电场、磁场及复合场大题 高考复习
专题18 电场磁场和重力场复合场模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题18.电场磁场和重力场复合场模型1.(2022山东聊城重点高中质检)如图所示,空间存在水平向右的匀强电场和垂直于纸面向里的匀强磁场,一质量为m 、带电量大小为q 的小球,以初速度v 0沿与电场方向成45°夹角射入场区,能沿直线运动。
经过时间t ,小球到达C 点(图中没标出),电场方向突然变为竖直向上,电场强度大小不变。
已知重力加速度为g ,则()A.小球一定带负电B.时间t 内小球做匀速直线运动C.匀强磁场的磁感应强度为2mgqv D.电场方向突然变为竖直向上,则小球做匀加速直线运动【参考答案】BC 【名师解析】假设小球做变速直线运动,小球所受重力与电场力不变,而洛伦兹力随速度的变化而变化,则小球将不可能沿直线运动,故假设不成立,所以小球一定受力平衡做匀速直线运动,故B 正确;小球做匀速直线运动,根据平衡条件可以判断,小球所受合力方向必然与速度方向在一条直线上,故电场力水平向右,洛伦兹力垂直直线斜向左上方,故小球一定带正电,故A 错误;根据平衡条件,得0cos 45mg qv B =︒解得02mgB qv =,故C 正确;根据平衡条件可知tan 45mg qE =︒电场方向突然变为竖直向上,则电场力竖直向上,与重力恰好平衡,洛伦兹力提供向心力,小球将做匀速圆周运动,故D 错误。
二、计算题1.(2022山东四县区质检)如图所示,在xOy 坐标系内,圆心角为120°内壁光滑、绝缘的圆管ab ,圆心位于原点O 处,Oa 连线与x 轴重合,bc 段为沿b 点切线延伸的直管,c 点恰在x 轴上。
坐标系内第三、四象限内有水平向左的匀强电场,场强为E 1(未知);在第二象限内有竖直向上的匀强电场,场强为E 2(未知)。
在第二、三象限内有垂直于纸面向外的匀强磁场,磁感应强度大小均为B 。
现将一质量为m 、带电量为+q 的小球从圆管的a 端无初速度释放,小球到达圆管的b 端后沿直线运动到x 轴,在bc 段运动时与管壁恰无作用力,从圆管c 端飞出后在第二象限内恰好做匀速圆周运动。
高考物理二轮总复习课后习题专题3 电场与磁场 专题分层突破练9 带电粒子在复合场中的运动 (4)

专题分层突破练9 带电粒子在复合场中的运动A组1.(多选)如图所示为一磁流体发电机的原理示意图,上、下两块金属板M、N水平放置且浸没在海水里,金属板面积均为S=1×103m2,板间距离d=100 m,海水的电阻率ρ=0.25 Ω·m。
在金属板之间加一匀强磁场,磁感应强度B=0.1 T,方向由南向北,海水从东向西以速度v=5 m/s流过两金属板之间,将在两板之间形成电势差。
下列说法正确的是( )A.达到稳定状态时,金属板M的电势较高B.由金属板和流动海水所构成的电源的电动势E=25 V,内阻r=0.025 ΩC.若用此发电装置给一电阻为20 Ω的航标灯供电,则在8 h内航标灯所消耗的电能约为3.6×106JD.若磁流体发电机对外供电的电流恒为I,则Δt时间内磁流体发电机内部有电荷量为IΔt的正、负离子偏转到极板2.(重庆八中模拟)质谱仪可用于分析同位素,其结构示意图如图所示。
一群质量数分别为40和46的正二价钙离子经电场加速后(初速度忽略不计),接着进入匀强磁场中,最后打在底片上,实际加速电压U通常不是恒定值,而是有一定范围,若加速电压取值范围是(U-ΔU,U+ΔU),两种离子打在底片上的区域恰好不重叠,不计离子的重力和相互作用,则ΔUU的值约为( )A.0.07B.0.10C.0.14D.0.173.在第一象限(含坐标轴)内有垂直xOy平面周期性变化的均匀磁场,规定垂直xOy平面向里的磁场方向为正方向,磁场变化规律如图所示,磁感应强度的大小为B0,变化周期为T0。
某一带正电的粒子质量为m、电荷量为q,在t=0时从O点沿x轴正方向射入磁场中并只在第一象限内运动,若要求粒子在t=T0时距 B.2πmqT0C.3πm2qT0D.5πm3qT04.(福建龙岩一模)如图所示,在xOy平面(纸面)内,x>0区域存在方向垂直纸面向外的匀强磁场,第三象限存在方向沿、电荷量为q的带正电粒子(不计重力),以大小为v、方向与y轴正方向夹角θ=60°的速度沿纸面从坐标为(0,√3L)的P1点进入磁场中,然后从坐标为(0,-√3L)的P2点进入电场区域,最后从x轴上的P3点(图中未画出)垂直于x轴射出电场。
带电粒子在组合场、复合场、叠加场、交变电磁场中的运动(原卷版)25年高考物理一轮复习考点(新高考)

带电粒子在组合场、复合场、叠加场、交变电磁场中的运动60分钟带电粒子在组合场、复合场、叠加场、交变电磁场中A.从A点到Q点的过程小球的机械能守恒C.小球在第IV象限运动的时间为2.(2024·黑龙江大庆·模拟预测)如图所示,两平行极板水平放置,两板间有垂直纸面向里的匀强磁场和竖A.两板间电场强度的大小为B vB.乙粒子偏离中轴线的最远距离为mv qBC.乙粒子的运动轨迹在A处对应的曲率圆半径为D.乙粒子从进入板间运动至A位置的过程中,在水平方向上做匀速运动A.OAB轨迹为半圆B.磁场垂直于纸面向里C.小球运动至最低点A.从上面俯视小球沿顺时针方向运转B.球面对小球的弹力大小为C.小球的速率越大,则小球受到的洛伦兹力越大A.a粒子的电势能大于b粒子的电势能B.a粒子的速度大于b粒子的速度C.a粒子的角速度大于b粒子的角速度D.若再加一个垂直运动平面向里的匀强磁场,粒子做离心运动A.2v B7.(2024·湖南衡阳·模拟预测)在地面上方空间存在方向垂直纸面向外、磁感应强度大小为强磁场,与竖直方向的匀强电场(图中未画出)A.电场方向竖直向上B.带电粒子运动到轨迹的最低点时的速度大小为C.带电粒子水平射出时的加速度大小为A .粒子做圆周运动时的半径始终为RB .每次粒子在电场中运动时,两端点的水平距离均为Rp C .若粒子运动轨迹的最左端记为A 点,则A 点坐标为(2112R R p p --+,4R -)D .02024t 时刻粒子所处位置的坐标是(2024Rp ,2024R -)A .油滴的运动方向一定由C .油滴可能受到水平向右的电场力A.小球在A点的速度大小为5m/s B.C.小球运动至C点的速度大小为4m/s D.轨道半径11.(2024·河南·一模)如图所示,绝缘中空轨道竖直固定,圆弧段两端等高,O为最低点,圆弧圆心为O¢,半径为段分别在C、D端相切,整个装置处于方向垂直于轨道所在平面向里、磁感应强度大小为A.小球在轨道AC上下滑的最大速度为B.小球第一次沿轨道AC下滑的过程中速度一直在增大C.经过足够长时间,小球克服摩擦力做的总功是A.离子受到的洛伦兹力大小不变C.电场力的瞬时功率不变13.(2024·广东江门·模拟预测)如图所示,两水平虚线之间的空间内存在着相互垂直的匀强电场磁场B(如图甲示),有一个带正电的油滴(电荷量为落恰好做匀速圆周运动;现保持电场大小方向和磁场大小不变,磁场方向变为垂直于纸面向里(如图乙(1)求带电油滴第n次穿出磁场的位置与O点的距离和带电油滴在电磁场中运动的时间n t。
高中物理 带电粒子在磁场电场复合场计算题 专题(2017-2019)近三年高考真题物理分类汇编 (解析版)

专题21 带电粒子电场磁场复合场中计算题1.(2019·新课标全国Ⅰ卷)如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。
一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出。
已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力。
求 (1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间。
【答案】(1)224q U m B d = (2)2π(42Bd t U =【解析】(1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v 。
由动能定理有212qU mv =①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 2v qvB m r=②由几何关系知d ③ 联立①②③式得 224q Um B d=④ (2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为πtan302rs r =+︒⑤ 带电粒子从射入磁场到运动至x 轴的时间为s t v=⑥ 联立②④⑤⑥式得2π(42Bd t U =⑦2.(2019·新课标全国Ⅱ卷)如图,两金属板P 、Q 水平放置,间距为d 。
两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同。
G 接地,P 、Q 的电势均为ϕ(ϕ>0)。
质量为m ,电荷量为q (q >0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计。
(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少?【答案】(1)l v = (2)2v 【解析】(1)PG 、QG 间场强大小相等,均为E ,粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有2E dϕ=① F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有2k 012qEh E mv =-③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有212h at =④ l =v 0t ⑤联立①②③④⑤式解得2k 012=2E mv qh dϕ+⑥l v = (2)设粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短,由对称性知,此时金属板的长度L 为=22L l v = 3.(2019·新课标全国Ⅲ卷)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点。
电场磁场复合场 经典题选(有详细解答).

培优练习7 25.(15分)如图所示,MN 为一竖直放置足够大的荧光屏,距荧光屏左边l 的空间存在着一宽度也为l 、方向垂直纸面向里的匀强磁强。
O ′为荧光屏上的一点,OO ′与荧光屏垂直,一质量为m 、电荷量为q 的带正电的粒子(重力不计)以初速度v0从O 点沿OO ′方向射入磁场区域。
粒子离开磁场后打到荧光屏上时,速度方向与竖直方向成30°角。
(1)求匀强磁场磁感应强度的大小和粒子打在荧光屏上时偏离O ′点的距离; (2)若开始时在磁场区域再加上与磁场方向相反的匀强电场(图中未画出),场强大小为E , 则该粒子打在荧光屏上时的动能为多少? 25.解:(1)粒子从O 点射入,P 点射出,沿直线运动到荧光屏上的S 点,如图所示,由几何关系可知,粒子在磁场中作匀速圆周运动转过的圆心角60=θ ① 运动轨道半径为:60sin lR =②而 rv m qvB 2= ③由②、③解得:B=qlmv 230④ 根据几何关系可知: 30cot ⋅=l SQ ⑤ O ′Q=R -Rcos60° ⑥ 由②、⑤、⑥解得334l SQ Q O S O =+'=' ⑦(2)再加上电场后,根据运动的独立性,带电粒子沿电场方向匀加速运动,运动加速度mqEa =⑧ 粒子在磁场中运动时间为:09323v d v R t ππ== ⑨则粒子离开复合场时沿电场方向运动速度为 0932mv qEl at v Eπ== ⑩粒子打在荧光屏上时的动能为:222022027)(2212121mv lqE mv mv mv E E k π+=+= ○11 25、如图所示,涂有特殊材料的阴极K ,在灯丝加热时会逸出电子,电子的初速度可视为零,质量为m 、电量为e .逸出的电子经过加速电压为U 的电场加速后,与磁场垂直的方向射入半径为R 的圆形匀强磁场区域.已知磁场的磁感强度为B ,方向垂直纸面向里,电子在磁场中运动的轨道半径大于R .试求:(1)电子进入磁场时的速度大小; (2)电子运动轨迹的半径r 的大小;(3)电子从圆形磁场区边界的不同位置入射, 它在磁场区内运动的时间就不相同.求电子在磁场区内运动时间的最大值.、如图所示,匀强电场区域和匀强磁场区域是紧邻的且宽度相等均为d ,电场方向在纸平面内,而磁场方向垂直纸面向里,一带正电粒子从O 点以速度V 0沿垂直电场方向进入电场,在电场力的作用下发生偏转,从A 点离开电场进入磁场,离开电场时带电粒子在电场方向的位移为电场宽度的一半,当粒子从C 点穿出磁场时速度方向与进入电场O 点时的速度方向一致,(带电粒子重力不计)求:(1)粒子从C 点穿出磁场时的速度v ;(2)电场强度E 和磁感应强度B 的比值E/B; (3)粒子在电、磁场中运动的总时间。
高考物理二轮复习专题四电磁场类问题电磁复合场练习

专题四电磁场类问题(电、磁、复合场)一、单选题1.如图所示,平行板电容器充电后形成一个匀强电场,大小保持不变。
让不计重力的相同带电粒子a、b,以不同初速度先、后垂直电场射入,a、b分别落到负极板的中央和边缘,则( )A.b粒子加速度较大B.b粒子的电势能变化量较大C.若仅使a粒子初动能增大到原来的2倍,则恰能打在负极板的边缘D.若仅使a粒子初速度增大到原来的2倍,则恰能打在负极板的边缘2.如图甲所示,两平行正对的金属板A、B间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处。
若在t0时刻释放该粒子,粒子会时而向A板运动,时而向B板运动,并最终打在A板上。
则t0可能属于的时间段是( )A.0<t0<T4B.T2<t0<3T4C.3T4<t0<T D.T<t0<9T83.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab是圆的直径。
一带电粒子从a点射入磁场,速度大小为v、方向与ab成30°角时,恰好从b点飞出磁场,且粒子在磁场中运动的时间为t;若同一带电粒子从a点沿ab方向射入磁场,也经时间t飞出磁场,则其速度大小为( )A.12v B.23vC.32v D.32v4.自行车速度计利用霍尔效应传感器获知自行车的运动速率。
如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。
图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。
下列说法正确的是( )A.根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B.自行车的车速越大,霍尔电势差越高C.图乙中霍尔元件的电流I是由正电荷定向移动形成的D.如果长时间不更换传感器的电源,霍尔电势差将增大5.科研人员常用磁场来约束运动的带电粒子,如图所示,粒子源位于纸面内一边长为a的正方形中心O处,可以沿纸面向各个方向发射速度不同的粒子,粒子质量为m、电荷量为q、最大速度为v,忽略粒子重力及粒子间相互作用,要使粒子均不能射出正方形区域,可在此区域加一垂直纸面的匀强磁场,则磁感应强度B的最小值为( )A.2mvqaB.22mvqaC.4mvqaD.42mvqa二、多选题6.如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂线上某一点,O为AB连线的中点,且AO=OF,E和φ分别表示F处的场强大小和电势。
新教材适用2024版高考物理二轮总复习第1部分核心主干复习专题专题3电场与磁场微专题4带电粒子在复合

微专题4 带电粒子在复合场中的运动题型1 带电体在电场和重力场中的运动1.带电体在电场、重力场中运动的分析方法(1)对带电体的受力情况和运动情况进行分析,综合运用牛顿运动定律和匀变速直线运动的规律解决问题。
(2)根据功能关系或能量守恒的观点,分析带电体的运动时,往往涉及重力势能、电势能以及动能的相互转化,总的能量保持不变。
2.带电体在电场和重力场的叠加场中的圆周运动(1)等效重力法将重力与静电力进行合成,如图所示,则F合为等效重力场中的“重力”,g ′=F合m为等效重力场中的“等效重力加速度”,F合的方向等效为“重力”的方向,即在等效重力场中的竖直向下方向。
(2)等效最高点和最低点:在“等效重力场”中做圆周运动的小球,过圆心作合力的平行线,交于圆周上的两点即为等效最高点和最低点。
〔真题研究1〕(多选)(2022·全国甲卷,21,6分)地面上方某区域存在方向水平向右的匀强电场,将一带正电荷的小球自电场中P点水平向左射出。
小球所受的重力和静电力的大小相等,重力势能和电势能的零点均取在P点。
则射出后( BD )A.小球的动能最小时,其电势能最大B.小球的动能等于初始动能时,其电势能最大C.小球速度的水平分量和竖直分量大小相等时,其动能最大D.从射出时刻到小球速度的水平分量为零时,重力做的功等于小球电势能的增加量【审题指导】研究对象、物理过程物理模型带正电的小球同时受向下的重力和向右的静电力将电场和重力场合成为一个等效场合场力大小F=2mg,方向与水平方向成45°角带正电荷的小球自电场中P 点水平向左射出后的运动小球初速度与合场力方向成135°角,在等效场中做类斜抛运动【解析】 由题意知,Eq =mg ,故等效重力G ′的方向与水平方向成45°(如图所示)。
当v y =0时,速度最小为v min =v 1,由于此时v 1存在水平分量,电场力还可以向左做负功,故此时电势能不是最大,故A 错误;当如图中v 所示时,在水平方向上v 2=0=v 0-Eqmt ,在竖直方向上v =gt ,由于Eq =mg ,得v =v 0,故小球的动能等于初始动能。
高考物理二轮复习考点第九章磁场专题复合场问题

专题9.13 复合场问题一.选择题1.(2020兰州模拟)如图所示,粗糙的足够长直绝缘杆上套有一带电小球,整个装置处在由水平向右匀强电场和垂直于纸面向外的匀强磁场组成的足够大复合场中,小球由静止开始下滑,则下列说法正确的是A.小球的加速度先增大后减小B.小球的加速度一直减小C.小球的速度先增大后减小D.小球的速度一直增大,最后保持不变【参考答案】AD【命题意图】本题考查了复合场中受约束小球的运动及其相关的知识点。
2.(多选)(2020·长春调研)如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g。
空间存在一磁感应强度大小未知(不为零),方向垂直于环形细圆管所在平面且向里的匀强磁场。
某时刻,给小球一方向水平向右,大小为v0=5gR的初速度,则以下判断正确的是( )A.无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用B.无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球在最高点一定受到管壁的弹力作用C.无论磁感应强度大小如何,小球一定能到达环形细圆管的最高点,且小球到达最高点时的速度大小都相同D.小球在从环形细圆管的最低点运动到所能到达的最高点的过程中,水平方向分速度的大小一直减小【参考答案】BC3.(多选)如图甲所示,绝缘轻质细绳一端固定在方向相互垂直的匀强电场和匀强磁场中的O点,另一端连接带正电的小球,小球电荷量q=6×10-7C,在图示坐标中,电场方向沿竖直方向,坐标原点O的电势为零。
当小球以2 m/s的速率绕O点在竖直平面内做匀速圆周运动时,细绳上的拉力刚好为零。
在小球从最低点运动到最高点的过程中,轨迹上每点的电势φ随纵坐标y的变化关系如图乙所示,重力加速度g=10 m/s2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五 电场、磁场及复合场
1.如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E ,场区宽度为L ,在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,磁感应强度B 未知,圆形磁场区域半径为r 。
一质量为m ,电荷量为q 的带正电的粒子从A 点由静止释放后,在M 点离开电场,并沿半径方向射入磁场区域,然后从N 点射出,O 为圆心,120MON ∠=,粒子重力可忽略不计。
求:
(1)粒子在电场中加速的时间;
(2)匀强磁场的磁感应强度B 的大小。
2.如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心O 在区域中心.一质量为m 、带电荷量为q (q >0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动.已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002T =.m qB π设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略。
(1)在t =0到t =T 0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v 0;
(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t =T 0到t =1.5T 0这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
3.如图,直线MN 上方有平行于纸面且与MN 成45°的有界匀强电场,电场强度大小未知;MN 下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B 。
今从MN 上的O 点向磁场中射入一个速度大小为v 、方向与MN 成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R 。
若该粒子从O 点出发记为第一次经
过直线MN ,而第五次经过直线MN 时恰好又通过O 点。
不计粒子的重力。
求:
(1)电场强度的大小;
(2)该粒子再次从O 点进入磁场后,运动轨道的半径;
(3)该粒子从O 点出发到再次回到O 点所需的时间。
4.粒子扩束装置示意图如图甲所示,它是由粒子源、加速电场、偏转电场、匀强磁场和荧光屏组成。
粒子源A 产生带正电的粒子质量均为m ,电荷量均为q ,由静止开始经加速电场加速后,沿平行于两水平金属板从正中央连续不断地射入偏转电场。
偏转电场的极板间距为d ,两金属板间电压U 1随时间t 变化规律如图乙所示, 其中电压变化周期为T ,电压最大值212md U qT =。
设加速电压202
23md U qT =,匀强磁场水平宽度为23L d =,竖直长度足够长,磁场方向垂直纸面向外,竖直放置的荧光屏与磁场右边界重合。
已知粒子通过偏转电场的时间为T ,不计粒子重力和粒子间相互作用。
求:
(1)偏转电场的极板长度L 1;
(2)粒子射出偏转电场的最大侧移y 1;
(3)调整磁感应强度B 的大小,可改变粒子束打在荧光屏上形成的光带的位置。
B 取何值时,粒子束打在荧光屏上的光带位置最低?光带的最低位置离中心O 点的距离h 为多少?
5.如图所示,有一平行板电容器左边缘在y 轴上,下极板与x 轴重台,极板间匀强电场的场强为E 。
一电量为q 、质量为m 的带电粒子,从O 点与x 轴成θ角斜向上射入极板间,粒子经过K 板边缘a 点平行于x 轴飞出电容器,立即进入一磁感应强度为B 的圆形磁场(未画出),随后从c 点垂直穿过x 轴离开磁场。
已
知粒子在O 点的初速度大小为B E v 3=, 45=∠acO ,3
3cos =θ,磁场方向垂直于坐标平面向外,磁场与电容器不重和,带电粒子重力不计,试求:
(1)K 极板所带电荷的电性;(2)粒子经过c 点时的速度大小;(3)圆形磁场区域的最小面积。
6.如图所示,真空室内有一个点状的α粒子放射源P ,它向各个方向发射α粒子(不计重力),速率都相同。
ab 为P 点附近的一条水平直线(P 到直线ab 的距离PC =L ),Q 为直线ab 上一点,它与P 点相距PQ = L 25 (现只研究与放射源P 和直线ab 同一个平面内的α粒子的运动),当真空室内(直线ab 以上区域)只存在垂直该平面向里、磁感应强度为B 的匀强磁场时,水平向左射出的α粒子恰到达Q 点;当真空室(直线ab 以上区域)只存在平行该平面的匀强电场时,不同方向发射的α粒子若能到达ab 直线,则到达ab 直线时它们动能都相等,已知水平向左射出的α粒子也恰好到达Q 点。
(α粒子的电荷量为+q ,质量为m ;sin37°=0.6;cos37°=0.8)求:
(1)α粒子的发射速率
(2)匀强电场的场强大小和方向
(3)当仅加上述磁场时,能到达直线ab 的α粒子所用最长时间和最短时间的比值
7.如图所示,在xOy 平面内0<x <L 的区域内有一方向竖直向上的匀强电场,x >L 的区域内有一方向垂直于xOy 平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点,以沿x 轴正方向的初速度v 0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60o 和30o ,两粒子在磁场中分别运动半周后恰好在某点相遇.已知两粒子的重力以及两粒子之间的相互作用都可忽略不计.求:
(1)正、负粒子的比荷之比2
211:m q m q ;
(2)正、负粒子在磁场中运动的半径大小;
(3)两粒子先后进入电场的时间差.
8.如图所示,在xoy 平面内以O 为圆心、R 0为半径的圆形区域I 内有垂直纸面向外的匀强磁场。
一质量为m 、电荷量为+q 的粒子以速度v 0从A (R 0,0)点沿x 轴负方向射入区域I ,经过P (0,R 0)点,沿y 轴正方向进入同心环形区域Ⅱ,为使粒子经过区域Ⅱ后能从Q 点回到区域I ,需在区域Ⅱ内加一垂直于纸面向里的匀强磁场。
已知OQ 与x 轴负方向成30角,不计粒子重力。
求:
(1)区域I 中磁感应强度B 0的大小;
(2)环形区域Ⅱ的外圆半径R 至少为多大;
(3)粒子从A 点出发到再次经过A 点所用的最短时间。
9.如图, OAC ∆的三个顶点的坐标分别为O (0,0)、A (L ,0)、C (0, 3L ),在OAC ∆区域内有垂直于xOy 平面向里的匀强磁场。
在t =0时刻,同时从三角形的OA 边各处以沿y 轴正向的相同速度将质量均为m ,电荷量均为q 的带正电粒子射入磁场,已知在t=t 0时刻从OC 边射出磁场的粒子的速度方向垂直于y 轴。
不计粒子重力和空气阻力及粒子间相互作用。
(1)求磁场的磁感应强度B 的大小;
(2)若从OA 边两个不同位置射入磁场的粒子,先后从OC 边上的同一点P (P 点图中未标出)射出磁场,求这两个粒子在磁场中运动的时间t 1与t 2之间应满足的关系;
(3)从OC 边上的同一点P 射出磁场的这两个粒子经过P 点的时间间隔与P 点位置有关,若该时间间隔最大值为340t ,求粒子进入磁场时的速度大小。
10.如图所示,在x 轴上方有垂直xoy 平面向里的匀强磁场,磁感应强度为B 1=B 0,在x 轴下方有交替分布的匀强电场和匀强磁场,匀强电场平行于y 轴,匀强磁场B 2=2B 0垂直于xoy 平面,图象如图所示。
一质量为m ,电量为-q 的粒子在03
2t t =时刻沿着与y 轴正方向成60°角方向从A 点射入磁场,02t t =时第一次到达x 轴,并且速度垂直于x 轴经过C 点,C 与原点O 的距离为3L 。
第二次到达x 轴时经过x 轴上的D 点,D 与原点O 的距离为4L 。
(不计粒子重力,电场和磁场互不影响,结果用B 0、m 、q 、L 表示。
)
(1)求此粒子从A 点射出时的速度υ0。
(2)求电场强度E 0的大小和方向。
(3)粒子在09
t t =时到达M 点,求M 点坐标。