高二12月月考数学试题 Word版含答案

合集下载

四川省绵阳市南山中学2021-2022学年高二上学期12月月考试题 数学(理) Word版含答案

四川省绵阳市南山中学2021-2022学年高二上学期12月月考试题 数学(理) Word版含答案

开始3,1,2S n T ===3S S =+2?T S >是否T 输出结束+1n n =+3T T n=2021年12月 绵阳南山中学2021年秋季高2021届12月月考数学试题命题人:吴川满分:100分,考试时间:100分钟一、选择题:本题共12题,每小题4分,共48分,在每小题的四个选项中,只有一个正确答案,把正确答案填涂在机读卡上。

1.已知点A (0,4),B (4,0)在直线l 上,则l 的方程为( ) A .x +y -4=0 B .x -y -4=0 C .x +y +4=0D .x -y +4=02. 质点在数轴上的区间[0,2]上运动,假定质点消灭在该区间各点处的概率相等,那么质点落 在区间[0,1]上的概率为( )A.14B.13C.12 D .以上都不对 3.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10-4.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估平均数与中位数分别是( ) A .12.5、12.5 B .12.5、13 C .13、12.5 D .13、135.一个均匀的正方体的玩具的各个面上分别标以数字1,2,3,4,5,6,将这个玩具向上抛掷1次,设大事A 表示“向上的一面消灭的点数不小于3”,大事B 表示“向上的一面消灭奇数点”,大事C 表示“向上的一面消灭的点数不超过2”,则( ) A . A 与B 是互斥而非对立大事 B . A 与B 是对立大事 C . A 与C 是互斥而非对立大事 D . A 与C 是对立大事6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2B .22-C .12-D .12+ 7. 假如方程11222=+++m ym x 表示双曲线,则实数m 的取值范围是( ) A. )1,2(-- B. ),1()2,(+∞---∞ C. )1,1(- D. )2,3(--8.某单位为了制定节能减排的目标,先调查了用电量y (单位:度)与气温x (单位:c ︒)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对比表:x (单位:c ︒)1714 10 1-y (单位:度)2434 3864由表中数据得线性回归方程:a x y +-=∧2.当气温为c ︒20时,猜测用电量约为( ) A. 5 B .10 C. 16 D. 20 9. 执行如图所示的程序框图,输出的T =( ) A .29 B .44 C .52 D .62 10.已知抛物线22y px =(0)p >,过其焦点且斜率为-1的直线 交抛物线于,A B 两点,若线段AB 的中点的横坐标为3,则 该抛物线的准线方程为( )A .1x =B .2x =C .1x =-D .2x =- 11.在各项均为正数的等比数列{}n a 中,若112(2)m m m a a a m +-⋅=≥,数列{}n a 的前n 项积为n T , 若21512m T -=,则m 的值为( ) A .4B .5C .6D .712.我们把由半椭圆)0(1)0(122222222<=+≥=+x cx b y x b y a x 与半椭圆合成的曲线称作“果圆”(其中0,222>>>+=c b a c b a )。

江苏省扬州中学2013-2014学年高二上学期12月月考数学试题 Word版含解析

江苏省扬州中学2013-2014学年高二上学期12月月考数学试题 Word版含解析

江苏省扬州中学2013-2014学年高二上学期12月月考试卷数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“1,-=∈∃x e R x x ”的否定是 .2.抛物线x y 82=的焦点坐标为 .3.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 .4.已知函数()sin f x x x =-,则()f x '= . 【答案】1cos x -. 【解析】试题分析:两函数的差求导数.分别求导再相减.故填1cos x -.正弦函数的导数是余弦函数. 考点:1.函数的差的求导方法.2.正弦函数的导数.5.一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为,x y.则x y≠的概率为.6.若双曲线221yxm-=的离心率为2,则m的值为.7.在不等式组所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为.【答案】9 10.【解析】试题分析:如图总共有5个点,所以,每三个点一组共有10种情况.其中不能构成三角形的只有一种共线的情况.所以能够成三角形的占910.本题考查的是线性规划问题.结合概率的思想.所以了解格点的个数是关键.考点:1.线性规划问题.2.概率问题.3.格点问题.8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V9.已知椭圆22221(0)x y a b a b +=>>的离心率e =A,B 是椭圆的左、右顶点,P 是椭圆上不同于A,B的一点,直线PA,PB 倾斜角分别为,αβ,则cos()=cos +αβαβ-()10.若“2230x x -->”是 “x a <”的必要不充分条件,则a 的最大值为 .11.已知函数)0()232()(23>+--++=a d x b a c bx ax x f 的图像如图所示,且0)1(='f .则c d +的值是 .12. 设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线, 则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题...的序号 (写出所有真命题的序号).考点:1.面面平行.2.直线与平面平行.3.面面垂直.4.直线与平面垂直.13.已知可导函数)(x f )(R x ∈的导函数)(x f '满足)(x f '>)(x f ,则不等式()(1)x ef x f e >的解集是 .14.已知椭圆E:2214xy+=,椭圆E的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是.【答案】4.【解析】试题分析:当直线AB与x轴垂直的时候ABCD为矩形面积为当直线AB不垂直x轴时假设直线:(:(AB CDl y k x l y k x==.A(11,x y),B(22,x y).所以直线AB与直线CD的距离.又有22(44y k xx y⎧=⎪⎨+=⎪⎩.消去y可得:2222(41)1240x k x k+-+-=.2121224(31)41kx x x xk-+==+.所以224(1)41kABk+==+.所以平行四边形的面积S=2k t=.所以S ==因为810t -≥时.S 的最大值为4.综上S 的最大值为4.故填4.本题关键考查弦长公式点到直线的距离.考点:1.分类的思想.2.直线与椭圆的关系.3.弦长公式.4.点到直线的距离.二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)求实数m 的取值组成的集合M ,使当M m ∈时,“q p 或”为真,“q p 且”为假.其中:p 方程012=+-mx x 有两个不相等的负根;:q 方程01)2(442=+-+x m x 无实数根.:真q ,044)]2(4[2<⨯--=∆m 即.31<<m …………………10 分①假:真q p ;2-<m②假:真p q .31<<m …………………13分 综上所述:}.312|{<<-<=m m m M 或 …………………14分 考点:1.含连接词的复合命题.2.二次方程的根的分布. 3.集合的概念.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90︒,且AB =2AD =2DC =2PD =4,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面PAB .17.(本小题满分15分)如图,过点3(0,)a 的两直线与抛物线2y ax =-相切于A 、B 两点, AD 、BC 垂直于直线8y =-,垂足分别为D 、C .(1)若1a =,求矩形ABCD 面积;(2)若(0,2)a ∈,求矩形ABCD 面积的最大值.(2)设切点为00(,)x y ,则200y ax =-,因为2y ax '=-,所以切线方程为0002()y y ax x x -=--, 即20002()y ax ax x x +=--,18.(本小题满分15分)如图,在四棱柱1111ABCD A BC D -中,已知平面11AAC C ABCD ⊥平面,且1AB BC CA AD CD ====. (1)求证:1BD AA ⊥;(2)在棱BC 上取一点E ,使得AE ∥平面11D DCC ,求BEEC的值.【答案】(1)证明参考解析;(2)1BEEC= 【解析】试题分析:(1)由于AB=CB,AD=CD,BD=BD.可得三角形ABD 全等于三角形CBD.所以这两个三角形关于直线BD 对称.所以可得BD AC ⊥.再由面面垂直即可得直线BD 垂直于平面11ACC A .从而可得1BD AA ⊥.19.(本小题满分16分) 已知椭圆()222210x y a b a b+=>>的左右两焦点分别为12,F F ,P 是椭圆上一点,且在x 轴上方,212,PF F F ⊥ 2111,,32PF PF λλ⎡⎤=∈⎢⎥⎣⎦. (1)求椭圆的离心率e 的取值范围;(2)当e 取最大值时,过12,,F F P 的圆Q 的截y 轴的线段长为6,求椭圆的方程;(3)在(2)的条件下,过椭圆右准线l 上任一点A 引圆Q 的两条切线,切点分别为,M N .试探究直线MN 是否过定点?若过定点,请求出该定点;否则,请说明理由.(1)22222211111c b e a a λλλλ-==-=-=++,∴e =在11,32⎡⎤⎢⎥⎣⎦上单调递减.∴12λ=时,2e 最小13,13λ=时,2e 最大12,∴21132e ≤≤e ≤≤.(2) 当2e =时,2ca =,∴2cb ==,∴222b a =.∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴1PF=6.又221322622b a PF a a a a a =-=-==,∴4,a c b ===.∴椭圆方程是221168x y += -------10分20.(本小题满分16分)已知函数2ln )(x x a x f += (a 为实常数) .(1)当4-=a 时,求函数)(x f 在[]1,e 上的最大值及相应的x 值;(2)当[]e x ,1∈时,讨论方程()0=x f 根的个数.(3)若0>a ,且对任意的[]12,1,x x e ∈,都有()()212111x x x f x f -≤-, 求实数a 的取值范围.【答案】(1)4)()(2max -==e e f x f .e x =;(2)e a e 22-<≤-时,方程()0=x f 有2个相异的根. 2e a -< 或e a 2-=时,方程()0=x f 有1个根. e a 2->时,方程()0=x f 有0个根.(3)221e ea -≤∴.(2)易知1≠x ,故[]e x ,1∈,方程()0=x f 根的个数等价于(]e x ,1∈时,方程x x a ln 2=-根的个数. 设()x g =xx ln 2, xx x x x x x x x g 222ln )1ln 2(ln 1ln 2)(-=-=' 当()e x ,1∈时,0)(<'x g ,函数)(x g 递减,当]e e x ,(∈时,0)(>'x g ,函数)(x g 递增.又2)(e e g =,e e g 2)(=,作出)(x g y =与直线a y -=的图像,由图像知:当22e a e ≤-<时,即e a e 22-<≤-时,方程()0=x f 有2个相异的根;当2e a -< 或e a 2-=时,方程()0=x f 有1个根;当e a 2->时,方程()0=x f 有0个根; -------10分(3)当0>a 时,)(x f 在],1[e x ∈时是增函数,又函数xy 1=是减函数,不妨设e x x ≤≤≤211,则()()212111x x x f x f -≤-等211211)()(x x x f x f -≤-。

江苏省扬州中学2021-2022学年高二上学期12月月考试题 数学 Word版含解析

江苏省扬州中学2021-2022学年高二上学期12月月考试题 数学 Word版含解析
【详解】设 , , .
由题意得抛物线焦点坐标为 ,准线方程为 .
因为 ,
所以点 是 的重心,故 ,

故选:A.
6.已知函数 ,则不等式 的解集为()
A. B. C. D.
【答案】D
【解析】
【分析】分析可知函数 为偶函数,且在 上为增函数,由已知可得出 ,解此不等式即可得解.
【详解】函数 的定义域为 ,
【答案】B
【解析】
【分析】求导得到导函数,计算 ,再代入 计算得到答案.
详解】 ,则 , , .
, .
故选:B
5.设 为抛物线 的焦点, , , 为该抛物线上三点,若 ,则 ()
A. 6B. 4C. 3D. 2
【答案】A
【解析】
【分析】设 , , .由 ,得 是 的重心,从而求得 ,然后由焦半径公式求得结论.
故选:BCD.
11.已知 是椭圆 上的一动点,离心率为 ,椭圆与 轴的交点分别为 、 ,左、右焦点分别为 、 .下列关于椭圆的四个结论中正确的是()
A.若 、 的斜率存在且分别为 、 ,则 为一定值
B.若椭圆 上存在点 使 ,则
C.若 的面积最大时, ,则
D.根据光学现象知道:从 发出的光线经过椭圆反射后一定会经过 .若一束光线从 出发经椭圆反射,当光线第 次到达 时,光线通过的总路程为
对于D:圆 圆心 ,半径为 ,圆 圆心 ,半径为 ,若两圆相离,
因为 ,所以 或 ,
所以 或 ,故D错误.
故选:BC
10.已知等比数列 的前 项和为 ,且 , 是 与 的等差中项,数列 满足 ,数列 的前 项和为 ,则下列命题正确的是()
A.数列 的通项公式为 B.
C. 的取值范围是 D.数列 的通项公式

安徽省泗县双语中学2013-2014学年高二上学期第二次月考(12月)数学试题 Word版含答案

安徽省泗县双语中学2013-2014学年高二上学期第二次月考(12月)数学试题 Word版含答案

泗县双语中学2013-2014学年高二上学期第二次月考数学试题一、选择题:(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知01,0<<-<b a ,那么下列不等式成立的是( )A .2ab ab a >>B .a ab ab >>2C .2ab a ab >>D .a ab ab >>2 2.等差数列3,7,11,,---的一个通项公式为( )A. 47n -B. 47n --C. 41n +D. 41n -+3. 已知{a n }是等差数列,a 7+a 13=20,则a 9+a 10+a 11=……………………( )A 、36B 、30C 、24D 、18 4.等差数列{a n }的前n 项和为S n ,且S 7=7,则a 2+a 6=( ).A .2 B.72 C.92 D.1145.数列{a n }为等比数列,a 1=2,a 5=8,则a 3=………………………………… ( ) A 、4 B 、-4 C 、±4 D 、±86.在数列{n a }中,若1n n-11a =1a =1+n 2a ≥,(),则3a =( ) A 、1 B 、136C 、2 D、1.5 7.已知数列{}n a 满足13a =,26a =,21n n n a a a ++=-,则2014a =( ) A 、6 B 、-3 C 、-6D 、3 8. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( ) A158或5 B 3116或5 C 3116 D 1589.下列命题中,正确的是( )A.若a b >,则22ac bc >;B.,32<<-a 21<<b ,则13<-<-b aC.若,0,0>>>m b a 则bma m <, D. 若ab >,dc >,则bd ac > 10.设等差数列{a n }的前n 项和为S n .若a 1=-11,4a +6a =-6,则当S n 取得最小值时,n 等于 ( )A .6B .7C .8D .9二、填空题:本大题共5小题,每小题5分,共25分.11.已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +错误!未找到引用源。

陕西省商南县高级中学2012-2013学年高二上学期第二次月考数学(文)试题 Word版含答案

陕西省商南县高级中学2012-2013学年高二上学期第二次月考数学(文)试题 Word版含答案

2012~2013学年度第一学期高二年级第二次月考数学(文)试题命题人 王君臣第一卷 选择题一.选择题(10*5=50分)1. ,的一个通项公式是( )A. n a =B. n a =C. n a =D. n a =2. 已知c b a ,,是ABC ∆三边之长,若满足等式ab c b a c b a =++-+))((,则C ∠等于( ) A. 120 B. 150 C. 60 D. 90 3. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( )A .9B .12C .16D .174. 已知正数x 、y 满足811x y+=,则2x y +的最小值是( )A .18B .16C .8D .105. 在△ABC 中,BC =8,B =60°,C =75°,则AC 等于( )A .24B .34C .64D .332 6. 数列{}n a 的通项公式是11++=n n a n ,若前n 项的和为10,则项数n 为( )A .11B .99C .120D .1217. 已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( )A 、11{|}32x x -<<B 、11{|}32x x x <->或C 、{|32}x x -<<D 、{|32}x x x <->或8. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32B.149 C. 3120 D. 17119. 在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形10. 不等式2(2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则实数a 的取值范围是( )A .)2,(-∞ B .[]2,2- C .]2,2(-D .)2,(--∞第二卷 非选择题二.填空题(5*5=25分)11.数列{a n }的前n 项和为S n =n 2+3n +1,则它的通项公式为 . 12.不等式224122xx +-≤的解集为 _______. 13.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则74a a ⋅=______14.在△ABC 2sin b A =,则B 等于______15.函数)3(31>+-=x x x y 的最小值为______ 三.解答题(12+12+12+12+13+14=75分)16.(本小题满分12分)当a<0时,解关于x 的不等式ax 2+(a -1)x -1>0.17.(本小题满分12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的 前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .18.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -a b .(1)求sin C sin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.19.(本小题满分12分)已知锐角△ABC 的三内角A B C 、、所对的边分别为a b c 、、,边a 、b 是方程x 2-+2=0的两根,角A 、B 满足关系2sin(A +B )=0,求角C 的度数,边c 的长度及△ABC 的面积.20.(本小题满分13分)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成。

河北省唐山市开滦二中2013-2014学年高二12月月考 数学(文)试题 Word版含答案

河北省唐山市开滦二中2013-2014学年高二12月月考 数学(文)试题 Word版含答案

命题人:罗丹说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(2)页,第Ⅱ卷第(3)页至第(6)页。

2、本试卷共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的准考证号、科目填涂在答题卡上。

2、每小题选出答案后,用2B 铅笔把答题卡上对应的题目标号涂黑。

答在试卷上无效。

3、考试结束后,监考人员将试卷答题卡和机读卡一并收回。

1共焦点且过点(2,1)Q 的双曲线方程是( )A 2轴上,则k 的取值范围是( )A.3>kB.3.已知中心在原点,焦点在x )A .2y x =± B 4.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .k< .k ≤ 5.若椭圆221x y m n +=(m >n >0)和双曲线221x y a b-=(a >b >0)有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. m -aB. 1()2m a -C. m 2-a 26.已知F 1、F 2M 为双曲线上的点,若MF 1⊥MF 2,∠MF 2F 1 = 60°,则双曲线的离心率为 ( )A .BC 7.长方体ABCD —A 1B 1 C 1D 1,2AB =,2AD =,则点D 到平面1ACD 的距离是( )A .28.从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的正切值为( )A.09.给出如下四个命题①若“p 且q ”为假命题,则p 、q 均为假命题②命题“若0,00xy x y ===则或”的否命题为“若0,00xy x y ≠≠≠则 且” ③“任意11,2≥+∈∀x R x ”的否定是“存在11,2≤+∈∃x R x ” ④在∆ABC 中,“B A >”是“B A sin sin >”的充要条件 其中正确..的命题的个数是( )A. 4 B. 3 C. 2 D. 1 10.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为( )A C D 11. 已知圆的方程为,08622=--+y x y x 设该圆中过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是( )A BD 12.已知点()1,0A -、()1,0B ,()00,P x y 是直线2y x =+上任意一点,以A 、B 为焦点的椭圆过点P .记椭圆离心率e 关于0x 的函数为()0e x ,那么下列结论正确的是 ( ) A .e 与0x 一一对应 B .函数()0e x 无最小值,有最大值 C .函数()0e x 是增函数 D .函数()0e x 有最小值,无最大值第Ⅱ卷(非选择题,共90分)二 填空题(每题5分,共20分)13为 .14.圆22x y 2x 4y 30+++-=上到直线4x-3y=2__________ 个。

高二数学 12月份月考参考答案

高二数学 12月份月考参考答案

罗田县育英高级中学高二年级12月份月考数学(理科)试题参考答案一、选择题ABABD DBBCD 二、填空题11.、5/13 12、48 13、( ) 14、r<>0 17 15、1 2 3 三、解答题16、解:122122()11m m n nm m m n n n f x C x C x C x C x C x C x =+++++++++112222()()m n m n C C x C C x =+++++. 由题意19m n +=,m n *∈N ,.2x ∴项的系数为222(1)(1)1919172224m nm m n n C C m --⨯⎛⎫+=+=-+ ⎪⎝⎭.∵m n *∈N ,,根据二次函数知识,当9m =或10时,上式有最小值,也就是当9m =,10n =或10m =,9n =时,2x 项的系数取得最小值,最小值为81.17、解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件-----------2分(1) 记“两数之和为8”为事件A ,则事件A 中含有5个基本事件,所以P(A )=536;答:两数之和为6的概率为536。

--------- 5分(2)记“两数之和是3的倍数”为事件B ,则事件B 中含有12个基本事件,所以P (B )=13;答:两数之和是3的倍数的概率为13。

------------8分故甲盒恰有2个红球的概率12131()()5102P P A P A =+=+=(3) 基本事件总数为36,点(x ,y ),在圆x 2+y 2=25的内部记为事件D ,则D 包含13个事件,所以P (D )=3613。

18、19、解:(1)当3m =时,一个小组有3个人,经过一次检验就能确定化验结果是指经过一次检验,结果为阴性,所以概率为3(10.1)0.729p =-=;(2)当4m =时,一个小组有4个人,这时每个人需要检验的次数是一个随机变量1η,其分布列为所以441150.9(10.9)0.5944E η=⨯+⨯-=;当6m =时,一个小组有6个人,这时需要检验的次数是一个随机变量2η,其分布列为所以662170.9(10.9)0.6466E η=⨯+⨯-=,由于21E E ηη>,因此当每4个人一组时所需要的化验次数更少一些.20、解:(1)、“飞碟投入红袋”,“飞碟投入蓝袋”,“飞碟不入袋”分别记为事件A,B,C。

吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)Word版含解析

吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)Word版含解析

吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣52.下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=3.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中()A.推理形式错误B.结论错误C.小前提错误 D.大前提错误4.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0 B.a、b至少有一个为0C.a、b全不为0 D.a、b中只有一个为05.由曲线y2=x与直线所围成的封闭图形的面积是()A.B.C.2 D.6.一质点运动时速度与时间的关系为v(t)=t2﹣t+2,质点作直线运动,则此物体在时间[1,2]内的位移为()A.B.C.D.7.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数8.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或19.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.10.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.11.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间单调递增的是()A.(﹣2,0)B.(0,1)C.(1,+∞)D.(﹣∞,﹣2)12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0)C.(﹣∞,﹣2016)D.(﹣2016,0)二、填空题(本大题共4个小题,每小题5分)13.(x+cos2x)dx= .14.在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则.”15.已知函数f(x)=﹣+4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是.16.已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′()+sin x,则f′()= .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.18.已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方.19.已知函数f(x)=xlnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数,求函数f(x)在[a,2a]上的最小值.20.已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.21.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.22.已知函数f(x)=(1﹣x)e x﹣1.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设,x>﹣1且x≠0,证明:g(x)<1.吉林省吉林市舒兰一中2018-2019学年高二下学期第一次月考数学试卷(理科)参考答案一、选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.曲线y=x3﹣3x2+1在点(1,﹣1)处的切线方程为()A.y=3x﹣4 B.y=﹣3x+2 C.y=﹣4x+3 D.y=4x﹣5【考点】导数的几何意义.【分析】首先判断该点是否在曲线上,①若在曲线上,对该点处求导就是切线斜率,利用点斜式求出切线方程;②若不在曲线上,想法求出切点坐标或斜率.【解答】解:∵点(1,﹣1)在曲线上,y′=3x2﹣6x,=﹣3,即切线斜率为﹣3.∴y′|x=1∴利用点斜式,切线方程为y+1=﹣3(x﹣1),即y=﹣3x+2.故选B.2.下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=【考点】导数的运算.【分析】按照基本初等函数的求导法则,求出A、B、C、D选项中正确的结果即可.【解答】解:对于A,(1﹣x2)′=﹣2x,∴A式错误;对于B,(cos30°)′=0,∴B式错误;对于C,[ln(2x)]′=×(2x)′=,∴C式错误;对于D, ===,∴D式正确.故选:D.3.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中()A.推理形式错误B.结论错误C.小前提错误 D.大前提错误【考点】演绎推理的基本方法.【分析】根据演绎推理的方法进行判断,首先根据判断大前提的正确与否,若正确则一步一步往下推,若错误,则无需往下推;【解答】解:∵菱形四条边相等,对角线垂直,但对角线不一定相等,∴对于菱形的对角线相等,正方形是菱形,所以正方形的对角线相等这段推理,首先大前提错误,故选D.4.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0 B.a、b至少有一个为0C.a、b全不为0 D.a、b中只有一个为0【考点】反证法与放缩法.【分析】把要证的结论否定之后,即得所求的反设.【解答】解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.5.由曲线y2=x与直线所围成的封闭图形的面积是()A.B.C.2 D.【考点】定积分在求面积中的应用.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y2=x与直线所围成的封闭图形的面积,即可求得结论.【解答】解:由,可得或∴曲线y2=x与直线所围成的封闭图形的面积为:(﹣x+)dx=(﹣x2+x)=.故选B.6.一质点运动时速度与时间的关系为v(t)=t2﹣t+2,质点作直线运动,则此物体在时间[1,2]内的位移为()A.B.C.D.【考点】定积分的简单应用.【分析】对速度求定积分求出的是物体的运动位移;利用微积分基本定理求出定积分值即位移.【解答】解:s=(t2﹣t+2)dt===.故选A7.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【考点】利用导数研究函数的单调性.【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.8.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1【考点】利用导数研究函数的极值;函数的零点与方程根的关系.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x 轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.9.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.【考点】点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P到直线y=x﹣2的最小距离.【解答】解:过点P作y=x﹣2的平行直线,且与曲线y=x2﹣lnx相切,设P(x0,x2﹣lnx)则有k=y′|x=x0=2x﹣.∴2x0﹣=1,∴x=1或x=﹣(舍去).∴P(1,1),∴d==.故选B.10.设函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.【考点】利用导数研究函数的极值;函数的图象.【分析】由题设条件知:当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.由此观察四个选项能够得到正确结果.【解答】解:∵函数f(x)在R上可导,其导函数f′(x),且函数f(x)在x=﹣2处取得极小值,∴当x>﹣2时,f′(x)>0;当x=﹣2时,f′(x)=0;当x<﹣2时,f′(x)<0.∴当x>﹣2时,xf′(x)<0;当x=﹣2时,xf′(x)=0;当x<﹣2时,xf′(x)>0.故选A.11.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间单调递增的是()A.(﹣2,0)B.(0,1)C.(1,+∞)D.(﹣∞,﹣2)【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【分析】本题先根据导函数在区间(1,2)上有零点,得到b的取值范围,再利用b的取值范围,求出函数的单调增区间,结合b的取值范围,选择符合题意的选项.【解答】解:∵函数∴∵函数的导函数在区间(1,2)上有零点∴当时,b=x2,x∈(1,2)∴b∈(1,4)令f'(x)>0 得到即f(x)的单调增区间为(﹣∞,),()∵b∈(1,4)∴(﹣∞,﹣2)适合题意故选D12.设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为()A.(﹣∞,﹣2012)B.(﹣2012,0)C.(﹣∞,﹣2016)D.(﹣2016,0)【考点】导数的运算.【分析】根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.【解答】解:由2f(x)+xf′(x)>x2,(x<0),得:2xf(x)+x2f′(x)<x3,即[x2f(x)]′<x3<0,令F(x)=x2f(x),则当x<0时,得F′(x)<0,即F(x)在(﹣∞,0)上是减函数,∴F(x+2014)=(x+2014)2f(x+2014),F(﹣2)=4f(﹣2),即不等式等价为F(x+2014)﹣F(﹣2)>0,∵F(x)在(﹣∞,0)是减函数,∴由F(x+2014)>F(﹣2)得,x+2014<﹣2,即x <﹣2016,故选:C .二、填空题(本大题共4个小题,每小题5分)13.(x+cos2x )dx= 0 .【考点】定积分.【分析】方法一:由(x+cos2x )dx=(x 2+sin2x )=sin π=0;方法二:(x+cos2x )dx=xdx+cos2xdx ,由y=x 为奇函数,y=cos2x 为偶函数,由定积分的性质, xdx=0, cos2xdx=2cos2x=2sin π=0.【解答】解:方法一:由(x+cos2x )dx=(x 2+sin2x )=()2+sin2()﹣[(﹣)2+sin2(﹣)]=sin π=0,(x+cos2x )dx=0,故答案为:0;方法二:(x+cos2x )dx=xdx+cos2xdx ,由y=x 为奇函数,y=cos2x 为偶函数,∴由定积分的性质,xdx=0, cos2xdx=2cos2x=2(sin2x )=2sin π=0,∴(x+cos2x )dx=xdx+cos2xdx=0,14.在平面几何里,有勾股定理“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则S△ABC 2+S△ACD2+S△ADB2=S△BCD2.”【考点】类比推理.【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC 2+S△ACD2+S△ADB2=S△BCD2.故答案为:S△ABC 2+S△ACD2+S△ADB2=S△BCD2.15.已知函数f(x)=﹣+4x﹣3lnx在[t,t+1]上不单调,则t的取值范围是0<t<1或2<t<3 .【考点】利用导数研究函数的单调性.【分析】先由函数求f′(x)=﹣x+4﹣,再由“函数在[t,t+1]上不单调”转化为“f′(x)=﹣x+4﹣=0在区间[t,t+1]上有解”从而有在[t,t+1]上有解,进而转化为:g(x)=x2﹣4x+3=0在[t,t+1]上有解,用二次函数的性质研究.【解答】解:∵函数∴f′(x)=﹣x+4﹣∵函数在[t,t+1]上不单调,∴f′(x)=﹣x+4﹣=0在[t,t+1]上有解∴在[t,t+1]上有解∴g(x)=x2﹣4x+3=0在[t,t+1]上有解∴g(t)g(t+1)≤0或∴0<t<1或2<t<3.故答案为:0<t<1或2<t<3.16.已知函数y=f(x)的导函数为f′(x)且f(x)=x2f′()+sin x,则f′()=.【考点】导数的运算.【分析】求函数的导数,令x=,先求出f′()的值即可得到结论.【解答】解:∵f(x)=x2f′()+sin x,∴f′(x)=2xf'()+cosx令x=,则f′()=2×f'()+cos则f′()=,故答案为:三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x=时,y=f(x)有极值.(1)求a、b、c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)先对函数f(x)进行求导,根据f'(1)=3,f′=0,f(1)=4可求出a,b,c的值,得到答案.(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[﹣3,1]上的单调性,最后可求出最值.【解答】解:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b当x=1时,切线l的斜率为3,可得2a+b=0.①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0.②由①、②解得a=2,b=﹣4.由于l上的切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4.∴c=5.(2)由(1)可得f(x)=x3+2x2﹣4x+5,∴f′(x)=3x2+4x﹣4.令f′(x)=0,得x=﹣2,或x=.∴f(x)在x=﹣2处取得极大值f(﹣2)=13.在x=处取得极小值f=.又f(﹣3)=8,f(1)=4.∴f(x)在[﹣3,1]上的最大值为13,最小值为.18.已知函数f(x)=x2+lnx.(1)求函数f(x)在[1,e]上的最大值和最小值;(2)求证:当x∈(1,+∞)时,函数f(x)的图象在g(x)=x3+x2的下方.【考点】利用导数求闭区间上函数的最值;导数在最大值、最小值问题中的应用.【分析】(1)求出导数f′(x),易判断x>1时f′(x)的符号,从而可知f(x)的单调性,根据单调性可得函数的最值;(2)令F(x)=f(x)﹣g(x)=﹣+lnx,则只需证明F(x)<0在(1,+∞)上恒成立,进而转化为F(x)的最大值小于0,利用导数可求得F(x)的最大值.【解答】(1)解:∵f(x)=x2+lnx,∴f′(x)=2x+,∵x>1时,f′(x)>0,∴f(x)在[1,e]上是增函数,∴f(x)的最小值是f(1)=1,最大值是f(e)=1+e2;(2)证明:令F(x)=f(x)﹣g(x)=﹣+lnx,则F′(x)=x﹣2x2+===,∵x>1,∴F′(x)<0,∴F(x)在(1,+∞)上是减函数,∴F(x)<F(1)==﹣<0,即f(x)<g(x),∴当x∈(1,+∞)时,函数f(x)的图象总在g(x)的图象下方.19.已知函数f(x)=xlnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数,求函数f(x)在[a,2a]上的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(e),f′(e)的值,从而求出切线方程即可;(2)求出函数f(x)的导数,解关于导函数的不等式,得到函数的单调区间,从而求出函数的最小值即可.【解答】解:(1)∵f(x)定义域为(0,+∞),f'(x)=lnx+1,f(e)=e又f'(e)=2,∴函数y=f(x)在点(e,f(e))处的切线方程为:y=2(x﹣e)+e,即y=2x﹣e﹣﹣﹣﹣﹣﹣(2)∵f'(x)=lnx+1,令f'(x)=0,,时,F'(x)<0,f(x)单调递减;当时,F'(x)>0,f(x)单调递增.当,…..20.已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f (x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.21.已知函数f(x)=ax2+x﹣xlnx,(1)若a=0,求函数f(x)的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】(1)求导数,利用导数的正负,即可求函数f(x)的单调区间;(2)由已知,求得f(x)=x2+x﹣xlnx.将不等式f(x)≥bx2+2x恒成立转化为恒成立.构造函数,只需b≤g(x)min即可,因此又需求g(x)min.【解答】解:(1)当a=0时,f(x)=x﹣xlnx,函数定义域为(0,+∞).f'(x)=﹣lnx,由﹣lnx=0,得x=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣x∈(0,1)时,f'(x)>0,f(x)在(0,1)上是增函数.x∈(1,+∞)时,f'(x)<0,f(x)在(1,+∞)上是减函数;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)由f(1)=2,得a+1=2,∴a=1,∴f(x)=x2+x﹣xlnx,由f(x)≥bx2+2x,得(1﹣b)x﹣1≥lnx,又∵x>0,∴恒成立,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令,可得,∴g(x)在(0,1]上递减,在[1,+∞)上递增.=g(1)=0∴g(x)min即b≤0,即b的取值范围是(﹣∞,0].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣22.已知函数f(x)=(1﹣x)e x﹣1.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设,x>﹣1且x≠0,证明:g(x)<1.【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求函数的导数,利用函数的导数和最值之间的关系,即可求函数f(x)的最大值;(Ⅱ)利用函数的单调性,证明不等式.【解答】解:(Ⅰ)f′(x)=﹣xe x.当x∈(﹣∞,0)时,f′(x)>0,f(x)单调递增;当x∈(0,+∞)时,f′(x)<0,f(x)单调递减.∴f(x)的最大值为f(0)=0.(Ⅱ)由(Ⅰ)知,当x>0时,f(x)<0,g(x)<0<1.当﹣1<x<0时,g(x)<1等价于设f(x)>x.设h(x)=f(x)﹣x,则h′(x)=﹣xe x﹣1.当x∈(﹣1,0)时,0<﹣x<1,<e x<1,则0<﹣xe x<1,从而当x∈(﹣1,0)时,h′(x)<0,h(x)在(﹣1,0]单调递减.当﹣1<x<0时,h(x)>h(0)=0,即g(x)<1.综上,总有g(x)<1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑州市第47中学-上期高二年级12月考
数学试题
一、选择题(本大题共12小题,共60分)
1.已知等比数列{}n a 的公比为2,则24a a 值为( ) A. B. C.2 D.4
2.已知△ABC 中,a=24,b=4,A=45°,则B 等于( )
A.30°
B.30°或150°
C.60°
D.60°或120°
3. 如果a >b >0,那么下列不等式中不正确的是( )
A. ab >b 2
B.
C.
D.a 2>ab
4.△ABC 的三边c b a ,,所对的角分别为A,B,C.若A :B=1:2,sinC=1,则c b a ::=( )
A.1:2:1
B.1:2:3
C.2:3:1
D.1:3:2
5.一等差数列的前n 项和为210,其中前4项的和为40,后4项的和为80,则n 的值为( )
A.12
B.14
C.16
D.18
6.在△ABC 中,△B=
3
π,AB=8,BC=5,则△ABC 外接圆的面积为( ) A. 349π B.16π C. 347π D.15π 7.设n S 为等差数列{a n }的前n 项的和,1a =-2016,22015
201720152017=-S S ,则2016S 的值为( ) A.-2015 B.-2016 C.2015 D.2016
8.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β)(βα>,则A 点离地面的高AB 等于( )
A.)sin(sin sin βαβα-a
B.)
cos(sin sin βαβα-a C. )sin(cos cos βαβα-a D. )
cos(cos cos βαβα-a 9.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世
不竭”.反映这个命题本质的式子是( )
A.1++
+…+=2- B.1+++…++…<2 C.++…+=1 D.+
+…+<1 10.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan△ECF=( ) A.2716 B.32 C.3
3 D.43 11.已知数列{}n a 满足n a =⎪⎩
⎪⎨⎧≤>+--8,8,8)31(7n a n n a n ,若对于任意的n△N *都有a n >a n+1,则实数
a 的取值范围是( )
A.(0,)
B.(0,)
C. (,1)
D. (,)
12.已知△ABC 的三边a ,b ,c 满足:333c b a =+,则此三角形是( )
A.钝角三角形
B.锐角三角形
C.直角三角形
D.等腰直角三角形
二、填空题(本大题共4小题,共20分)
13. △ABC 的三边分别为c b a ,,.若a=2,b=3,c=4,则其最小角的余弦值为 ______ .
14.若数列{}n a 的通项公式为n a n n 1)1(+-=,n S 是其前n 项的和,则100S = _____.
15.若实数列1,a ,b ,c ,4是等比数列,则b 的值为 ______ .
16.已知定义:在数列{}n a 中,若p a a n n =--212(n≥2,n△N *,p 为常数),则称数列{}n a 为
等方差数列,下列判断:
△ })1{(n -是“等方差数列”;
△若{}n a 是“等方差数列”,则数列}{2
n a 是等差数列; △若{}n a 既是“等方差数列”,又是等差数列,则该数列是常数列;
△若{}n a 是“等方差数列”,则数列{}kn a (k△N *,k 为常数)可能也是“等方差数列”。

其中正确的结论是 ______ .(写出所有正确结论的编号)
三、解答题(本大题共6小题,共70分)
17.(本小题10分)已知△ABC 中,△A 、△B 、△C 成等差数列,且,.求:
(1)求△A ,△C 的大小.
(2)求△ABC 的面积.
18. (本小题12分)记等差数列{}n a 的前n 项和为n S ,设123=S ,且1,,2321+a a a 成等比数列,求n S .
19. (本小题12分)已知数列{}n a 的首项11=a ,以后各项由)1(11-+
=-n n a a n n (n≥2)给出.
(1)写出数列{}n a 的前4项;
(2)求数列{}n a 的通项公式.
20. (本小题12分)龙湖公园拟建一主题游戏园,该游戏园为四边形区域ABCD ,其中三角形区城ABC 为主题活动区,已知△ACB=60°,
△ABC=45°,AB=612m ;AD 、CD 为游客通道(不考虑宽度),且△ADC=120°,通道AD 、CD 围成三角形区域ADC 为游客休闲中心,供游客休憩.
(1)求AC 的长度;
(2)记游客通道AD 与CD 的长度和为L ,求L 的最大值.
21. (本小题12分)如图,在△ABC 中,点D 在BC 边上,
,.
(△)求sin△C 的值;
(△)若BD=2DC ,求边AB 的长.
22.对于数列}{n a ,定义其积数是n a a a a V n n ⋅⋅⋅⋅= 321(*N n ∈ )。

(1)若数列}{n a 的积数1+=n V n ,求n a ;
(2)若}{n a 为各项为正的等比数列,32=a ,63+a 是2a 和4a 的等差中项,若数列}{n a 的积数满足n V ≥
对一切*N n ∈恒成立,求实数t 的取值范围.
数学答案和解析
【答案】
1.D
2.A
3. C
4.D
5.B
6.A
7.B
8.A
9.D10.D11.C12.B
13.7/8 14.-50 15.2 16.△△③△
17.解:(1)△△A、△B、△C成等差数列,
△2△B=△A+△C,
又△△A+△B+△C=180°.△△B=60°.…(1分)
由正弦定理得:,
解得:sinA=,所以△A=45°或△A=135°,
因为135°+60°>180°,所以△A=135°应舍去,即△A=45°.
所以△C=180°-45°-60°=75°…(6分)
(2)
=3…(10分)
18.解:设等差数列{a n}的公差为d,由题意得,
解得或,…(6分)
△s n=n(3n-1)或s n=2n(5-n).…(12分)
19.解:(1)a1=1,a2=a1+=,a3=a2+=,a4=a3+=,…(4分)(2)△a n=a n-1+,
△a2-a1=1-,a3-a2=-,a4-a3=-,…,
a n-a n-1==-,
故a n-a1=1-+(-)+(-)+…+(-)=1-,
故a n=2-=(n>1)…(10分)
又当n=1时,也符合上式。

所以a n=…12分
20. 解:(△)因为
, 所以. 又因为
, 所以. 所以
=. …5分
(△)在△ACD 中,由,得. 所以37cos 2222=∠⨯⨯⨯-+=ADB BD AD BD AD AB .
故 37=AB …(12分) 22.解:(1)△V n =n+1,△a 1•a 2•a 3•…•a n =n (n+1)…△
当n≥2,△a 1•a 2•a 3…a n -1=(n -1)•n…△
得:,
当n=1,a 1=V 1=2,
△; …(4分) (2)设等比数列{a n }的公比为q ,
△63+a 是2a 和4a 的等差中项且32=a ,
△33)63(22+=+q q 且0>q
△q=3,
13-=∴n n a …(6分)
△n
n a a a a V n n n n 2)1(3213
-=⋅⋅⋅⋅= ≥对一切*N n ∈恒成立, 即2)1(3
12-≤-n n t 对一切*N n ∈恒成立 …(8分) 设2)1(3-=n n n C ,则13312)2)(1()1(1≥==-----+n n n n n n
n C C (当且仅当n=1时取等)…(10分) 所以11=≥C C n
则只需112≤-t ,即1≤t 。

…(12分)。

相关文档
最新文档