大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)
大学物理实验讲义(密度测定)

图3 静力称衡法测密度

不规则物体密度的测定

【实验目的】

1、学习物理天平的使用方法;

2、掌握用流体静力称衡法测定不规则固体密度的原理和方法;

3、掌握用助沉法测定不规则固体密度(比水的密度小)的原理和方法;

4、掌握用密度瓶测定碎小固体密度的原理和方法 。

【实验仪器和用品】

物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。

【实验原理】

某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度:

V

m =

ρ (1)

实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m (空气浮力忽略不计),吊,不接触烧杯壁和底)的表观质量为m 1(如图3示),体积为水的密度为ρ水。根据阿基米德定律,有:

1()Vg m m g ρ=-水 1

m m V ρ-=

密度瓶

游码

平衡螺母

边刀托

杯托盘

底座

度盘

指针

中刀托

手轮

调平螺母

挂钩

吊耳 水准泡

托盘

托盘 横梁

物理天平

被测物密度: 1

m m V

m m ρρ=

=

-水 (2)

2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度

设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示:

根据阿基米德定律,被测物受到的浮力为:12()Vg m m g ρ=-水,则被测物体积为:

12

m m V ρ-=

被测物密度为: 12

m m V

m m ρρ=

=

-水 (3)

3、用密度瓶测定碎小固体(小石子)的密度

假设密度瓶的质量为1m ,将瓶内装满待测的小石子后的质量为2m ,则待测小石子的质量:21m m m =-。

然后将装有小石子的密度瓶加满水,再称其总质量3m ,为了得到小石子排开水的体积,还需要将密度瓶里的小石子倒出,再加满水称得其质量为4m 。

这样可得小石子排开水的质量为:43214321(())m m m m m m m m ---=-+-

图5 密度瓶法测小石子的密度 123

4图4 静力称衡法和助沉法测石蜡块的密度 待测物块(石蜡块) 2

碎小固体的总体积为:4321

m m m m V ρ-+-=水

碎小固体的密度为:21

4321

m m m m m m ρρ-=

-+-水。 (4)

【实验内容及步骤】 1、对物理天平进行调平

在了解天平的基本结构的基础上,对天平进行调平,调平分两步:

①调底座水平:通过调底板下的调平螺丝,把水准仪中的气泡调在水准仪正中。 ②调横梁水平:将横梁两端的挂钩(连同吊篮、托盘)挂到刀口上,游码移到最左端;然后再稍稍右旋升降螺丝,升起横梁后观察横梁是否水平,若指针正指刻度牌中线或在中线两侧作微小的等幅振动,则说明横梁平衡。若不平衡,则左旋升降螺丝,使横梁制动,然后调节横梁两端的调平螺丝;再支起横梁判断,放下横梁后调节,如此反复,直至调平。

2、用流体静力称衡法测定不规则金属块的密度

(1)称量金属块在空气中的质量m 。

(2)用细线拴住金属块,挂到天平横梁左端的钩子上,悬吊于烧杯的水中。烧杯放在底座左边的托架上。称出金属块完全浸没在水中的表观质量1m 。

(3)计算金属块的密度及其不确定度,并给出测定结果。 3、流体静力称衡法和助沉法相结合测定石蜡块的密度

(1)称量石蜡块在空气中的质量m 。

(2)用细线将石蜡块和助沉金属块串系起来,石蜡块在上,助沉块在下。系好后挂在天平横梁左端的挂钩上。先称仅有金属块没入水中而石蜡块在水面之上时系统的表观质量

1m ,再称二者均没入水中时系统的表观质量2m (悬吊,不能接触烧杯壁和底)。

(3)计算石蜡块的密度,不要求计算不确定度。

4、用密度瓶测量碎小石子密度

(1)先用物理天平称量空密度瓶的质量1m 。

(2)将碎小石子细心地装入密度瓶中(大约占据密度瓶容积一半的空间),称出“瓶+小石子”的总质量2m 。

(3)再将装有小石子的密度瓶内装满清水,盖上瓶塞,让多余的水从塞子中间的细管流出,用布擦干瓶子,称出“瓶+水+小石子”的总质量3m 。

(4)将密度瓶内的小石子和清水倒掉,再装满水,盖上瓶塞,让多余的水从塞子中间的细管流出,用布擦干瓶子,称出“瓶+水”的总质量4m 。

(5)计算小石子的密度,不要求计算不确定度。

【实验注意事项】

1、使用物理天平前,要熟悉天平的基本结构,了解各结构的用途和使用方法,做到先观察后操作。

2、使用天平时,动作要轻、稳,横梁支起时不能作前后左右的旋转,以免横梁跌落摔损;天平的左、右挂钩、吊耳及秤盘切勿对调。横梁调平时,一定要先使横梁制动,将两端的吊耳挂到刀口上。

只有观测、判断横梁是否水平时,才将横梁支起;调节调平螺丝、取放待测物、取放砝码、移动游码时,天平的横梁均应放下,并且支撑在横梁上的两个小支柱上。

3、实验中,浸在液体中固体表面的气泡要尽量排尽;金属块或石蜡块要完全浸没水中,且不能与烧杯底部或器壁相碰。

4、小心易碎玻璃仪器;如遇到损坏,要及时报告、登记,并作适当赔偿。

5、测量结束后,要将仪器复原,即:天平横梁放下,吊耳拿到刀口下;烧杯、密度瓶里面的水倒掉;小方巾平铺在桌面上。

【数据记录与处理】

表1.不规则金属块密度的测量

1

m m m ρρ=

=-测水 = g/cm 3

()E ρ== =_______%

()u m =1()u m =0.05g (天平的最小称量),由温度测量误差而造成ρ水的误差非常小,可忽略不计,并且取3

1.00/g cm ρ水=(下同)。

()()u E ρρρ=?测= =______g/cm 3

()u ρρρ=±测=( ± )g/cm 3

(要有计算过程,注意测量结果的正确表示,详见教材17面;下同) 表2. 石蜡块密度的测量

12

m m

V

m m ρρ=

=

-测水= = g/cm 3

(要有计算过程,保留到小数点后两位有效数字,不要求计算不确定度)

表3. 小石子密度的测量

21

4321

m m m V

m m m m ρρ-=

=

-+-测水= = g/cm 3

(要有计算过程,保留到小数点后两位有效数字,不要求计算不确定度)

【思考题】

1、具体分析本实验产生误差的各种原因。

2、能否用流体静力称衡法测定液体的密度?如果能测如何测量?

3、能否用密度瓶测定液体的密度?如果能测如何测量?

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)

不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体 密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比 水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理 和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 密 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天

1 m 图3 静力 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m =ρ ( 1 ) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m 物

(空气浮力忽略不计),全部 浸没在水中(悬吊,不接触 烧杯壁和底)的表观质量为 m 1(如图3示),体积为V , 水的密度为ρ水 。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1m m V ρ-=水 被测物密度: 1m m V m m ρρ==-水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1 m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:1m 图4 静力称衡法和助待 测物块m

大学物理实验复习资料

大学物理实验复习资料 复习要求 1.第一章实验基本知识; 2.所做的十二个实验原理、所用的仪器(准确的名称、使用方法、分度值、准确度)、实验操作步骤及其目的、思考题。 第一章练习题(答案)1.指出下列情况导致的误差属于偶然误差还是系统误 差? ⑴读数时视线与刻度尺面不垂直。——————————该误差属于偶然误差。 ⑵将待测物体放在米尺的不同位置测得的长度稍有不同。——该误差属于系统误差。 ⑶天平平衡时指针的停点重复几次都不同。——————该误差属于偶然误差。 ⑷水银温度计毛细管不均匀。——————该误差属于系统误差。 ⑸伏安法测电阻实验中,根据欧姆定律R x=U/I,电流表内接或外接法所测得电阻的阻值与实际值不相等。———————————————该误差属于系统误差。 2.指出下列各量为几位有效数字,再将各量改取成三位有效数字,并写成标准式。 测量值的尾数舍入规则:四舍六入、五之后非零则入、五之后为零则凑偶 ⑴63.74 cm ——四位有效数字,6.37 ×10cm 。 ⑵ 1.0850 cm ——五位有效数字,1.08cm , ⑶0.01000 kg ——四位有效数字, 1.00 ×10-2kg , ⑷0.86249m ——五位有效数字,8.62 ×10-1m , ⑸ 1.0000 kg ——五位有效数字,1.00kg , ⑹ 2575.0 g ——五位有效数字,2.58×103g , ⑺ 102.6 s;——四位有效数字,1.03 ×102s , ⑻0.2020 s ——四位有效数字, 2.02 ×10-1s , ⑼ 1.530×10-3 m. ——四位有效数字,1.53 ×10-3m ⑽15.35℃——四位有效数字,1.54×10℃3.实验结果表示 ⑴精密天平称一物体质量,共称五次,测量数据分别为:3.6127g,3.6122g,3.6121g,3.6120g,3.6125g, 试求 ①计算其算术平均值、算术平均误差和相对误差并写 出测量结果。 ②计算其测量列的标准误差、平均值标准误差和相对 误差并写出测量结果。 解:算术平均值 = m3 612 3 5 15 1 . ≈ ∑ =i i m (g) 算术平均误差m ? = - =∑ = 5 1 5 1 i i m m 0.00024 = 00003(g) 相对误差 m m E m ? = =0.0003/3.6123=0.000083≈0.009% 用算术平均误差表示测量结果:m = 3.6123±0.0003(g) 测量列的标准误差 ()()()( 1 5 3 2 6123 3 6121 3 2 6123 3 6122 3 2 6123 3 6127 3 - + - + - + - =. . . . . . =0.0003(g) 经检查,各次测量的偏差约小于3σ,故各测量值均 有效。 平均值的标准误差 5 0003 0. = = n m σ σ ≈0.00014(g) 相对误差 % . % . . 0004 100 6123 3 00014 ≈ ? = = m E m m σ 用标准误差表示的测量结果= m 3.61230±0.00014(g) ⑵有甲、乙、丙、丁四人,用螺旋测微器测量一铜球 的直径,各人所得的结果是: 甲:(1.3452±0.0004)cm;乙:(1.345±0.0004)cm 丙:(1.34±0.0004)cm;丁:(1.3±0.0004)cm 问哪个表示得正确?其他人的结果表达式错在哪里? 参考答案:甲:正确。 测量结果的最后一 其他三个的错误是测量结果的最后一位没有与误差所 在位对齐。 ⑶用级别为0.5、量程为10mA的电流表对某电路的 电流作10次等精度测量,测量数据如下表所示。试计

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

大学物理实验讲义实验用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

大学物理实验讲义Word版

大学物理实验讲义 普通物理教研室编 班级: 学号: 姓名:

学生实验守则 1、进实验室前,必须根据每个实验的预习要求,阅读有关资料。 2、按时进入实验室,保持安静和整洁,独立完成实验。 3、实验开始前,应仔细检查仪器、设备是否齐备和完好。若有不全或损坏情况,应及时报告指导教师。 4、爱护公物,正确使用实验仪器和设备,不得随意动用与本实验无关的仪器和设备。 5、接线完毕,先自行检查,再请指导教师检查,确认无误后,方可接通电源。 6、在实验过程中必须服从教师指导,严格遵守操作规程,精力高度集中,操作认真,要有严格的科学态度。 7、实验进行中,严禁用手触摸线路中带电部分,严禁在未切断电源的情况下改接线路;若有分工合作的情况,必须要分工明确,责任分明,操作要有序,以确保人身安全和设备安全。 8、实验中若出现事故或发现异常情况,应立即关断电源,报告指导教师,共同分析事故原因。 9、实验完毕,应报请指导教师检查实验报告,认为达到要求后,方可切断电源。并整理好实验装置,经指导教师检查后才能离开实验室。

目录 序言 (1) 绪论 (2) 测量误差与实验数据处理基础知识 (4) 实验一长度的测量 (15) 实验二牛顿第二定律的验证 (20) 实验三固体和液体密度的测量 (23) 实验四测量比热容 (25) 4-1 混合法测固体比热容 (25) 4-2 冷却法测液体比热容 (26) 实验五测量冰的熔解热 (28) 实验六测量线胀系数 (30) 实验七万用电表的使用 (32) 实验八磁场的描绘 (36) 实验九惠斯登电桥测中值电阻 (40) 实验十伏安法测电阻 (43) 实验十一电位差计测电池的电动势和内阻 (45) 实验十二示波器的使用 (48) 实验十三静电场的描绘 (52) 实验十四测量薄透镜焦距 (55) 实验十五等厚干涉现象的研究 (58) 【参考文献】 (60)

大学物理实验-驻波实验(原始数据与分析)

1、调节震动频率测横波波速数据记录 线密度m kg /10322.03-?=ρ;砝码质量m=40g ;张力F=0.39N ;弦长l=0.6m 。 半波数n 1 2 3 4 5 6 平均值 频率/Hz 36 61 84 111 147 167 )./(21-=s m n l γ γ 43.2 36.6 33.6 33.3 35.28 33.4 36.4 2、调节弦长测横波波速数据记录 线密度m kg /10322.03-?=ρ;砝码质量m=40g ;张力F=0.39N ;频率γ=150Hz 。 半波数n 1 2 3 4 5 6 平均值 l/m 0.12 0.24 0.36 0.48 0.60 0.72 )./(21-=s m n l γ γ 36 36 36 36 36 36 36 3、弦线上横波波长与张力关系测量数据记录 线密度m kg /10322.03-?=ρ;频率γ=150Hz 。 砝码质量m/kg 310- 20 30 40 50 60 70 张力F/N 0.2 0.3 0.4 0.5 0.6 0.7 半波数n 3 4 4 4 4 4 弦长l/m 0.216 0.353 0.394 0.429 0.477 0.498 波长m /λ 0.144 0.1765 0.197 0.2145 0.2385 0.249 λln -1.9 -1.7 -1.6 -1.5 -1.4 -1.3 F ln -1.6 -1.2 -0.9 -0.7 -0.5 -0.4 思考题答案: 1、1 3 .8.3410 322.039.0--=?= = s m F v ρ 2、图略。由图得斜率53.07 .11 .10.2=-+-=a 截距b=-1.1 理论值a=0.5 b=-0.99 相对误差:%6%1005.05.053.01=?-= E %11%10099 .099 .01.12=?-+-=E 3、原因: ①存在空气阻力 ②弦长长度的精确度 ③拨弦的方式和计算机采样的步数 改进:①在真空环境下完成②多次取值减少误差

大学物理实验讲义(密度测定)

图3 静力称衡法测密度 不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m = ρ (1) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m (空气浮力忽略不计),吊,不接触烧杯壁和底)的表观质量为m 1(如图3示),体积为水的密度为ρ水。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1 m m V ρ-= 水 密度瓶 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天平

被测物密度: 1 m m V m m ρρ= = -水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:12()Vg m m g ρ=-水,则被测物体积为: 12 m m V ρ-= 水 被测物密度为: 12 m m V m m ρρ= = -水 (3) 3、用密度瓶测定碎小固体(小石子)的密度 假设密度瓶的质量为1m ,将瓶内装满待测的小石子后的质量为2m ,则待测小石子的质量:21m m m =-。 然后将装有小石子的密度瓶加满水,再称其总质量3m ,为了得到小石子排开水的体积,还需要将密度瓶里的小石子倒出,再加满水称得其质量为4m 。 这样可得小石子排开水的质量为:43214321(())m m m m m m m m ---=-+- 图5 密度瓶法测小石子的密度 123 4图4 静力称衡法和助沉法测石蜡块的密度 待测物块(石蜡块) 2

大学物理实验讲义汇总

大学物理实验讲义 ()

目录 实验1 复摆 (4) 预习报告 (8) 实验2 弦振动的研究 (9) 预习报告 (13) 实验3 速度和加速度的测量 (14) 预习报告 (21) 实验4 动量守恒定律的验证 (22) 预习报告 (27) 实验5 空气中声速的测量 (28) 预习报告...................................................... 错误!未定义书签。实验6 RLC电路的稳态特性 (24) 预习报告...................................................... 错误!未定义书签。实验报告.. (34) 实验7 油滴法测定基元电荷 (46) 预习报告 (53) 实验8 用双臂电桥测量低值电阻 (54) 预习报告...................................................... 错误!未定义书签。实验9 牛顿环. (60) 预习报告 (67) 实验10 光电效应及普朗克常数的测定 (68) 预习报告 (73) 实验11 单缝衍射 (60) 预习报告...................................................... 错误!未定义书签。实验12 多缝的夫琅和费衍射. (79) 预习报告...................................................... 错误!未定义书签。

实验报告——速度和加速度的测量 (83) 实验报告——牛顿环 (88)

光纤光学大学物理实验讲义.doc

光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 因此构成光纤通信的基本要素是光源、光纤和光检测器。 半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。 【实验目的】 1. 了解和掌握半导体激光器的电光特性和测量阈值电流 2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。 3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。 4. 了解光纤通信的基本原理。 【实验仪器】 导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。 【实验原理】 一、半导体激光器的电光特性 实验采用的光源是半导体激光器,由于它的体积小、重量 轻、效率高、成本低,已进入了人类社会活动的多个领域。 因此对半导体激光器的了解和使用就显得十分重要。本实验 对半导体激光器进行一些基本的实验研究,以掌握半导体激

大学物理实验讲义

实验一用天平测量质量 本实验介绍测量固体和液体密度的两种方法,流体静力称衡法和比重瓶法,通过实验除了要掌握这两种方法外,还要熟练地掌握物理天平的调整和使用方法。 实验仪器 物理天平(附砝码)、烧杯、温度计、酒精、蒸馏水、待测物。 仪器介绍 物理天平的构造如实图2-2所示,在横梁的中央和两端各有一个刀口(图中2),中间的刀口安放在支柱顶端的刀垫上,刀垫用玛瑙或硬质合金钢制造,两端的刀口用于悬挂称盘,横梁上装有可以移动的游码(图中5),用于称量1克以下的质量,(游码从横梁的左端移到右端相当于在右盘中加了1克的砝码),横梁等分为10大格,每大格又分为5小格,因此,游码每移动一小格相当于在右盘中加20毫克的砝码,即这种天平的分度值为20毫克。常见物理于平的最大称量为0.5千克(即500克)。横梁中部还装有竖直向下的指针(图中7) ,与支柱上的指针标尺(图中8)相对应,用以指示天平的平稳位置及灵敏度,指针的中间有一重心螺丝,它的位置在出厂时已经调整好了,不得任意去旋动它;横梁两侧还有用 来调整零点的螺杆、螺母(图中9),支柱后面装有水平仪,可通过调节底座上的调节螺丝(图中12)来调 节天平底板水平、支柱铅直,天平的底座上,在左侧称盘的上方还有一个可以放置物品的托架(图中15)。 标志天平规格性能的除了“最大称量”以外,还有游标的分度值以及“感量”或“灵敏度”。“感量”是指,使指针在指针标尺上偏转一格时在称盘中所加的质量值,感量的倒数叫“灵敏度”,即称盘中每加1克(或0.1克)时,指针的偏转格数,利用灵敏度可以很快判断需要把游码移动几格就能使天平达到平衡,从而提高测量的效率。 物理天平的操作步骤如下: 1、调节底座螺丝,直到水平仪中的气泡位于水平仪中间,则说明天平座位水平了、支柱铅直和刀垫水平 了。 2、调节零点,把称盘挂在横梁两侧的刀口上,并把游码放在零位,然后将止动旋钮(图中16)顺时针方向 旋转支起横梁,用水平调节螺丝调好天平的平衡,调整后即把止动旋钮逆时针转动复位,放下横梁。 3、称衡时,物体放在左盘,砝码放在右盘,进行称衡,注意,砝码应用镊子取放,不准用手拿取砝码! 每次增加或减少砝码,均需先放下横梁,要判断天平是否平衡的时候,才支起横梁称衡,平时的大部分时间都要放下横梁!紧记!以保护好天平刀口不受磨损, 保证天平有足够的灵敏度。 4、完成全部称衡后,用止动旋钮放下横梁,并把称盘摘离刀口,游码复零,砝码归盒盖好。 实验原理 设物体的质量为m ,体积为V ,则其密度ρ为 1.横梁 2.刀口 3.支柱 4.刀垫 5.游码 6.游码标尺 7.指针 8.指针标尺 9.平衡螺丝 10.水平仪 11.底盘 12.调节螺丝 13.秤盘 14.挂钩 15托架 16.重心螺丝 17.止动旋钮 实图2-2

大学物理实验- 密度的测量

实验 密度的测量 ·【实验目的】 1、 学习用流体静力称衡法测量固体和液体的密度。 2、掌握物理天平的正确使用方法。 ·【实验仪器】 物理天平、游标卡尺、水杯及待测样品(铜圆柱体,盐水)。 ·【实验原理】 1、固体的密度的测量: (一)规则物体的密度测量: 设物体质量为m ,体积为V ,则该物体的密度为 V m =ρ (1) 对形状规则的圆柱体,质量m 可由物理天平称出,体积V 可以直接测量物体的外形尺寸,然后应用几何公式计算出来。即: h d V 2 4 1π= (2) 其中d 是圆柱体直径:h 是圆柱体高度。于是 h d m 2 4πρ= (3) (二)不规则物体的密度测量: (1) ρ﹥1的固体 根据阿基米德原理,物体浸在液体中所减少的重量(P 1-P 2),即受到的浮力:等于它所排开同体积液体的重量。故有 Vg P P t ρ=-21 (4) 如果用天平分别称出物体在空气中的质量m 1(g m P 11=)及物体浸没在水中的表现质量m 2(g m P 22=),则()g m m 21-就等于物体与同体积的水的重量, ()21m m -即为这部分水的质量。 物体所排开的水的体积(即物体的体积)为

t m m V ρ2 1-= (5) 则固体的密度: 2 11m m m t -=ρρ (6) 这就是流体静力称衡法的基本原理。 (2) ρ﹤1的固体 设待测物(ρ﹤1)在空气中的质量为2m ,辅助物(ρ﹥1)在空气中的质量和浸没于水中的表观质量分别为0m 和1m ,将两个物体连在一起后完全浸没于水中的表观质量为3m ,则辅助物和待测物一起完全浸没于水中时受到的浮力为 g m m m F )(302' -+= 而待测物浸没于水中时受到的浮力则为 g m m g m m m Vg F )()(10302---+==水ρ 即待测物体积: 水ρ/)(312m m m V -+= 由定义式V m /2=ρ可得待测物密度 3 122m m m m -+= 水 ρρ 2、液体的密度测量: 此法要借助于不溶于水并且和被测液体不发生化学反应的物体(一般用玻璃块)。 设物体的质量为1m ,将其悬吊且浸没在被测液体中的称衡值为3m ,悬吊且浸没在水中的称衡值为2m ,则参照上述讨论,可得液体的密度ρ等于 2 131m m m m t --=ρρ (7) ·【实验内容与步骤】 (一)测量圆柱体的密度: 1、用游标卡尺测量圆柱体的直径和高度,每个物理量测5次,并将测量结果记录于表(1)中。按直接测量结果表示的要求,计算它们的不确定度,并将测量结果表示出来。 2、用物理天平测量圆柱体的质量。只要求测量一次。按只测一次确定不确

大学物理实验讲义实验波尔共振实验54

实验02 波尔共振实验 因受迫振动而导致的共振现象具有相当的重要性和普遍性。在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。共振现象既有破坏作用,也有许多实用价值。许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。 表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。 【实验目的】 1.研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。 2.研究不同阻尼力矩对受迫振动的影响,观察共振现象。 3.学习用频闪法测定运动物体的某些量,例相位差。 【仪器用具】 ZKY-BG波尔共振实验仪 【实验原理】 物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫

力。如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。 实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。 当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-)其运动方程为 t cos M dt d b k dt d J 022ω+θ-θ-=θ (1) 式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。 令 J k 20=ω,J b 2=β,J m m 0= 则式(1)变为 t cos m dt d 2dt d 2022ω=θω+θβ+θ (2) 当0t cos m =ω时,式(2)即为阻尼振动方程。

大学物理实验预习报告

实验一 密度测量 密度是物体的属性之一,实验测定固体密度需要进行长度和质量的测量。长度和质量是基本物理量,其测量原理和方法在其他测量仪器中也常常有体现,如游标和螺旋测微(俗称千分尺)的原理等。测量长度的量具,常用较简单的有米尺、游标卡尺和螺旋测微器。这三种量具测量的范围和准确度各不相同,须视测量的对象和条件加以选用。当长度在3 10-cm 以下时,需用更精密的长度测量仪器(如比长仪等)或者采用其他的方法(如利用光的干涉和衍射等)来测量。测量物体质量时,需使用天平。天平是物理实验中常用的基本仪器。我们将通过对物体密度的测量来学习使用长度和质量的测量仪器,掌握它们的构造特点、规格性能、读数的原理和规则、使用方法及维护知识等,并注意在以后的实验中恰当的选择使用。 【实验目的】 1、 掌握游标卡尺、螺旋测微器及天平的测量原理和使用方法。 2、 掌握直接测量量和间接测量量的数据处理方法。 【实验仪器】 游标卡尺、螺旋测微器、分析天平、待测圆柱体。 【实验原理】 圆柱体密度计算公式如式(1)所示。 H D m V m 24πρ== (1) 式中,m 为圆柱体质量;V 为体积;H 为高;D 为直径。只要直接测出D 、H 、m ,即可间接确定ρ。式(1)适用于质量均匀分布的圆柱体。但由于被测试件加工上的不均匀,必然会给测量带来系统误差。由于加工的不均匀是随机的,所以可以用处理随机误差的方法来减小这种具有随机性质的系统误差,即在试件的不同位置多次测量取平均值的方法来处理。 液体密度计算公式如式(2)所示。 水 水 待测液体待测液体水 水 待测液体 待测液体 m m m m ρρρρ?= ?= (2) 液体密度的测量采用比重瓶法,即使用两个同体积的比重瓶,一个比重瓶中装入水,另外一个比重瓶中装入待测液体。分别利用天平称出两者以及未装入液体之前空比重瓶的质量,代入式(2)中即可求出待测液体的密度,其中水的密度为已知条件。 1.游标卡尺 如图1所示,游标卡尺有两个主要部分,一条主尺和一个套在主尺上并可以沿它滑动的副尺(游标)。游标卡尺的主尺为毫米分度尺,当下量爪的两个测量刀口相贴时,游标上的零刻度应和主尺上的零位对齐。 如果主尺的分度值为a ,游标的分度值为b ,设定游标上n 个分度值的总长与主尺上( n-1 )分度值的总长相等,则有 a n n b )1(-= (3)

大学物理实验讲义实验示波器原理和使用资料讲解

大学物理实验讲义实验示波器原理和使用

实验5 示波器原理和使用 示波器是利用示波管内电子射线的偏转,在荧光屏上显示出电信号波形的仪器。用它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和非电学量(温度、位移、速度、压力、声强、光强、磁场等),其随时间的变化都能用示波器来观测。由于电子射线的惯性小,示波器扫描发生器的频率较高(可达几百兆赫),Y轴和X轴放大器的增益很大,输入阻抗高,所以示波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,而对被测试系统的影响很小。因此示波器是一种应用广泛的综合性电信号测试仪器。 示波器按用途和特点可以分为: 通用示波器。它是根据波形显示基本原理而构成的示波器。 取样示波器,它是先将高频信号取样,变为波形与原始信号相似的低频信号,再应用基本原理显示波形的示波器。与通用示波器相比,取样示波器具有频带极宽的优点。 记忆与存储示波器。这两种示波器均有存储信号的功能,前者是采用记忆示波管,后者是采用数字存储器来存储信息。 专用示波器。为满足特殊需要而设计的示波器,如电视示波器、高压示波器等。 智能示波器。这种示波器内采用了微处理器,具有自动操作、数字化处理、存储及显示等功能。它是当前发展起来的新型示波器。也是示波器发展的方向。 本实验以SS—7802型通用示波器为例,说明示波器的原理和使用方法,并介绍GFG—8016G型数字式函数信号发生器的使用方法。 【实验目的】 1.了解示波器显示图象的原理。 2.较熟练地掌握示波器的调整和使用方法。 3.掌握函数信号发生器的使用方法。 4.学习用示波器观察电信号的波形,测量电信号的电压幅度和频率。 【仪器用具】 SS—7802型示波器(或DS-5000型存储示波器)、GFG—8016G型数字式函数信号发生器(或SPF05A型数字合成函数信号发生器)。 【实验原理】 1.示波器的基本结构和工作原理 示波器内部结构复杂,型号很多,但从功能上看,大致可分为示波管、电压放大装置(包括Y轴放大和X轴放大两部分)、扫描与整步装置和电源四个部分。如图5-1所示。 (1)示波管:它包括电子枪、偏转板和荧光屏三部分。 图5-1 示波器结构方框图

《大学物理实验》模拟试卷与答案

二、判断题(“对”在题号前()中打√×)(10分) (√)1、误差是指测量值与真值之差,即误差=测量值-真值,如此定义的误差反映的是测量值偏离真值的大小和方向,既有大小又有正负符号。 (×)2、残差(偏差)是指测量值与其算术平均值之差,它与误差定义一样。(√)3、精密度是指重复测量所得结果相互接近程度,反映的是随机误差大小的程度。 (√)4、测量不确定度是评价测量质量的一个重要指标,是指测量误差可能出现的范围。 (×)7、分光计设计了两个角游标是为了消除视差。 (×)9、调节气垫导轨水平时发现在滑块运动方向上不水平,应该先调节单脚螺钉再调节双脚螺钉。 (×)10、用一级千分尺测量某一长度(Δ仪=0.004mm),单次测量结果为N=8.000mm,用不确定度评定测量结果为N=(8.000±0.004)mm。 三、简答题(共15分) 1.示波器实验中,(1)CH1(x)输入信号频率为50Hz,CH2(y)输入信号频率为100Hz;(2)CH1(x)输入信号频率为150Hz,CH2(y)输入信号频率为50Hz;画出这两种情况下,示波器上显示的李萨如图形。(8分)

差法处理数据的优点是什么?(7分) 答:自变量应满足等间距变化的要求,且满足分组要求。(4分) 优点:充分利用数据;消除部分定值系统误差 四、计算题(20分,每题10分) 1、用1/50游标卡尺,测得某金属板的长和宽数据如下表所示,求金属板的面 解:(1)金属块长度平均值:)(02.10mm L = 长度不确定度: )(01.03/02.0mm u L == 金属块长度为:mm L 01.002.10±= %10.0=B (2分) (2)金属块宽度平均值:)(05.4mm d = 宽度不确定度: )(01.03/02.0mm u d == 金属块宽度是:mm d 01.005.4±= %20.0=B (2分) (3)面积最佳估计值:258.40mm d L S =?= 不确定度:2222222 221.0mm L d d s L s d L d L S =+=??? ????+??? ????=σσσσσ 相对百分误差:B =%100?S s σ=0.25% (4分) (4)结果表达:21.06.40mm S ±= B =0.25% (2分) 注:注意有效数字位数,有误者酌情扣 5、测量中的千分尺的零点误差属于已定系统误差;米尺刻度不均匀的误差属于未

大学物理实验教案驻波法测振动频率

实验名称:驻波法测振动频率 实验目的: 1、求出弦线线密度; 2、观察弦线上的驻波; 3、绘出弦线上横波波长与张力的关系; 4、测出弦振动的频率。 实验仪器: 电振音叉(频率约为Hz 100) 弦线 滑轮 砝码托 砝码(5个) 钢卷尺 螺丝刀 电子天平 实验原理: 1、 弦线上横波传播速度(一) 如图1所示,将细弦线的一端固定在电振音叉的一个叉子顶端上,另一端绕过滑轮挂上砝码。闭合电源K 后,调节音叉断续器的接触点螺丝k ',使音叉维持稳定的振动,并将其振动沿弦线向滑轮一端传播,形成横波。当横波到达B 点后产生反射,由于前进波与反射波能够满足相干条件,在弦线上形成驻波,而任意两个相邻的波节(或波腹)间的距离都为波长的一半。适当调节砝码重量或弦长(音叉端到滑轮轴间的线长),在弦上将出现稳定的强烈的振动,即弦与音叉共振(弦振动频率应当和音叉的频率f 相等)。弦共振时,驻波的振幅最大,音叉端为稍许振动的节点(非共振时,音叉端不是驻波的节点),若此时弦上有n 个半波区,则 n l 2=λ,弦上的波速v 则为: 图1 f v λ= (1) 即:f n l v 2= (1’) 2、 弦线上横波传播速度(二) 若横波在张紧的弦线上沿x 轴正方向传播,我们取ds AB =的微元段加以讨论(图2)。设弦线的线密度(即单位长质量)为ρ,则此微元段弦线ds 的质量为ds ρ。在A 、B 处受到左右邻段的张力分别为1T F 、2T F ,其方向为沿弦线的切线方向与x 轴交成1α、2α角。 由于弦线上传播的横波在x 方向无振动,所以作 用在微元段ds 上的张力的x 分量应该为零,即:0cos cos 1122=-ααT T F F (2) 又根据牛顿第二定律,在y 方向微元段的运动方程为: 221122sin sin dt y d ds F F T T ραα=- (3) 对于小的振动,可取dx ds ≈,而1α、2α都很小,所以1cos 1≈α,1cos 2≈α, 11sin ααtg ≈ , x y 图 2

相关文档
最新文档