,则第三边长为()A.13 B.13或119 C.13或15 D.156.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天健步走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.3 7.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲 2 6 7 7 8 乙23488关于以上数据,说法正确的是( ) A .甲、乙的众数相同 B .甲、乙的中位数相同 C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差8.如图,在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 的中点,要判定四边形DBFE 是菱形,下列所添加条件不正确的是( ) A .AB =ACB .AB =BCC .BE 平分∠ABCD .EF =CF(第8题) (第9题) (第12题)9.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M 、N 分别是AB 、BC 边上的中点,则MP +PN 的最小值是( ) A.12B .1C. 2D .210.已知直线y 1=kx +1(k <0)与直线y 2=mx (m >0)的交点坐标为⎝ ⎛⎭⎪⎫12,12m ,则不等式组mx -2<kx +1<mx 的解集为( ) A .x >12B.12<x <32 C .x <32D .0<x <32二、填空题(每题3分,共24分) 11.计算:27-13=________.12.如图,要使平行四边形ABCD 是正方形,则应添加的一组条件是__________________(添加一组条件即可).13.若x ,y 满足x +2+|y -5|=0,则(3x +y )2 019=________.14.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是__________分. 15.一组数据5,2,x ,6,4的平均数是4,这组数据的方差是________.16.一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是____________.(第17题) (第18题)17.如图,两个大小完全相同的矩形ABCD 和AEFG 中AB =4 cm ,BC =3 cm ,则FC =__________.18.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m)与甲出发的时间t (min)之间的关系如图所示,以下结论:①甲步行的速度为60 m/min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有__________(填序号). 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)()32+48()18-43; (2)(2-3)2 020·(2+3)2 019-2⎪⎪⎪⎪⎪⎪-32-(-2)0.20.已知a ,b ,c 满足|a -7|+b -5+(c -42)2=0. (1)求a ,b ,c 的值;(2)判断以a ,b ,c 为边能否构成三角形,若能够成三角形,此三角形是什么形状?21.如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.22.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表:使用次数01234 5人数1115232818 5(1)这天部分出行学生使用共享单车次数的中位数是________,众数是________,该中位数的意义是__________________________________________________ ____________________________________.(2)这天部分出行学生平均每人使用共享单车约多少次(结果保留整数)?(3)若该校某天有1 500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?23.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.24.某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每千米再加收2元.(1)请你分别写出邮车、火车运输的总费用y1(元),y2(元)与路程x(km)之间的函数解析式;(2)你认为选用哪种运输方式较好,为什么?25.已知四边形ABCD是正方形,F是边AB,BC上一动点,DE⊥DF,且DE =DF,M为EF的中点.(1)当点F在边AB上时(如图①).①求证:点E在直线BC上;②若BF=2,则MC的长为________.(2)当点F在BC上时(如图②),求BFCM的值.答案一、1.A 2.A 3.C 4.B 5.B 6.B7.D 8.A 9.B10.B 点拨:把⎝ ⎛⎭⎪⎫12,12m 代入y 1=kx +1,可得12m =12k +1,解得k =m -2, ∴y 1=(m -2)x +1. 令y 3=mx -2,则:当y 3<y 1时,mx -2<(m -2)x +1, 解得x <32;当kx +1<mx 时,(m -2)x +1<mx , x >12.∴不等式组mx -2<AB ⊥BC (答案不唯一 15.2 16.m <12 17.52cm18.① 点拨:由图象知,甲4 min 步行了240 m , ∴甲步行的速度为2404=60(m /min ),∴结论①正确;∵乙用了16-4=12(min )追上甲,乙步行的速度比甲快24012=20(m /min ), ∴乙的速度为60+20=80(m /min ),从而结论③不正确;∵甲走完全程需要2 40060=40(min ),乙走完全程需要2 40080=30(min ), 乙到达终点时,甲走了34 min ,甲还有40-34=6(min )到达终点,离终点还有60×6=360(m ), ∴结论②④不正确.三、19.解:(1)原式=(32+43)(32-43)=(32)2-(43)2=18-48=-30; (2)原式=[(2-3)(2+3)]2 019·(2-3)-3-1=2-3-3-1=1-2 3. 20.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -42)2=0,∴|a -7|=0,b -5=0,(c -42)2=0, 解得a =7,b =5,c =4 2. (2)∵a =7,b =5,c =42, ∴a +b =7+5>4 2.∴以a ,b ,c 为边能构成三角形. ∵a 2+b 2=(7)2+52=32=(42)2=c 2, ∴此三角形是直角三角形.21.解:(1)把A (得⎩⎨⎧-2k +b =-1,k +b =3,解得∴一次函数的解析式为(2)把x =0代入y =43x +53, 得y =53,∴点D 的坐标为⎝ ⎛⎭⎪⎫0,53. ∴S △AOB =S △AOD +S △BOD =12×53×2+12×53×1=52.22.解:(1)3;3;表示这部分出行学生在这天约有一半人使用共享单车的次数在3次以上(含3次)(2) 0×11+1×15+2×23+3×28+4×18+5×511+15+23+28+18+5 ≈2(次).这天部分出行学生平均每人使用共享单车约2次.(3)1 500×28+18+511+15+23+28+18+5=765(人).估计这天使用共享单车次数在3次以上(含3次)的学生有765人. 23.(1)证明:∵AD ∥BC ,AE ∥DC ,∴四边形AECD 是平行四边形.∵在Rt △ABC 中,∠BAC =90°,E 是BC 的中点, ∴BE =EC =AE .∴四边形AECD 是菱形.(2)解:如图,过点A 作AH ⊥BC 于点H .(第23题)在Rt △ABC 中,∠BAC =90°,AB =6,BC =10,由勾股定理得AC =8. 再根据面积关系,有S △ABC =12BC ·AH =12AB ·AC , ∴AH =245.∵点E 是BC 的中点,BC =10,四边形AECD 是菱形, ∴CD =CE =5.∵S 菱形AECD =CD ·EF =CE ·AH , ∴EF =AH =245.24.解:(1)由题意得:y 1=4x +400,y 2=2x +820.(2)令4x +400=2x +820, 解得x =210,所以当运输路程小于210 km 时,y 1<y 2,选择邮车运输较好; 当运输的路程等于210 km 时,y 1=y 2,两种方式一样; 当运输路程大于210 km 时,y 1>y 2,选择火车运输较好.25.(1)①证明:如图①,连接CE .∵DE ⊥DF ,∴∠FDE =90°. ∵四边形ABCD 是正方形,∴∠ADC=∠DAF=∠DCB=90°,DA=DC.∴∠ADC-∠FDC=∠FDE-∠FDC,即∠ADF=∠CDE.又∵DF=DE,∴△DAF≌△DCE(SAS).∴∠DAF=∠DCE=90°,∴∠DCE+∠DCB=180°.∴点E在直线BC上.② 2(第25题)(2)解:如图②,在DC上截取DN=FC,连接MN,DM,设EF,CD相交于点H.∵△FDE为等腰直角三角形,M为EF的中点,∴DM=12EF=FM,DM⊥EF.∴∠DMF=∠FCD=90°.∴∠CDM+∠DHM=∠MFC+∠CHF.∴∠CDM=∠MFC.∴△DNM≌△FCM(SAS).∴MN=MC,∠DMN=∠FMC.∴∠DMN+∠FMN=∠FMC+∠FMN,即∠DMF=∠NMC=90°.∴△CNM是等腰直角三角形.∴CN=2CM.又∵DC=BC,DN=CF,∴CN=BF.∴BF=2CM.∴BFCM= 2.。

相关文档
最新文档