2020-2021学年上学期七年级数学第三章《代数式》检测卷(含答案)

合集下载

第三章 代数式单元检测卷(含答案)

第三章 代数式单元检测卷(含答案)

第3章 代数式 单元检测卷(满分:100分 时间:90分钟)一、选择题(每题3分,共24分)1.下列各式中,符合代数式书写格式的是 ( )A .ay ·3B .213cb 2a C .24a b D .a ×b ÷c 2.下列各组代数式中,属于同类项的是 ( )A .125与-15B .12a 2b 与35ab 2 C . -2x 3与-3x 2 D .0.5x 2y 与0.5x 2z 3.下列去括号中,正确的是 ( )A .(x -y )-(a +b )=x -y -a -bB .(x -y )-(-a +b )=x -y -a +bC .x -2(a -b )=x -2a -2bD .x -2(-a -b )=x -2a -b4.下列说法中,错误的是 ( )A .x 与y 的平方差是x 2-y 2B .x 减去y 的2倍所得的差是x -2yC .x 加上y 除以x 的商是x +y xD .x 与y 和的平方的2倍是2(x +y )2 5.多项式1+xy -xy 2的次数及最高次项的系数分别是 ( )A .2、1B .2、-1C .3、-1D .5、-16.电影院第一排有m 个座位,若往后每排都比前一排多1个座位,则第n 排的座位个数是 ( )A .m +nB .mn +1C .m +(n -1)D .m +(n +1)7.已知a -b =1,则代数式2a -2b -3的值是 ( )A .-1B .1C .-5D .58.小明编写了一个计算程序:当输入任意一个有理数时,显示的结果等于所输入的有理数的平方与1的和,若输入-1,并将所显示的结果再次输入,则此时显示的结果是( )A .2B .3C .4D .5二、填空题(每题3分,共30分)9.观察下列数据:3x ,35x ,57x ,79x ,911x …,它们是按一定规律排列的,按照此规律第n 个数是_______.(用含n 的式子表示)10.一本书原价为a 元,经8.5折优惠后,这本书的售价是_______元.11.代数式3x 表示的实际意义为______________.12.任意写出一个与-x 2y 是同类项的代数式:_______.13.“同分母分数相加,分母不变,分子相加”这个运算法则用字母表示是_______.14.如图是一个长方形推拉窗.窗高1.5 m ,则这个窗子的通风面积A (m 2)与拉开的长度b (m )的关系是_______.15.若a=-2,b=3,则代数式a2-2ba=_______.16.若A23=3×2-6,A35=5×4×3=60,A45=5×4×3×2-120,A46=6×5×4×3=360,…,观察上述计算过程,寻找规律计算:A=37_______(直接写出计算结果);并比较A310_______A410(填“>”、“<”或“=”).17.已知222211⨯=+,333322⨯=+,444433⨯=+,…,若ab×10=ab+10(a、b都是正整数),则a+b=___________.18.已知数n按如图所示的程序输入计算,当第一次输入n为80时,那么第2 011次输出的结果为_______.三、解答题(共46分)19.(6分)化简:(1)(3x2-2xy)-(-3xy+y2);(2)5(2x-7y)-3(3x-10y).20.(6分)有这样一道计算题:“先化简,再求值:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3),其中x=12,y=-1.”小丽把x=12错看成x=-12,但计算结果仍正确,你知道这是什么原因吗?21.(6分)3月12日植树节,某班学生计划植树m棵,原计划每天植树x棵,实际每天比原计划多植树5棵.(1)实际比原计划提前多少天完成?(2)当m=120,x=10时,求实际比原计划提前的天数.22.(6分)如图是两个数值运算程序.(1)请直接写出图①的输出结果;(2)请在图②的方框中填入适当的程序运算步骤.23.(6分)小明和小丽玩一种扑克牌游戏,小明背对着小丽,让小丽从一副扑克牌中抽取一部分牌按如下步骤进行操作:①将一些扑克牌平均分成左、中、右三堆(每堆的牌数不少于3张);②从左边一堆中拿出3张放入中间这一堆;③从右边一堆中拿出2张放入中间这一堆;④数一数此时左边这堆中有几张牌,然后从中间拿出几张放入左边这堆中.此时小明准确地说出了中间这堆有几张牌,你能说出中间这堆有几张牌吗?24.(8分)现代营养学家用身体质量指数来判断人体的健康状况,这个指数是人体质量(kg)除以人体身高(m)平方的商,一个健康人的身体质量指数在20~25之间.身体质量指数低于18,属于不健康的瘦;身体质量指数高于30,属于不健康的胖.(1)设一个人的质量为w kg身高为h m,求他的身体质量指数;(2)李老师的身高为1.75 m,质量是60 kg,求他的身体质量指数;(四舍五入到整数)(3)计算你本人的身体质量指数,你的身体健康状况属于哪种?(四舍五入到整数)25.(8分)李明同学买了50元的乘车月票卡,他是一个有心人,他把每次乘车的次数用m表示,卡上的余额用n表示,用右边的表格记录了每次乘车后的余额。

七年级数学上册第3章代数式达标检测卷新版苏科版(含答案)

七年级数学上册第3章代数式达标检测卷新版苏科版(含答案)

七年级数学上册新版苏科版:第3章达标检测卷一、选择题(每题3分,共24分)1.下列各式符合书写要求的是( )A .x 6B .m ÷nC .1ab D.32a 2.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和数a 的积C .2a 是单项式D .2a 是偶数3.“比x 的倒数的2倍小3的数”,用代数式表示为( )A .2x +3B .2x -3C.2x +3D.2x-3 4.多项式x 2+x +18是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.若单项式5x 1-ay 3与2x 3yb -1的差仍是单项式,则ab 的值是( )A .8B .-8C .16D .-166.化简-(x -y +z )+2(x -y -z )的结果是( )A .x -2yB .x -y -3zC .x -3y -zD .x +3y +z7.已知a +b =12,则代数式2a +2b -3的值是( ) A .2 B .-2 C .-4 D .-3128.如果a 和1-4b 互为相反数,那么多项式2(b -2a +10)+7(a -2b -3)的值是( )A .-4B .-2C .2D .4二、填空题(每题3分,共30分)9.在x +y ,0,2>1,2a -b ,2x +1=0中,代数式有________个.10.一件校服,按标价的6折出售,售价是x 元,这件校服的标价是________元.11.体育委员带了500元去买体育用品,若一个足球a 元,一个篮球b 元,则代数式500-3a -2b 表示__________.12.如果单项式3xmy 与-5x 3yn 是同类项,那么m +n =________.13.化简-3(a-2b+1)的结果为________.14.若A=x2-2xy+y2,B=x2+2xy+y2,则2A-2B=________.15.按照如图所示的计算程序,若x=2,则输出的结果是________.16.已知x=5-y,xy=2,计算3x+3y-4xy的值为________.17.已知关于x、y的多项式-5x2y-2nxy+5my2-3xy+4x-7不含二次项,则m+n=________.18.若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=________.三、解答题(19-24题每题7分,25-26题每题12分,共66分)19.化简:(1)(7x-3y)-(8x-5y);(2)5(a2b-ab)-2(-a2b+3ab).20.先化简,再求值:(1)3ab-2(a2-ab)-(a2-ab),其中a=1,b=-1;(2)3x2-[x2-(4x-1)]+2(x2+5x-2),其中x=-3.21.已知A、B是两个多项式,其中B=-3x2+x-6,A+B的和等于-2x2-3.(1)求多项式A;(2)当x=-1.5时,求A的值.22.一个长方形一边长为7a-4b+5,另一边长为2b-a+1.(1)用含有a,b的式子表示这个长方形的周长;(2)若a、b满足3a-b=5,求它的周长.23.已知代数式A=-6x2y+4xy2-2x-5,B=-3x2y+2xy2-x+2y-3.(1)先化简A-B,再计算当x=1,y=-2时A-B的值;(2)请问A-2B的值与x,y的取值是否有关系?试说明理由.24.如图是一个计算程序,请完成下列问题:(1)当输入的m取-2时,输出结果为________;当输入的m取7时,输出结果为________.(2)给m取任意一个非零的数,按照如图的程序进行计算,输出的结果总是与输入的数相同,请你解释原因.25.小丽同学准备化简:(3x2-6x-8)-(x2-2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-6x-8)-(x2-2x×6);(2)若x2-2x-3=0,求(3x2-6x-8)-(x2-2x-6)的值;(3)当x=1时,(3x2-6x-8)-(x2-2x□6)的结果是-4,请你通过计算说明“□”所代表的运算符号.26.某商店出售网球和网球拍,网球拍每只定价80元,网球每个定价4元,商家为促销商品,同时向客户提供两种优惠方案:①买一只网球拍送3个网球;②网球拍和网球都按定价的9折优惠.现在某客户要到该商店购买网球拍20只,网球x个.(1)若x>200,该客户按优惠方案①购买需付款多少元?(用含x的式子表示)(2)若x>200,该客户按优惠方案②购买需付款多少元?(用含x的式子表示)(3)当x=100时,通过计算说明,此时按哪种优惠方案购买较为合算?(4)当x=100时,你能结合两种优惠方案给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出所需的钱数.答案一、1.D 2.D 3.D 4.B 5.C6.B 【点拨】-(x -y +z )+2(x -y -z )=-x +y -z +2x -2y -2z=x -y -3z .7.B 【点拨】因为2a +2b -3=2(a +b )-3,所以将a +b =12代入得2×12-3=-2. 8.A 【点拨】由题意可知a +1-4b =0,所以a -4b =-1,所以原式=2b -4a +20+7a -14b -21=3a -12b -1=3(a -4b )-1=-3-1=-4.二、9.3 10.53x 11.买了3个足球和2个篮球后,还剩的钱数12.4 13.-3a +6b -3 14.-8xy15.-26 【点拨】把x =2代入程序中,得10-22=10-4=6>0,把x =6代入程序中,得10-62=10-36=-26<0,所以最后输出的结果是-26.16.7 【点拨】因为x =5-y ,所以x +y =5,当x +y =5,xy =2时,原式=3(x +y )-4xy=3×5-4×2=15-8=7.17.-1.5 【点拨】-5x 2y -2nxy +5my 2-3xy +4x -7=-5x 2y -(2n +3)xy +5my 2+4x -7, 因为多项式不含二次项,所以5m =0,-(2n +3)=0,解得m =0,n =-1.5,所以m +n =-1.5,18.0或8 【点拨】因为多项式xy |m -n |+(n -2)x 2y 2+1是关于x 、y 的三次多项式, 所以n -2=0,1+|m -n |=3,所以n =2,|m -n |=2,所以m -n =2或n -m =2,所以m =4或m =0,所以mn =8或mn =0.三、19.解:(1) 原式=7x -3y -8x +5y =-x +2y ;(2)原式=5a 2b -5ab +2a 2b -6ab =7a 2b -11ab .20.解:(1) 原式=3ab -2a 2+2ab -a 2+ab =6ab -3a 2.当a =1,b =-1时,原式=6×1×(-1)-3×12=-6-3=-9.(2) 原式=3x 2-x 2+4x -1+2x 2+10x -4=4x 2+14x -5.当x =-3时,原式=4×(-3)2+14×(-3)-5=36-42-5=-11.21.解:(1)根据题意得:A =(A +B )-B =-2x 2-3-(-3x 2+x -6)=-2x 2-3+3x 2-x +6=x 2-x +3;(2)当x =-1.5时,A =(-1.5)2-(-1.5)+3=94+32+3=274.22.解:(1)这个长方形的周长为2(7a -4b +5)+2(2b -a +1)=14a -8b +10+4b -2a +2=12a -4b +12;(2)当a 、b 满足3a -b =5时,它的周长等于4(3a -b )+12=4×5+12=32.23.解:(1)A -B =(-6x 2y +4xy 2-2x -5)-(-3x 2y +2xy 2-x +2y -3)=-6x 2y +4xy 2-2x -5+3x 2y -2xy 2+x -2y +3=(-6+3)x2y+(4-2)xy2+(-2+1)x-2y-5+3=-3x2y+2xy2-x-2y-2,当x=1,y=-2时,A-B=-3×12×(-2)+2×1×(-2)2-1-2×(-2)-2=6+8-1+4-2=15;(2)A-2B=(-6x2y+4xy2-2x-5)-2(-3x2y+2xy2-x+2y-3)=-6x2y+4xy2-2x-5+6x2y-4xy2+2x-4y+6=(-6+6)x2y+(4-4)xy2+(-2+2)x-4y-5+6=-4y+1.由化简结果可知,A-2B的值与x的取值没有关系,与y的取值有关系.24.解:框图中运算程序为:(m2-m)÷m+1.(1)-2;7 【点拨】当m=-2时,(m2-m)÷m+1=[(-2)2-(-2)]÷(-2)+1=6÷(-2)+1=-3+1=-2;当m=7时,(m2-m)÷m+1=(72-7)÷7+1=42÷7+1=6+1=7.(2)理由:此程序为(m2-m)÷m+1.化简这个算式:(m2-m)÷m+1=m-1+1=m.所以,输出的结果总是与输入的数相同.25.解:(1)(3x2-6x-8)-(x2-2x×6)=(3x2-6x-8)-(x2-12x)=3x2-6x-8-x2+12x=2x2+6x-8;(2)(3x2-6x-8)-(x2-2x-6)=3x2-6x-8-x2+2x+6=2x2-4x-2,因为x2-2x-3=0,所以x2-2x=3,所以2x2-4x-2=2(x2-2x)-2=6-2=4;(3)当x=1时,原式=(3-6-8)-(1-2□6),由题意,得-11-(1-2□6)=-4,整理得1-2□6=-7,所以-2□6=-8.所以“□”所代表的运算符号为“-”.26.解:(1)根据题意,得80×20+4(x-20×3)=1360+4x(x>200);(2)根据题意,得(80×20+4x)×0.9=1 440+3.6x(x>200);(3)当x=100时,优惠方案①:1 360+4×100=1 760(元);优惠方案②:1 440+3.6×100=1 800(元),因为1 760<1 800,所以按优惠方案①购买较为合算;(4)先按优惠方案①购买20只网球拍,获赠60个网球,再按优惠方案②购买40个网球,20×80+40×4×0.9=1 744(元),则所需的钱数为1 744元.。

苏科版2020—2021学年七年级数学上册第3章《代数式》单元检测与简答

苏科版2020—2021学年七年级数学上册第3章《代数式》单元检测与简答

苏科版2020—2021学年七年级数学上册第3章《代数式》单元检测与简答一.选择题(10小题,每小题2分,共20分)1.下列各式符合代数式书写规范的是( )A .2y xB .5a ⨯C .122x D .2m n ÷- 2.下列式子315123,3,6,0,,,4x y x x yz abc x m n a π--+++中,整式有( ) A .3个 B .4个 C .5个 D .6个3.单项式323ab c 的次数为( )A .5B .7C .9D .64.已知312n x y -与325m x y -是同类项,则式子20182019m n -的值是( )A .2B .1C .0D .1-5.当25x x ++的值为7时,则2332x x +-的值是( )A .19B .4C .5D .126.下列说法错误的是( )A .223ab c 的次数是4B .多项式2231x x --是二次三项式C .多项式23321x x y -+的次数是3D .2r π的系数是2π 7.一批电脑进价为a 元,提价20%后出售,则售价为( )A .(120%)a +B .(120%)a -C .20%aD .20%a ÷8.下列运算中,正确的是( )A .1363312÷⨯=÷=B .|5|5--=C .2(3)62x y y x --=-D .3(2)6-=- 9.下列运算中,正确的是( )A .235a b ab +=B .22440ab b a -=C .22642a a -=D .325235a a a +=10.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .21二.填空题(共8小题,每小题3分,共24分)11.写出一个次数为3,且含有字母a 、b 的整式: .12.化简3()a b --的结果为 .13.若代数式4m a b -和3n ab 相加后仍是单项式,则m n += .14.单项式22x y π-的系数是 .15.已知320x y +-=,则2(1)2(35)x y ++-= .16.若练习本每本a 元,铅笔每支b 元,那么代数式83a b +表示的意义是 .17.一个三角形的第一条边长为2a b +,第二条边比第一条边短2b -,第三条边比第二条边短3,请用含有a 、b 的式子表示此三角形的周长 .18.一列单项式按以下规律排列,第2020个单项式为 .1,3x -,25x ,37x -,49x ,511x -,⋯.三.解答题(共6小题,满分56分,其中19题10分,20、21、22每小题8分,23题10分,24题12分)19.化简:(1)2225423m n m n mn m n mn -+-++.(2)22(521)4(382)a a a a +---+.20.先化简,再求值:23[4(3)]a b a a b -+--,其中a 、b 满足2|1|3(2)0a b +++=.21.有一道题目是一个多项式加上2146x x +-,小明误当成了减法计算,结果得到227x x -+,正确的结果应该是多少?22.学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多6只.现进行如下操作:第一次,从甲筐中取出一半放入乙筐;第二次,又从甲筐中取出若干只球放入乙筐.设乙筐内原来有a 只球.(1)第一次操作后,乙筐内球的个数为 只;(用含a 的代数式表示)(2)若第一次操作后乙筐内球的个数比甲筐内球的个数多10只,求a 的值;(3)第二次操作后,乙筐内球的个数可能是甲筐内球个数的2倍吗?请说明理由.23.观察图示,解答问题.(1)由上而下第8行,白球有个,黑球有个;(2)若第(n n为正整数)行白球与黑球的总数记作y,求y与n的关系式;(3)求出第2020行白球和黑球的总数.24.红心食品店想网购一种花生包装袋,在网上搜索了A、B两家网店(如图所示),已知这两家网店的这种花生包装袋质量相同,请看图回答下列问题:(1)假若红心食品店想购买x个花生包装袋,那么在A、B两家网店分别需要花多少钱(用含有x 的式子表示)?(提示:如需付运费时,运费只需付一次,即6元)(2)红心食品店打算一次购买200个花生包装袋,选择哪家网店更省钱?苏科版2020—2021学年七年级数学上册第3章《代数式》单元检测参考简答一.选择题(共10小题)1.A . 2.B . 3.D . 4.A . 5.B . 6.C . 7.A . 8.C .9.B . 10.B .二.填空题(共8小题)11. 2a b . 12. 33a b -+ . 13. 5 . 14. 2π- . 15. 4- .16. 买8本练习本和3支铅笔需要的钱数 . 17. 341a b ++ . 18. 20194039x - .三.解答题(共6小题)19.化简:(1)2225423m n m n mn m n mn -+-++.(2)22(521)4(382)a a a a +---+.【解】:(1)2225423m n m n mn m n mn -+-++222(54)(23)m n m n m n mn mn =-+++-+mn =.(2)22(521)4(382)a a a a +---+2252112328a a a a =+--+-233413a a =-+-.20.先化简,再求值:23[4(3)]a b a a b -+--,其中a 、b 满足2|1|3(2)0a b +++=.【解】:由题意得,10a +=,20b +=,解得,1a =-,2b =-,23[4(3)]a b a a b -+--23[43]a b a a b =-+-+2343a b a a b =-+-+32a b =-,当1a =-,2b =-时,原式3(1)2(2)341=⨯--⨯-=-+=.21.有一道题目是一个多项式加上2146x x +-,小明误当成了减法计算,结果得到227x x -+,正确的结果应该是多少?【解】:这个多项式为:22(27)(146)x x x x -+++-2227146x x x x =-+++-23131x x =++,所以正确的结果为:223131146x x x x ++++-24275x x =+-.22.学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多6只.现进行如下操作:第一次,从甲筐中取出一半放入乙筐;第二次,又从甲筐中取出若干只球放入乙筐.设乙筐内原来有a 只球.(1)第一次操作后,乙筐内球的个数为 (23)a + 只;(用含a 的代数式表示)(2)若第一次操作后乙筐内球的个数比甲筐内球的个数多10只,求a 的值;(3)第二次操作后,乙筐内球的个数可能是甲筐内球个数的2倍吗?请说明理由.【解】:(1)设乙筐内原来有a 只球,则甲筐内的球的个数为(26)a +只,∴甲筐球数的一半为(3)a +只,∴从甲筐中取出一半放入乙筐后,乙筐内的球数为:(3)(23)a a a ++=+只;(2)第一次操作后甲筐内的球的个数为:(26)23a a +÷=+,乙筐内的球数为(23)a +只, 根据题意得,(23)(3)10a a +-+=,解得,10a =;(3)可能,理由如下:设第二次操作从甲筐取出n 只球放入乙筐,则此时甲筐内的球数为3a n +-,乙筐的只数为23a n ++, 且2(3)23a n a n +-=++,解得,1n =,∴第二次从甲筐中取出1只球放入乙筐后,乙筐内球的个数是甲筐内球个数的2倍.23.观察图示,解答问题.(1)由上而下第8行,白球有 个,黑球有 个;(2)若第(n n 为正整数)行白球与黑球的总数记作y ,求y 与n 的关系式;(3)求出第2020行白球和黑球的总数.【解】:(1)由上而下第1行,白球有1个,黑球有3个;第2行,白球有2个,黑球有5个;第3行,白球有3个,黑球有7个;⋯第8行,白球有8个,黑球有15个;故答案为:8,15;(2)第(n n 为正整数)行白球数为n 个,黑球数为:(21)n -个,所以总数y 与n 的关系式为:2131y n n n =+-=-;(3)第2020行白球和黑球的总数为:3202016059⨯-=.24.红心食品店想网购一种花生包装袋,在网上搜索了A 、B 两家网店(如图所示),已知这两家网店的这种花生包装袋质量相同,请看图回答下列问题:(1)假若红心食品店想购买x 个花生包装袋,那么在A 、B 两家网店分别需要花多少钱(用含有x 的式子表示)?(提示:如需付运费时,运费只需付一次,即6元)(2)红心食品店打算一次购买200个花生包装袋,选择哪家网店更省钱?【解】:(1)当100x 时,在A 网店需要花(1.26)x +元,在B 网店需要花(1.56)x +元;当100x >时,在A 网店需要花1.2x 元,在B 网店需要花(1.26)x +元;(2)当200x =时,A 网店:1.2200240⨯=(元);B 网店:1.22006246⨯+=(元).因为240246,所以选择A网店更省钱.。

2020年冀教版七年级数学上学期第三章《代数式》单元检测卷(含答案)

2020年冀教版七年级数学上学期第三章《代数式》单元检测卷(含答案)

第三章《代数式》单元检测一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.在式子3,a,3x=4,a-2b,4(x+y)中,代数式有 ( )A.5个B.4个C.3个D.2个 2.下列式子符合代数式书写要求的是( )A.-xy 22B.a-1÷bC.413xy D.ab×33.当a=3,b=1时,代数式2a -b2的值是 ( )A.2B.0C.3D.524.下列说法错误的是( )A.代数式a 2+b 2的意义是a 与b 的平方的和 B.代数式3(x+y)的意义是x 与y 的和的三倍 C.x 的4倍与y 的和的一半,用代数式表示为4x+y 2D.比x 的2倍少3的数,用代数式表示为2x-35.一块正方形纸片的边长为x,若将一组对边分别截去2,另一组对边分别截去3,则剩下的长方形纸片的面积为 ( )A.x 2-3×2B.(x-3)·(x -2)C.(x-2)·xD.x·(x -3)6.能用代数式a+0.3a 表示含义的是( )A.妈妈在超市购买物品共需a 元,结账时买塑料袋又花了0.3元,妈妈共花了多少元B.1个长方形的长是a 米,宽是0.3a 米,这个长方形的周长是多少米C.小明骑自行车的速度是a 千米/时,行驶0.3小时后,小明所行驶的路程是多少千米D.一套商品房原售价为a 万元,现提价30%,那么现在的售价是多少万元7.今年,我校成功举办了“经典诵读”比赛,其中参加比赛的男同学有a 人,参加比赛的女同学比男同学的56少24人,则参加“经典诵读”比赛的学生一共有 ( )A.(56a-24)人 B.65(a-24)人 C.65(a+24)人 D.(a+56a-24)人8.已知代数式x+2y 的值是5,则代数式2x+4y+1的值是( )A.6B.7C.11 D .129.如图,阴影部分是一个长方形截去两个四分之一的圆后剩余的部分,则它的面积是(其中a>2b)( )A.ab-πa 24B.ab-πb22C.ab-πa 22 D.ab-πb2410.某条铁路由冻土地段和非冻土地段组成,已知列车在冻土地段、非冻土地段的行驶速度分别是100 km/h 和120 km/h,且列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍.如果通过冻土地段需要t h,那么用含t 的式子表示这段铁路的全长为 ( )A.(210t+120)kmB.(100t+252t)kmC.(100t+252)kmD.(100+252t)km 11.若x 是不等于1的有理数,我们把代数式11-x称为x 的差倒数,如2的差倒数是11-2=-1,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,…,依次类推,x 2 019的差倒数是 ( )A.-13B.-1C.34D.412. 将代数式(3x+2)-2(2x-1)去括号,下列结果正确的是 ( )A.3x+2-2x+1B.3x+2-4x+1C.3x+2-4x-2D.3x+2-4x+2二、填空题(本大题共6小题,每小题3分,共18分)13.如图是一个数值转换机,若输入的x 为-7,则输出的结果是 .14.若有一个两位数,十位上的数字与个位上的数字的和是5,设个位上的数字是x,则这个两位数是 .(用含x 的代数式表示)15.若a,b 互为相反数,c,d 互为倒数,m 的绝对值为2,则m 2-cd+a+bm的值为 .16.如图是一个长方形推拉窗,窗高1.5 m,活动窗扇的通风面积为A m2,拉开长度为b m,则A与b 之间的关系是.17.为鼓励节约用电,某地对居民用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按0.58元收费,如果超过100度,那么超过部分每度电价按0.65元收费.某户居民在一个月内用电x(x>100)度,他这个月应缴纳电费元.(用含x的代数式表示) 18.按一定规律排列的一列数依次为-3,8,-15,24,-35,…,按此规律排列下去,这列数中第n(n为正整数)个数应该是.三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)用代数式表示:(1)甲数为x,乙数比甲数的一半大5,则乙数为多少?(2)沿河两地相距S千米,船在静水中的速度为a千米/时,水流速度为b千米/时,求船往返一次所需的时间.20.(本小题满分10分)已知|a-2|+(b-3)2=0,求代数式(a+b)2+ab-2a的值.21.(本小题满分11分)解答、发现、应用:(1)当a=4,b=2时,分别求代数式(a-b)2和a2-2ab+b2的值,并观察这两个代数式的值有什么关系?(2)再找一组你喜欢的数试一试,从中你发现了什么规律?(3)利用你所发现的规律计算a=0.125,b=3.125时,a2-2ab+b2的值.22.(本小题满分11分)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若把n张这样的餐桌拼接起来,四周可坐多少人?23.(本小题满分12分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2 400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.(3)若学校要印刷2 600份材料呢?仍不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.24.(本小题满分12分)将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第1次操作,然后将其中的一片又按同样的方法剪成四小片,记为第2次操作,如此循环下去.请将下表中空缺的数据填写完整,并解答所提出的问题.操作次数1234…正方形个数47…(1)操作100次,共能得到个正方形;(2)操作n次共能得到b n个正方形,试用含有n,b n的等式表示它们之间的数量关系: ;(3)若原正方形的边长为1,设a n表示操作n次所得的正方形的边长,试用含n的式子表示a n;(4)试猜想a1+a2+a3+a4+…+a n-1+a n与原正方形边长的数量关系,并用等式写出这个关系(不写理由).参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BADCBDDCBBAD13.27 14.10(5-x)+x 15.3 16.A=1.5b 17.[0.65(x-100)+58] 18.(-1)nn(n+2) 19. (1)12x+5. (2) (S a+b +S a -b)小时. 20. 27.21. (1) (a-b)2=4,a 2-2ab+b 2==4,两个代数式的值相等. (2) (a-b)2=1,a 2-2ab+b 2==1, (a-b)2=a 2-2ab+b 2. (3) 9.22. (1) 4张坐18人,8张可坐34人. (2) (4n+2)人.23. (1)甲印刷厂收费为(0.2x+500)元, 乙印刷厂收费为0.4x 元. (2)选择乙印刷厂比较合算 (3)选择甲印刷厂比较合算 24. 10 13 (1)301 (2)b n =4+3(n-1) (3) a n =(12)n . (4)a 1+a 2+a 3+a 4+…+a n-1+a n =1-a n =1-(12)n.1、老吾老以及人之老,幼吾幼以及人之幼。

苏教版初一数学第3章《代数式》达标检测卷(含答案)

苏教版初一数学第3章《代数式》达标检测卷(含答案)

第3章《代数式》达标检测卷考试时间:100分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019秋•金凤区校级期中)在1,a,a+b,,2x2y﹣xy2,3a>2,x+1=9中,代数式有()个.A.3个B.4个C.5个D.6个2.(3分)(2019秋•兰陵县期中)下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个3.(3分)(2019秋•陇县期中)下列结论中正确的是()A.的系数是,次数是4B.单项式m的次数为1,没有系数C.单项式﹣xy2z的系数为﹣1,次数为4D.多项式2x2+xy﹣3是四次三项式4.(3分)(2019秋•汉阳区期中)若2x3n y m+4与﹣3x9y2n的和仍为单项式,那么m+n=()A.2 B.3 C.5 D.85.(3分)(2019秋•罗湖区校级期中)下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)6.(3分)(2019秋•罗湖区校级期中)m表示一个三位数,n表示一个一位数,把m放到n的左边组成一个四位数,则这个数可以表示为()A.mn B.10m+n C.100m+n D.1000m+n7.(3分)(2019秋•自贡期中)如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.08.(3分)(2020春•南安市期中)我们把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如x=2时,多项式f(x)=ax3﹣bx+5的值记为f(2).若f(2)=8,则f(﹣2)的值为()A.2 B.﹣2 C.3 D.﹣39.(3分)(2019秋•衡水期中)将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④10.(3分)(2019秋•灌阳县期中)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑨个图形中白色圆的个数是()A.86 B.98 C.104 D.106第Ⅱ卷(非选择题)二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019秋•沙坪坝区校级期中)单项式的系数是,多项式0.3xy﹣2x3y﹣5xy2+1是次项式.12.(3分)(2019秋•武冈市期中)把多项式﹣2x2+3x﹣4放入带“﹣”的括号里为﹣().13.(3分)(2020春•香坊区校级期中)已知x2﹣3x+2=7,那么代数式﹣x2+3x+2的值是.14.(3分)(2019秋•杭锦后旗期中)某商品的进价为a元/件,在销售旺季,该商品售价较进价高50%,旺季后,又以7折(即原价的70%)的价格对该商品开展促销活动,这时一件该商品的售价为.15.(3分)(2019秋•太和县期中)已知k为常数,当k=时,多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式.16.(3分)(2019秋•海淀区校级期中)小明同学在做一道题:“已知两个多项式A,B,计算2A+B,误将“2A+B”看成“A+2B”,求得的结果为9x2+2x﹣6.已知A+B=2x2﹣4x+9,则2A+B的正确答案为.三.解答题(共7小题,满分52分)17.(4分)(2020春•南岗区校级期中)化简(1)2(2a﹣b)﹣(2b﹣3a).(2)5xy+y2﹣2(4xy﹣y2+1).18.(4分)(2019秋•金水区校级期中)已知a=2,b=﹣1,求2[a2b(a+1)]﹣3(a2b﹣2b)﹣6(b)的值时,马虎同学将a=2,b=﹣1错抄成a=2,b=1,可结果还是正确的,马虎同学比较纳闷,请你帮助他揭开其中的迷雾,写出你的说明过程.19.(8分)(2019秋•费县期中)先化简,再求值:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.(2)已知(x+1)2+|y﹣2|=0,求代数式4(x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值.20.(8分)(2019秋•洪山区期中)已知A=2a2+3ab﹣2a﹣1,B=﹣a2ab.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.21.(8分)(2019秋•上蔡县期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.(10分)(2019秋•泉港区期中)为了庆祝元旦,学校准备举办一场“经典诵读”活动,某班准备网购一些经典诵读本和示读光盘,诵读本一套定价100元,示读光盘一张定价20元.元旦期间某网店开展促销活动,活动期间向客户提供两种优惠方案:方案A:买一套诵读本送一张示读光盘;方案B:诵读本和示读光盘都按定价的九折付款.现某班级要在该网店购买诵读本10套和示读光盘x张(x>10),解答下列三个问题:(1)若按方案A购买,共需付款元(用含x的式子表示),若按方案B购买,共需付款元(用含x的式子表示);(2)若需购买示读光盘15张(即x=15)时,请通过计算说明按哪种方案购买较为合算;(3)若需购买示读光盘15张(即x=15)时,你还能给出一种更为省钱的购买方法吗?若能,请写出你的购买方法和所需费用.23.(10分)(2019秋•汉阳区期中)观察下列各式13=112×22;13+23=922×32;13+23+33=3632×42;13+23+33+43=10042×52.回答下面的问题:(1)猜想:13+23+33+…+(n﹣1)3+n3=;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+…+993+1003的值是;(3)计算:513+523+…+993+1003的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019秋•金凤区校级期中)在1,a,a+b,,2x2y﹣xy2,3a>2,x+1=9中,代数式有()个.A.3个B.4个C.5个D.6个【分析】代数式是用运算符号把数和表示数的字母连在一起的式子.单独的一个数或者一个字母都叫做代数式.因此题目中符合题意的是1,a,a+b,,2x2y﹣xy2,一共5个;3a>2是不等式,x+1=9是等式,都不是代数式.【答案】解:∵1,a,a+b,,2x2y﹣xy2是代数式;∴一共有5个代数式.故选:C.【点睛】本题考查代数式的概念,题型容易.需注意带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.2.(3分)(2019秋•兰陵县期中)下列式子中,符合代数式书写格式的有()①m×n;②3ab;③;④m+2天;⑤abc3A.2个B.3个C.4个D.5个【分析】根据代数式的书写要求判断各项.【答案】解:①正确的书写格式是mn;②正确的书写格式是ab;③的书写格式是正确的,④正确的书写格式是(m+2)天;⑤的书写格式是正确的.故选:A.【点睛】此题考查代数式问题,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.(3分)(2019秋•陇县期中)下列结论中正确的是()A.的系数是,次数是4B.单项式m的次数为1,没有系数C.单项式﹣xy2z的系数为﹣1,次数为4D.多项式2x2+xy﹣3是四次三项式【分析】根据单项式的系数及次数的定义,以及多项式的次数、系数的定义解答.【答案】解:A、的系数是,次数是3,故选项错误;B、单项式m的次数是1,系数是1,故选项错误;C、单项式﹣xy2z的系数是﹣1,次数为4是正确的;D、多项式2x2+xy﹣3是二次三项式,故选项错误.故选:C.【点睛】本题考查了多项式和单项式.解题的关键是掌握多项式的系数,次数,项,以及单项式的系数,次数.4.(3分)(2019秋•汉阳区期中)若2x3n y m+4与﹣3x9y2n的和仍为单项式,那么m+n=()A.2 B.3 C.5 D.8【分析】直接利用合并同类项法则得出m,n的值,进而得出答案.【答案】解:∵2x3n y m+4与﹣3x9y2n的和仍为单项式,∴3n=9,解得:n=3,故m+4=2n=6,则m=2,那么m+n=5.故选:C.【点睛】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.5.(3分)(2019秋•罗湖区校级期中)下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)【分析】根据去括号法则去掉括号,再判断即可.【答案】解:A、3a﹣(2b+c)=3a﹣2b﹣c≠3a﹣2b+c,故本选项符合题意;B、c﹣(2b﹣3a)=c﹣2b+3a=3a﹣2b+c,故本选项不符合题意;C、(3a﹣2b)+c=3a﹣2b+c,故本选项不符合题意;D、3a﹣(2b﹣c)=3a﹣2b+c,故本选项不符合题意;故选:A.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.6.(3分)(2019秋•罗湖区校级期中)m表示一个三位数,n表示一个一位数,把m放到n的左边组成一个四位数,则这个数可以表示为()A.mn B.10m+n C.100m+n D.1000m+n【分析】直接利用四位数的表示方法得出答案.【答案】解:∵m表示一个三位数,n表示一个一位数,把m放到n的左边组成一个四位数,∴这个数可以表示为10m+n.故选:B.【点睛】此题主要考查了列代数式,正确表示四位数是解题关键.7.(3分)(2019秋•自贡期中)如果关于x的多项式3x3﹣4x2+x+k2x2﹣5中不含x2项,则k的值为()A.2 B.﹣2 C.2或﹣2 D.0【分析】根据合并同类项,可得整式的化简,根据二次项的系数为零,可得关于k的一元二次方程,解一元二次方程,可得答案.【答案】解:原式=3x3+(k2﹣4)x2+x﹣5,由多项式不含x2,得k2﹣4=0,解得k=±2,故选:C.【点睛】本题考查了多项式,多项式不含项的系数为零.8.(3分)(2020春•南安市期中)我们把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如x=2时,多项式f(x)=ax3﹣bx+5的值记为f(2).若f(2)=8,则f(﹣2)的值为()A.2 B.﹣2 C.3 D.﹣3【分析】根据:f(x)=ax3﹣bx+5的值记为f(2),f(2)=8,可得:8a﹣2b+5=8,据此求出8a+2b的值是多少,即可求出f(﹣2)的值是多少.【答案】解:∵f(x)=ax3﹣bx+5的值记为f(2),f(2)=8,∴8a﹣2b+5=8,∴8a﹣2b=3,∴f(﹣2)=﹣8a+2b+5=﹣(8a﹣2b)+5=﹣3+5=2.故选:A.【点睛】此题主要考查了等式的性质和应用,以及代数式求值问题,要熟练掌握.9.(3分)(2019秋•衡水期中)将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为()A.①B.②C.③D.④【分析】设①、②、③、④四个正方形的边长分别为a、b、c、d,用a、b、c、d表示出右上角、左下角阴影部分的周长,利用整式的加减混合运算法则计算,得到答案.【答案】解:设①、②、③、④四个正方形的边长分别为a、b、c、d,由题意得,(a+d﹣b﹣c+b+a+d﹣b+b﹣c+c+c)﹣(a﹣d+a﹣d+d+d)=l,整理得,2d=l,则知道l的值,则不需测量就能知道正方形④的周长,故选:D.【点睛】本题考查的是整式加减运算的应用,根据图形正确表示出右上角、左下角阴影部分的周长是解题的关键.10.(3分)(2019秋•灌阳县期中)下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑨个图形中白色圆的个数是()A.86 B.98 C.104 D.106【分析】根据题目中的图形可以发现白色圆个数的变化规律,从而可以得到第⑨个图形中白色圆的个数.【答案】解:由图可知,第①个图形中白色圆的个数为3×2﹣4=2,第②个图形中白色圆的个数为4×3﹣4=8,第③个图形中白色圆的个数为5×4﹣4=16,第④个图形中白色圆的个数为6×5﹣4=26,则第⑨个图形中白色圆的个数是:11×10﹣4=110﹣4=106,故选:D.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色圆个数的变化规律,利用数形结合的思想解答.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019秋•沙坪坝区校级期中)单项式的系数是,多项式0.3xy﹣2x3y﹣5xy2+1是四次四项式.【分析】根据单项式和多项式的概念求解.【答案】解:单项式的系数是;多项式0.3xy﹣2x3y﹣5xy2+1是四次四项式.故答案为:;四,四.【点睛】本题考查了多项式和单项式的知识,几个单项式的和叫做多项式;数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.12.(3分)(2019秋•武冈市期中)把多项式﹣2x2+3x﹣4放入带“﹣”的括号里为﹣(2x2﹣3x+4 ).【分析】根据添括号法则解答即可.【答案】解:把多项式﹣2x2+3x﹣4放入带“﹣”的括号里为﹣(2x2﹣3x+4).故答案为:2x2﹣3x+4.【点睛】本题考查的是添括号法则.解题的关键是熟练掌握添括号法则.13.(3分)(2020春•香坊区校级期中)已知x2﹣3x+2=7,那么代数式﹣x2+3x+2的值是﹣3 .【分析】将﹣x2+3x+2变形为﹣(x2﹣3x)+2然后代入数值进行计算即可.【答案】解:∵x2﹣3x+2=7,∴x2﹣3x=5,∴﹣x2+3x+2=﹣(x2﹣3x)+2=﹣5+2=﹣3;故答案为:﹣3.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.(3分)(2019秋•杭锦后旗期中)某商品的进价为a元/件,在销售旺季,该商品售价较进价高50%,旺季后,又以7折(即原价的70%)的价格对该商品开展促销活动,这时一件该商品的售价为 1.05a元.【分析】根据现售价=进价×(1+提高的百分数)×折数列出算式,再进行计算即可.【答案】解:根据题意得:a×(1+50%)×0.7=1.05a(元).答:这时一件该商品的售价为1.05a元;故答案为:1.05a元.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.(3分)(2019秋•太和县期中)已知k为常数,当k= 2 时,多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式.【分析】根据多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式,可以求得k的值,本题得以解决.【答案】解:(a2﹣kab+2b2)+(﹣3a2+2ab﹣3b2)=a2﹣kab+2b2﹣3a2+2ab﹣3b2=﹣2a2﹣(k﹣2)ab﹣b2,∵多项式a2﹣kab+2b2与多项式﹣3a2+2ab﹣3b2相加合并为二次二项式,∴k﹣2=0,解得,k=2,故答案为:2.【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.16.(3分)(2019秋•海淀区校级期中)小明同学在做一道题:“已知两个多项式A,B,计算2A+B,误将“2A+B”看成“A+2B”,求得的结果为9x2+2x﹣6.已知A+B=2x2﹣4x+9,则2A+B的正确答案为﹣3x2﹣14x+33 .【分析】直接利用整式的加减运算法则得出B,A,进而求出答案.【答案】解:∵A+2B=9x2+2x﹣6,A+B=2x2﹣4x+9,∴2x2﹣4x+9+B=9x2+2x﹣6,∴B=9x2+2x﹣6﹣(2x2﹣4x+9)=7x2+6x﹣15,∴A=2x2﹣4x+9﹣(7x2+6x﹣15)=﹣5x2﹣10x+24,故2A+B=2(﹣5x2﹣10x+24)+7x2+6x﹣15=﹣10x2﹣20x+48+7x2+6x﹣15=﹣3x2﹣14x+33.故答案为:﹣3x2﹣14x+33.【点睛】此题主要考查了整式的加减运算,正确得出多项式B是解题关键.三.解答题(共7小题,满分52分)17.(4分)(2020春•南岗区校级期中)化简(1)2(2a﹣b)﹣(2b﹣3a).(2)5xy+y2﹣2(4xy﹣y2+1).【分析】(1)先去括号,再合并同类项即可得;(2)先去括号,再合并同类项即可得.【答案】解:(1)原式=4a﹣2b﹣2b+3a=7a﹣4b;(2)原式=5xy+y2﹣8xy+2y2﹣2=3y2﹣3xy﹣2.【点睛】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.18.(4分)(2019秋•金水区校级期中)已知a=2,b=﹣1,求2[a2b(a+1)]﹣3(a2b﹣2b)﹣6(b)的值时,马虎同学将a=2,b=﹣1错抄成a=2,b=1,可结果还是正确的,马虎同学比较纳闷,请你帮助他揭开其中的迷雾,写出你的说明过程.【分析】利用去括号法则、合并同类项法则把原式化简,代入计算得到答案.【答案】解:2[a2b(a+1)]﹣3(a2b﹣2b)﹣6(b)=3a2b﹣(a+1)﹣3a2b+6b﹣6b﹣4=3a2b﹣a﹣1﹣3a2b+6b﹣6b﹣4=﹣a﹣5,因为化简结果不含b,所以与b的取值无关.当a=2,b=﹣1,原式=﹣2﹣5=﹣7.【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.19.(8分)(2019秋•费县期中)先化简,再求值:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.(2)已知(x+1)2+|y﹣2|=0,求代数式4(x2﹣3xy﹣y2)﹣3(x2﹣7xy﹣2y2)的值.【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【答案】解:(1)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=50;(2)∵(x+1)2+|y﹣2|=0,∴x+1=0,y﹣2=0,解得:x=﹣1,y=2,原式=2x2﹣12xy﹣4y2﹣3x2+21xy+6y2=﹣x2+9xy+2y2,当x=﹣1,y=2时,原式=﹣1﹣18+8=﹣11.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2019秋•洪山区期中)已知A=2a2+3ab﹣2a﹣1,B=﹣a2ab.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.【分析】(1)先化简整式,再代入值即可求解;(2)代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0,可求出b的值,进而求解.【答案】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B因为A=2a2+3ab﹣2a﹣1,B=﹣a2ab,所以A+2B=2a2+3ab﹣2a﹣1+2(﹣a2ab)=2a2+3ab﹣2a﹣1﹣2a2+ab=4ab﹣2a当a=﹣1,b=﹣2时,原式=8+210;(2)因为4A﹣(3A﹣2B)=4ab﹣2a=a(4b﹣2)因为代数式的值与a无关,所以4b﹣2=0,解得b∵b4A+b3B=b3(bA+B)(A+B)(A+2B)(4ab﹣2a).答:b4A+b3B的值为.【点睛】本题考查了整式的加减,解决本题的关键是代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0.21.(8分)(2019秋•上蔡县期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是﹣(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用整体思想,把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2即可得到结果;(2)原式可化为3(x2﹣2y)﹣21,把x2﹣2y=4整体代入即可;(3)依据a﹣2b=3,2b﹣c=﹣5,c﹣d=10,即可得到a﹣c=﹣2,2b﹣d=5,整体代入进行计算即可.【答案】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题主要考查了整式的化简求值问题,整体代入法是解决代数式求值问题的常用方法.22.(10分)(2019秋•泉港区期中)为了庆祝元旦,学校准备举办一场“经典诵读”活动,某班准备网购一些经典诵读本和示读光盘,诵读本一套定价100元,示读光盘一张定价20元.元旦期间某网店开展促销活动,活动期间向客户提供两种优惠方案:方案A:买一套诵读本送一张示读光盘;方案B:诵读本和示读光盘都按定价的九折付款.现某班级要在该网店购买诵读本10套和示读光盘x张(x>10),解答下列三个问题:(1)若按方案A购买,共需付款20x+800 元(用含x的式子表示),若按方案B购买,共需付款18x+900 元(用含x的式子表示);(2)若需购买示读光盘15张(即x=15)时,请通过计算说明按哪种方案购买较为合算;(3)若需购买示读光盘15张(即x=15)时,你还能给出一种更为省钱的购买方法吗?若能,请写出你的购买方法和所需费用.【分析】(1)根据两种方案得出代数式即可;(2)把x=15代入解答即可;(3)综合利用两种方案计算,进行比较解答即可.【答案】解:(1)按方案A购买,需付款:10×100+20(x﹣10)=20x+800(元)按方案B购买,需付款:0.9(10×100+20x)=18x+900(元);故答案为:20x+800;18x+900;(2)把x=15分别代入:20x+800=20×15+800=1100(元),18x+900=18×15+900=1170(元).因为1100<1170,所以按方案A购买更合算;(3)先按方案A购买10套诵读本(送10张示读光盘),再按方案B购买(x﹣10)张示读光盘,共需费用:10×100+0.9×20(x﹣10)=18x+820,当x=15时,18×15+820=1090(元)∴用此方法购买更省钱.【点睛】此题考查列代数式及代数式求值问题,得到两种优惠方案付费的关系式是解决本题的关键.23.(10分)(2019秋•汉阳区期中)观察下列各式13=112×22;13+23=922×32;13+23+33=3632×42;13+23+33+43=10042×52.回答下面的问题:(1)猜想:13+23+33+…+(n﹣1)3+n3=n2×(n+1)2;(直接写出你的结果)(2)根据(1)中的结论,直接写出13+23+33+…+993+1003的值是25502500 ;(3)计算:513+523+…+993+1003的值.【分析】(1)根据题目中的式子,可以写出相应的猜想;(2)根据(1)中的结论,可以求得所求式子的值;(3)根据(1)中的结论可以求得所求式子的值.【答案】解:(1)13+23+33+…+(n﹣1)3+n3=(1+2+3+…+n)2n2×(n+1)2,故答案为:n2×(n+1)2;(2)13+23+33+…+993+10031002×(100+1)2=25502500,故答案为:25502500;(3)513+523+…+993+1003=(13+23+33+…+993+1003)﹣(13+23+33+…+493+503)1002×(100+1)2502×(50+1)2=25502500﹣1625625=23876875.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的特点,求出相应式子的值.。

2020年苏科版七年级数学上学期《第3章代数式》单元检测卷(含答案)

2020年苏科版七年级数学上学期《第3章代数式》单元检测卷(含答案)

《第3章代数式》单元测试卷一.选择题(共15小题)1.下列代数式书写规范的是()A.a×2B.2a C.(5÷3)a D.2a22.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元3.如果m﹣n=5,那么﹣3m+3n﹣7的值是()A.﹣22B.﹣8C.8D.﹣224.下列各组单项式中,是同类项的是()A.与a2b B.3x2y与3xy2C.a与1D.2bc与2abc5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.去括号正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x+7)=2x﹣77.填在如图各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、958.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B =AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A.6B.5C.4D.39.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个10.下列式子:x2+1,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.311.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2y3B.2xy3C.﹣2xy2D.3x212.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6B.5C.4D.313.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣114.下面的说法错误的个数有()①单项式﹣πmn的次数是3次;②﹣a表示负数;③1是单项式;④x++3是多项式.A.1B.2C.3D.415.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2B.x3﹣3xy2C.x3﹣6x2y+3xy2D.x3﹣6x2y﹣3x2y二.填空题(共6小题)16.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.17.如图,将长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.用含a,b,x的代数式表示纸片剩余部分的面积为.18.若a、b互为相反数,c、d互为倒数,则2(a+b)﹣3cd=.19.和统称为整式.20.单项式﹣的系数是.21.多项式2x3﹣3x4+2x﹣1有项,其中次数最高的项是.三.解答题(共3小题)22.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.23.为了加强公民的节水意识,合理利用水资源,我市采用价格调控的手段达到节水的目的,我市自来水收费的价目表如下表(注:水费按月份结算,m3表示立方米):价目表每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算请根据如表的内容解答下列问题:(1)填空:若该户居民2月份用水4m3,则应收水费元;(2)若该户居民3月份用水am3(其中6m3<a<10m3),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4,5两个月共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5两个月共交水费多少元?(用含x的代数式表示,并化简)24.已知多项式﹣5x2a+1y2﹣x3y3+x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.参考答案与试题解析一.选择题(共15小题)1.下列代数式书写规范的是()A.a×2B.2a C.(5÷3)a D.2a2【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是2a,B正确的书写格式是a,C正确的书写格式是a,D正确.故选:D.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元【分析】直接利用2月份比1月份减少了10%,表示出2月份产值.【解答】解:∵1月份产值x亿元,2月份的产值比1月份减少了10%,∴2月份产值达到(1﹣10%)x亿元.故选:A.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.3.如果m﹣n=5,那么﹣3m+3n﹣7的值是()A.﹣22B.﹣8C.8D.﹣22【分析】把(m﹣n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m﹣n=5,∴﹣3m+3n﹣7=﹣3(m﹣n)﹣7,=﹣3×5﹣7,=﹣15﹣7,=﹣22.故选:D.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.4.下列各组单项式中,是同类项的是()A.与a2b B.3x2y与3xy2C.a与1D.2bc与2abc【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】解:A、a2b与a2b是同类项;B、x2y与xy2不是同类项;C、a与1不是同类项;D、bc与abc不是同类项.故选:A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.【点评】此题主要考查了合并同类项,正确掌握运算法则是解题关键.6.去括号正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x+7)=2x﹣7【分析】依据去括号法则判断即可.【解答】解:A、﹣(3x+2)=﹣3x﹣2,故A错误;B、﹣(﹣2x﹣7)=2x+7,故B错误;C、﹣(3x﹣2)=﹣3x+2,故C错误;D、﹣(﹣2x+7)=2x﹣7,故D正确.故选:D.【点评】本题主要考查的是去括号,掌握去括号法则是解题的关键.7.填在如图各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、95【分析】分析前三个正方形,发现“右上的数=左上的数+3,左下的数=左上的数+4,右下的数=右上的数×左下的数+1”,依此即可得出a、b、c的值.【解答】解:分析正方形中的四个数:∵第一个正方形中0+3=3,0+4=4,3×4+1=13;第二个正方形中2+3=5,2+4=6,5×6+1=31;第三个正方形中4+3=7,4+4=8,7×8+1=57.∴c=6+3=9,a=6+4=10,b=9×10+1=91.故选:A.【点评】本题考查了规律型中的数字的变换类,解题的关键是分析正方形中四个数找出它们之间的关系“右上的数=左上的数+3,左下的数=左上的数+4,右下的数=右上的数×左下的数+1”.本题属于基础题,难度不大,解决该题型题目时,根据给定的正方形中的4个数,找出它们之间的关系是关键.8.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B =AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A .6B .5C .4D .3【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1, ∴S △A 1BB 1=2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7; 同理可证S △A 2B 2C 2=7S △A 1B 1C 1=49, 第三次操作后的面积为7×49=343, 第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2016,最少经过4次操作, 故选:C .【点评】本题考查了图形的变化规律,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可. 9.下列各式﹣mn ,m ,8,,x 2+2x +6,,,中,整式有( )A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.10.下列式子:x2+1,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.3【分析】根据整式的定义进行选择即可.【解答】解:整式有x2+1,,﹣5x,0,共4个,故选:C.【点评】本题考查了整式的定义,掌握整式的定义是解题的关键.11.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2y3B.2xy3C.﹣2xy2D.3x2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、2y3系数是2,次数是3,正确;B、2xy3系数是2,次数是4,错误;C、﹣2xy2系数是﹣2,次数是,3,错误;D、3x2系数是3,次数是2,错误.故选:A.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.12.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6B.5C.4D.3【分析】根据单项式的概念判断即可.【解答】解:x2,﹣m,0是单项式,故选:D.【点评】本题考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.13.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:A、﹣xy的系数是﹣1,正确,不合题意;B、﹣c是六次单项式,故选项错误,符合题意;C、2x2﹣3xy﹣1是二次三项式,正确,不合题意;D、把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1,正确,不合题意;故选:B.【点评】此题考查了多项式的次数和项:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数,组成多项式的每个单项式叫做多项式的项.14.下面的说法错误的个数有()①单项式﹣πmn的次数是3次;②﹣a表示负数;③1是单项式;④x++3是多项式.A.1B.2C.3D.4【分析】分别根据单项式的次数,正负数的定义,单项式的定义和多项式的定义进行判断即可.【解答】解:①单项式的次数为m和n的指数之和,故为2次的,所以不正确;②当a为0时,则﹣a不是负数,所以不正确;③单个的数或字母也是单项式,所以1是单项式正确;④多项式中每个项都是单项式,而不是单项式,所以不正确;所以错误的有3个,故选:C.【点评】本题主要考查单项式和多项式的有关概念,掌握单项式的次数和多项式的定义是解题的关键.15.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2B.x3﹣3xy2C.x3﹣6x2y+3xy2D.x3﹣6x2y﹣3x2y【分析】根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.【解答】解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选:C.【点评】本题考查了整式的加减的应用,主要考查学生的计算能力.二.填空题(共6小题)16.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.17.如图,将长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.用含a,b,x的代数式表示纸片剩余部分的面积为ab﹣4x2.【分析】根据题意和图形可以用相应的代数式表示出纸片剩余部分的面积.【解答】解:由图可得,纸片剩余部分的面积为:ab﹣4x2,故答案为:ab﹣4x2.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.18.若a、b互为相反数,c、d互为倒数,则2(a+b)﹣3cd=﹣3.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,则原式=0﹣3=﹣3.故答案为:﹣3.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.19.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.20.单项式﹣的系数是﹣.【分析】根据单项式系数的概念求解.【解答】解:单项式﹣的系数为﹣.故答案为:﹣.【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.21.多项式2x3﹣3x4+2x﹣1有4项,其中次数最高的项是﹣3x4.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,进而得出答案.【解答】解:多项式2x3﹣3x4+2x﹣1一共有4项,最高次项是﹣3x4.故答案为:4,﹣3x4.【点评】本题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.三.解答题(共3小题)22.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.23.为了加强公民的节水意识,合理利用水资源,我市采用价格调控的手段达到节水的目的,我市自来水收费的价目表如下表(注:水费按月份结算,m3表示立方米):价目表每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算请根据如表的内容解答下列问题:(1)填空:若该户居民2月份用水4m3,则应收水费8元;(2)若该户居民3月份用水am3(其中6m3<a<10m3),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4,5两个月共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5两个月共交水费多少元?(用含x的代数式表示,并化简)【分析】(1)根据表格可以求得该户居民2月份应缴纳的水费;(2)根据表格可以求得该户居民3月份用水am3(其中6m3<a<10m3)应缴纳的水费;(3)根据题意分三种情况,可以求得该户居民4,5两个月共交的水费.【解答】解:(1)由表格可得,该户居民2月份用水4m3,则应收水费为:2×4=8(元),故答案为:8;(2)由题意可得,该户居民3月份用水am3(其中6m3<a<10m3),则应收水费为:2×6+(a﹣6)×4=12+4a﹣24=(4a﹣12)元,即该户居民3月份用水am3(其中6m3<a<10m3),则应收水费为(4a﹣12)元;(3)由题意可得,当6<x<7.5时,该户居民4,5两个月共交水费为:[2×6+(x﹣6)×4]+[2×6+(15﹣x﹣6)×4]=36(元),当5<x≤6时,该户居民4,5两个月共交水费为:2x+[2×6+(15﹣x﹣6)×4]=(48﹣2x)元,当0<x≤5时,该户居民4,5两个月共交水费为:2x+[2×6+4×4+(15﹣x﹣10)×8]=(68﹣6x)元.【点评】本题考查列代数式,解题的关键是明确题意,找出所求问题需要的条件,运用分类讨论的数学思想解答.24.已知多项式﹣5x2a+1y2﹣x3y3+x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【分析】(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.【解答】解:(1)﹣5x2a+1y2的系数是﹣5,次数是2a+3;﹣x3y3的系数是:,次数是6;x4y的系数是:,次数是5;(2)由多项式的次数是7,可知﹣5x2a+1y2的次数是7,即2a+3=7,解得:a =2.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.1、学而不思则罔,思而不学则殆。

2020-2021学年苏科 版七年级上册数学《第3章 代数式》单元测试卷(有答案)

2020-2021学年苏科 版七年级上册数学《第3章 代数式》单元测试卷(有答案)

2020-2021学年苏科新版七年级上册数学《第3章代数式》单元测试卷一.选择题1.下列用语言叙述式子:﹣4表示的数量关系,表述不正确的是()A.比x的倒数小4的数B.比x的倒数大4的数C.x的倒数与4的差D.1除以x的商与4的差2.单项式﹣的系数是()A.2B.﹣1C.﹣3D.﹣3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.下列整式中,去括号后得﹣a﹣b+c的是()A.a﹣(b+c)B.﹣a﹣(b﹣c)C.﹣a﹣(b+c)D.﹣(a﹣b)+c 5.若a2+3a=1,则代数式2a2+6a﹣2的值为()A.0B.1C.2D.36.表示“a与b两数和的平方”的代数式是()A.a2+b2B.a+b2C.(a+b)2D.2(a+b)7.下列变形正确的是()A.3a﹣2a=1B.﹣(a+2)=a﹣2C.3a2b﹣2ab2=a2b D.﹣a+1=﹣(a﹣1)8.点A1,A2,A3,…,A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;…,依照上述规律,点A2020,A2021所表示的数分别为()A.2020,﹣2021B.﹣2020,2021C.1010,﹣1011D.1010,﹣1010 9.在式子,x+y,2020,﹣a,﹣3x2y,中,整式的个数()A.5个B.4个C.3个D.2个10.观察图中正方形四个顶点所标数的规律,可知2020应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左下角D.第505个正方形的右下角二.填空题11.写出一个次数为3,且含有字母a、b的整式:.12.若﹣7x m y4与2x9y n的和是单项式,则n+m=.13.去括号:a﹣(﹣2b+c)=.14.2x﹣y=1.则(x2+2x)﹣(x2+y﹣1)=.15.整数n=时,多项式2x1+n﹣3x4﹣|n|+x是三次三项代数式.16.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).17.把多项式x3﹣7x2y+y3﹣4xy2按x的升幂排列为.18.如果x=﹣3时,代数式ax5+bx3+cx的值是6,那么x=3时,代数式ax5+bx3+cx的值是.19.小刚做了一道数学题:已知两个多项式A和B,其中B=3x﹣2y,求A+B.他误将“A+B”看成“A﹣B”,结果求出的答案是x﹣y,那么A+B的结果应该是.20.某种商品原价是m元,第一次降价打“九折”,第二次降价每件又减20元,第二次降价后的售价是元.三.解答题21.化简:8a2+4﹣2a2﹣5a﹣a2﹣5+7a.22.如图,在数轴上A点表示数a,B点表示数b,C点表示数c.且a,b,c满足(c﹣7)2+|a+10|+|b﹣1|=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与表示的数的点重合;(3)点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点B向右运动(点M、点N同时出发),经过几秒,点M、点N分别到点B的距离相等?23.某公园准备修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽为2米.(1)用含a、b的代数式表示修建的十字路的面积.(2)当a=40,b=30时,求修建的十字路的面积.24.已知单项式x3y a与单项式﹣5x b y是同类项,c是多项式2mn﹣5m﹣n﹣3的次数.(1)写出a,b,c的值;(2)若关于x的二次三项式ax2+bx+c的值是3,求代数式2019﹣2x2﹣6x的值.25.如图,一个大长方形中剪下两个大小相同的小长方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示阴影部分的周长;(2)用含x,y的代数式表示阴影部分的面积;(3)当x=2,y=2.5时,计算阴影部分的面积.26.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.27.已知:代数式A=2x2﹣2x﹣1,代数式B=﹣x2+xy+1,代数式M=4A﹣(3A﹣2B)(1)当(x+1)2+|y﹣2|=0时,求代数式M的值;(2)若代数式M的值与x的取值无关,求y的值;(3)当代数式M的值等于5时,求整数x、y的值.参考答案与试题解析一.选择题1.解:A选项表示的是﹣4;B选项表示的是+4;C选项表示的是﹣4;D选项表示﹣4.故选:B.2.解:单项式﹣的系数是:﹣.故选:D.3.解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.解:A、a﹣(b+c)=a﹣b﹣c,不合题意;B、﹣a﹣(b﹣c)=﹣a﹣b+c,符合题意;C、﹣a﹣(b+c)=﹣a﹣b﹣c,不合题意;D、﹣(a﹣b)+c=﹣a+b+c,不合题意;故选:B.5.解:∵a2+3a=1,∴2a2+6a﹣2=2(a2+3a)﹣2=2﹣2=0.故选:A.6.解:表示“a与b两数和的平方”的代数式是(a+b)2.故选:C.7.解:A、原式=﹣a,故本选项变形错误;B、原式=﹣a﹣2,故本选项变形错误;C、不是同类项,不能合并,故本选项变形错误;D、原式=﹣(a﹣1),故本选项变形正确.故选:D.8.解:如图,根据题意可得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,由此可知,当n为奇数时,;当n为偶数时,.∴A2020=,A2021=﹣=﹣1011.故选:C.9.解:在式子,x+y,0,﹣a,﹣3x2y,中,整式的个数是:x+y,2020,﹣a,﹣3x2y,共5个.故选:A.10.解:因为2020÷4=505,而第505个正方形是从右下角开始计数的,所以2020应标在左下角.故选:C.二.填空题11.解:由题意可得:a2b(答案不唯一).故答案为:a2b(答案不唯一).12.解﹣7x m y4与2x9y n的和是单项式,∴﹣7x m y4与2x9y n是同类项,∴m=9,n=4,∴n+m=9+4=13,故答案为:13.13.解:a﹣(﹣2b+c)=a+2b﹣c.故答案为:a+2b﹣c.14.解:当2x﹣y=1时,(x2+2x)﹣(x2+y﹣1),=x2+2x﹣x2﹣y+1,=2x﹣y+1,=1+1,=2,故答案为:2.15.解:∵2x1+n﹣3x4﹣|n|+x为三次三项式,∴1+n=3或者4﹣|n|=3,解的n=2或n=±1,当n=2时,原多项式是2x3﹣3x2+x满足;当n=1时,原多项式是2x2﹣3x3+x满足;当n=﹣1时,原多项式是2x0﹣3x3+x,当x=0时无意义.故答案:2或1;16.解:∵第1个图形有2个棋子,第2个图形有2+3×1=5个棋子,第3个图形有2+3×2=8个棋子,∴第n个图形需棋子:2+3(n﹣1)=(3n﹣1)枚.故答案为:(3n﹣1).17.解:多项式x3﹣7x2y+y3﹣4xy2的各项为x3,﹣7x2y,y3,﹣4xy2,按x的升幂排列为:y3﹣4xy2﹣7x2y+x3.故答案为:y3﹣4xy2﹣7x2y+x3.18.解:∵当x=﹣3时,代数式ax5+bx3+cx的值是6,∴﹣243a﹣27b﹣3c=6,即243a+27b+3c=﹣6,∴当x=3时,ax5+bx3+cx=243a+27b+3c=﹣6;故答案为:﹣6.19.解:根据题意得:A﹣(3x﹣2y)=x﹣y,即A=x﹣y+3x﹣2y=4x﹣3y,则A+B=4x﹣3y+3x﹣2y=7x﹣5y.故答案为:7x﹣5y.20.解:根据题意得:第一次降价后的售价是0.9m,第二次降价后的售价是(0.9m﹣20)元.故答案为:(0.9m﹣20).三.解答题21.解:原式=(8﹣2﹣1)a2+(﹣5+7)a+(4﹣5)=5a2+2a﹣1.22.解:(1)∵(c﹣7)2+|a+10|+|b﹣1|=0,∴c﹣7=0,a+10=0,b﹣1=0,解得,a=﹣10,b=1,c=7,故答案为:﹣10;1;7;(2)∵a=﹣10,c=7,,∴数轴沿着表示的数对折,∴,∴点B与表示﹣4的数重合,故答案为:﹣4;(3)设点M,N运动的时间为t秒,则由题意得:点M表示的数为﹣10+3t,点N表示的数为1﹣2t,∴当点M、点N分别到点B距离相等时,|﹣10+3t﹣1|=1+2t﹣1,解得,t=11或t=.所以经过11秒或秒时,点M、点N分别到点B距离相等.23.解:(1)根据题意得:(2a+2b﹣4)米2;(2)当a=40,b=30时,原式=2×40+2×30﹣4=136(平方米),答:修建十字路的面积为136平方米.24.解:(1)因为单项式x3y a与单项式﹣5x b y是同类项,所以a=1,b=3,因为c是多项式2mn﹣5m﹣n﹣3的次数,所以c=2;(2)依题意得:x2+3x+2=3,所以x2+3x=1,所以2019﹣2x2﹣6x=2019﹣2(x2+3x)=2019﹣2×1=2017.25.解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.26.解:∵多项式x|m|﹣(m+2)x+12是关于x的二次二项式,∴|m|=2,且m+2=0,∴m=﹣2.即m的值是﹣2.27.解:先化简,依题意得:M=4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,将A、B分别代入得:A+2B=2x2﹣2x﹣1+2(﹣x2+xy+1)=2x2﹣2x﹣1﹣2x2+2xy+2=﹣2x+2xy+1(1)∵(x+1)2+|y﹣2|=0∴x+1=0,y﹣2=0,得x=﹣1,y=2将x=﹣1,y=2代入原式,则M=﹣2×(﹣1)+2×(﹣1)×2+1=2﹣4+1=﹣1(2)∵M=﹣2x+2xy+1=﹣2x(1﹣y)+1的值与x无关,∴1﹣y=0∴y=1(3)当代数式M=5时,即﹣2x+2xy+1=5整理得﹣2x+2xy﹣4=0,∴x﹣xy+2=0 即x(1﹣y)=﹣2∵x,y为整数∴或或或∴或或或。

2020-2021学年苏科版七年级数学上册第3章《代数式》单元测试题含答案

2020-2021学年苏科版七年级数学上册第3章《代数式》单元测试题含答案

七年级上册第3章《代数式》单元测试卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式符合书写要求的是()A.B.n•2C.a÷b D.2πr22.下列式子中a,﹣xy2,,0,是单项式的有()个.A.2个B.3个C.4个D.5个3.下列运算结果是a2的是()A.a+a B.a+2C.a•2D.a•a4.下列合并同类项正确的是()A.a3+a2=a5B.3x﹣2x=1C.3x2+2x2=6x2D.x2y+yx2=2x2y5.对于3x2y﹣2x+3y﹣xy﹣1,小糊涂同学说了四句话,其中不正确的是()A.是一个整式B.由5个单项式组成C.次数是2D.常数项是﹣16.﹣(a2﹣b3+c4)去括号后为()A.﹣a2﹣b3+c4B.﹣a2+b3+c4C.﹣a2﹣b3﹣c4D.﹣a2+b3﹣c4 7.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.68.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式9.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较10.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1B.3C.6D.8二.填空题(共6小题,满分24分,每小题4分)11.在x+y,0,2>1,2a﹣b,2x+1=0中,代数式有个.12.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.13.单项式2x m y3与﹣3xy3n是同类项,则m+n=.14.去括号:﹣(a+b﹣c)=.15.一个多项式A与x2﹣2x+1的和是2x﹣7,则这个多项式A为.16.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子把.三.解答题(共8小题,满分66分)17.(6分)请你用实例解释下列代数式的意义.(1)﹣4+3;(2)3a;(3)()3.18.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)19.(6分)先化简,再求值:5xy+2(2xy﹣3x2)﹣(6xy﹣7x2),其中x=﹣1,y=﹣2.20.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为300米,宽为100米,圆形花坛的半径为20米,求广场空地的面积(π取3.14).21.(8分)已知代数式2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与字母x的取值无关,且A=4a2﹣ab+4b2,B=3a2﹣ab+3b2.(1)求a,b的值;(2)先化简代数式:3A﹣[2(3A﹣2B)﹣3(4A﹣3B)],再求该代数式的值.22.(8分)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.23.(8分)某超市出售茶壶和茶杯,茶壶每只定价48元,茶杯每只定价6元,该超市制定了两种优惠方案:①买一只茶壶送一只茶杯;②按总价的90%付款.某顾客需买茶壶3只,茶杯x(x>3)只.(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)(3)讨论买15只茶杯时,按哪种方案购买较为合算?24.(10分)阅读下列材料:①=1﹣,=﹣,=…②③(1)写出①组中的第5个等式:,第n个等式:;(2)写出②组的第n个等式:;(3)利用由①②③组中你发现的等式规律计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、中的带分数要写成假分数,故不符合书写要求;B、中的2应写在字母的前面且省略乘号,故不符合书写要求;C、应写成分数的形式,故不符合书写要求;D、符合书写要求.故选:D.2.解:式子中a,﹣xy2,,0,是单项式的有a,﹣xy2,0,一共3个.故选:B.3.解:a+a=2a,因此选项A不符合题意;a+2=a+2,因此选项B不符合题意;a•2=2a,因此选项C不符合题意;a•a=a2,因此选项D符合题意;故选:D.4.解:A、本选项不能合并,错误;B、3x﹣2x=x,本选项错误;C、3x2+2x2=5x2,本选项错误;D、x2y+yx2=2x2y,本选项正确.故选:D.5.解:式子3x2y﹣2x+3y﹣xy﹣1是一个整式,由五个单项式组成,其次数为3,常数项是﹣1.所以A、B、D正确,C错误.故选:C.6.解:原式=a2+b3﹣c4,故选:D.7.解:∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选:D.8.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.9.解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.10.解:把x=2代入得:×2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:×(﹣4)=﹣2,把x=﹣2代入得:×(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:×(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:×(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:代数式有x+y,0,2a﹣b,故答案为:312.解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.13.解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.14.解:原式=﹣a﹣b+c,故答案为:﹣a﹣b+c.15.解:2x﹣7﹣(x2﹣2x+1)=2x﹣7﹣x2+2x﹣1=﹣x2+4x﹣8.故答案为:﹣x2+4x﹣8.16.解:设n张桌子需配椅子a n(n为正整数)把.观察图形,可知:a1=6=2×1+4,a2=8=2×2+4,a3=10=2×3+4,∴a n=2n+4,∴a5=2×5+4=14.故答案为:14.三.解答题(共8小题,满分66分)17.解:(1)﹣4+3表示气温从﹣4℃,上升3℃后的温度;(2)3a表示一辆车以akm/h的速度行驶3小时的路程;(3)()3表示棱长为的正方体的体积.18.解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.19.解:原式=5xy+4xy﹣6x2﹣6xy+7x2=x2+3xy当x=﹣1,y=﹣2时,原式=(﹣1)2+3×(﹣1)(﹣2)=1+6=720.解:(1)矩形的面积为ab,四分之一圆形的花坛的面积为πr2,则广场空地的面积为ab﹣4×πr2=ab﹣πr2,答:广场空地的面积为(ab﹣πr2)米2;(2)由题意得:a=300米,b=100米,r=20米,代入(1)的式子得:300×100﹣π×202=30000﹣400π=30000﹣400×3.14=28744(米2),答:广场空地的面积为28744米2.21.解:(1)原式=2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由题意可知:,解得:;(2)原式=3A﹣[6A﹣4B﹣12A+9B]=3A﹣(﹣6A+5B)=3A+6A﹣5B=9A﹣5B,又∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴原式=9A﹣5B=9(4a2﹣ab+4b2)﹣5(3a2﹣ab+3b2)=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2,当a=﹣3,b=2时,原式═21×(﹣3)2﹣4×(﹣3)×2+21×22=189+24+84=297.22.解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.23.解:(1)该客户按方案①购买,需付款:48×3+6(x﹣3)=6x+126答:该客户按方案①购买,需付款(6x+126)元.(2)该客户按方案②购买,需付款:(48×3+6x)×90%=5.4x+129.6答:该客户按方案②购买,需付款(5.4x+129.6)元.(3)当x=15时,6x+126=6×15+126=216(元)5.4x+129.6=5.4×15+129.6=210.6(元)因为216>210.6所以该客户按方案②购买较合算.答:该客户按方案②购买较合算.24.解:(1)①组中的第5个等式为:=﹣,第n个等式为:=﹣;故答案为:=﹣,=﹣;(2)②组的第n个等式为:=(﹣);故答案为:=(﹣);(3)原式=(1﹣)+(﹣)+…+(﹣)=×(1﹣)=.1、三人行,必有我师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年上学期七年级数学第三章《代数式》检测卷
(总分:100分 时间:60分钟)
一、选择题(每小题2分,共20分)
1.下列各式中,是二次单项式的为( )
A. 21x +
B. 213xy
C. 2xy
D. 21()2
- 2.下列各式符合代数式书写规范的是( )
A. a b
B. 3a ⨯
C. 21m -
D. 215
m 3.下列关于多项式22521ab a bc --的说法中,正确的是( )
A.它是三次三项式
B.它是四次两项式
C.它的最高次项是22a bc -
D.它的常数项是1
4.一个整式减去a b -后所得的结果是a b --,则这个整式是( )
A. 2a -
B. 2b -
C. 2a
D. 2b
5.若42m a b -与225n a b +是同类项,则n
m 的值是( ) A. 2 B. 0 C. 4 D. 1
6.下列运算中,结果正确的是( )
A.
523x y xy -= B. 223367x y xy x y += C. 2532(53)a b c a b c -+=-+ D. 3(73)373y x z y x z --=-+
7.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )
A.
(10%)(15%)a a -+万元 B. (190%)(185%)a -+万元 C. (110%)(115%)a -+万元 D. (110%15%)a -+万元
8.若2350x y --=,则2626y x --的值为( )
A. 4
B.-4
C. 16
D.-16
9.如果m 是三次多项式,n 是三次多项式,那么m n -一定是( )
A.六次多项式
B.次数不高于三的整式
C.三次多项式
D.次数不低于三的整式
10.当12a <<时,代数式21a a -+-的值是( )
A.-1
B. 1
C. 3
D.-3
二、填空题(每小题3分,共24分)
11.单项式23ab -的系数是 ,次数是 .
12.多项式3225321x x y xy -++的次数是 .
13.多项式 与22m m +-的和是22m m -.
14.若a 与b 互为相反数,c 与d 互为倒数,则3a b cd ++= .
15.张大伯从报社以每份0.5元的价格购进了m 份报纸,以每份0. 6元的价格售出了n 份报纸,剩余的以
每份0. 3元的价格退回报社,则张大伯卖报收入 元.
16.若关于,a b 的多项式22223(2)(2)a ab b a mab b ---++中不含有ab 项,则m = .
17.若1m n -=-,则2()22m n m n --+= .
18.广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有(1)n n > 盆花,设这
个花坛边上的花盆的总数为S ,请观察图中的规律,按此规律推断,S 与n 的关系是 .
三、解答题(本大题共6小题,共56分)
19.(8分)合并同类项:
(1)
22226547a b ab ab a b +--; (2) 222(3)3(2)a a a a ---.
20. (6分)先化简,再求值: 2222223[5(43)2]x y xy xy x y ---+,其中3,2x y =-=.
21. (8分)小刚做了一道数学题:两个多项式
,A B ,其中B 为2456x x --,试求A B +.他误 将“A B +”看作“A B -”
,结果求得的答案是210712x x -+,由此你能求出A B +的 正确答案吗?试一试!
22.(8分)学校植物园沿路护栏纹饰部分被设计成若干个相同的菱形图案,每增加一个菱形
图案,纹饰长度就增加d cm ,如图所示.已知每个菱形的横向对角线长为30 cm.
(1)若该纹饰要231个菱形图案,试用含d 的代数式表示纹饰的长度L .当d =26时,求该
纹饰的长度;
(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?
23. (8分)若0a b ->,则a
b >;若0a b -=,则a b =;若0a b -<,则a b <.这是利用“作差法”
比较两个数或两个代数式值的大小.已知
27154()42A m m =--,27()3B m m =-+,请你运用前面介绍的方法比较代数式
A 与
B 的大小.
24. (10分)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表).
(1)若张红家5月份用水量为15吨,则该月需缴纳水费 元;
(2)若张红家6月份缴纳水费44元,则该月用水量为 吨;
(3)若张红家7月份用水量为a 吨(a >30),则该月需缴纳水费多少元?(用含a 的代数式表示)
25. (10分)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m 厘米的大正方形,2块是边长都为n 厘米的小正方形,5块是长为m 厘米,宽为n 厘米的一模一样的小长方形,且m >n ,设图中所有裁剪线(虚线部分)长之和为L 厘米.
(1)L=____________(试用m ,n 的代数式表示)
(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.
参考答案
一、选择题
1. C
2. A
3. C
4. B
5. C
6. D
7. C
8. D
9. B 10. B
二、填空题
11. 3-,3 12. 4 13. 32m -+
14. 3 15.
0.30.2n m - 16. 6-
17. 3 18.66S n =- 三、解答题
19.解: (1)原式22a
b ab =-+; (2)原式2222636a
a a a a =--+=-. 20. 解:原式2223x y xy =
--. 当3,2x y =-=时,原式45=.
21. 解:∵
210712A B x x -=-+,2456B x x =--, ∴
A 2356x x =-++, ∴222(356)(456)A
B x x x x x +=-+++--=.
22. 解:(1)当d =26时,30230266010L =+⨯=.
(2)当d =20,6010L =时,需要300个这样的菱形图案
23. 解:∵
27154()42A m m =--,27()3B m m =-+, ∴
A B -221m =--. ∴
A B -2210m =--<, ∴A B <.
24. 解:(1)24 (2)25 (3)该月需缴纳水费
(4.888)a -元 25. (1)L=6m+6n ,故答案为:6m+6n ;
(2)依题意得,2m 2+2n 2=58,mn=10,
∴m 2+n 2=29,
∵(m+n )2=m 2+2mn+n 2,
∴(m+n )2=29+20=49,
∵m+n >0,
∴m+n=7,
∴图中所有裁剪线(虚线部分)长之和为42cm .。

相关文档
最新文档