大学物理实验报告数据处理及误差分析

合集下载

实验数据误差分析和数据处理

实验数据误差分析和数据处理

仪器、装置误差;
测量环境误差;
温度、湿度、光照,电磁场等 理论公式为近似 或实验条件达不 到理论公式所规 定的要求
测量理论或方法误差;
人员误差---生理或心理特点所造成的误差。 特点:同一被测量多次测量中,保持恒定或以可预知的方 式变化(一经查明就应设法消除其影响)
分类:
误 差 理 论 基 础
a. 定值系统误差-----其大小和符号恒定不变。
二、偶然误差和系统误差
误 差 理 论 基 础
误差分类 按其性质和原因可分为三类:
系统误差
偶然误差(随机误差)
粗大误差
误 差 理 论 基 础
1.系统误差:在重复测量条件下对同一被测量进行无限 多次测量结果的平均值减去真值 x ( n ) a
来源:
标准器误差;仪器安装调整不妥,不水平、 不垂直、偏心、零点不准等,如天平不等臂, 分光计读数装置的偏心;附件如导线

录计量结果; c. 任何测量都有误差,应运用误差理论估计判断测量结果是否可靠----对计量结果误差分析和计算; d. 实验目的是为了从测得的大量数据中得到实验规律,寻找各变量 间的相互关系------数据处理;
e. 最后写出测量结果-----结果表达。
误差理论基础
绪 主要内容:
基本概念——物理实验和测量误差 误差分类——偶然误差和系统误差 误差计算——测量结果的不确定度 数据格式——有效数字 数据处理——用最二乘法作直线拟合
处理: 任何实验仪器、理论模型、实验条件,都不可能理想 a. 消除产生系统误差的根源(原因) b. 选择适当的测量方法
误 差 理 论 基 础
1) 交换法----如为了消除天平不等臂而产生的系统误差 2) 替代法----如用自组电桥测量电阻时

大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。

2.利用螺旋测微计测量时,未做初读数校正。

3.两个实验者对同一安培计所指示的值读数不同。

4.天平测量质量时,多次测量结果略有不同。

5.天平的两臂不完全相等。

6.用伏特表多次测量某一稳定电压时,各次读数略有不同。

7.在单摆法测量重力加速度实验中,摆角过大。

二、区分下列概念1.直接测量与间接测量。

2.系统误差与偶然误差。

3.绝对误差与相对误差。

4.真值与算术平均值。

5.测量列的标准误差与算术平均值的标准误差。

三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。

四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。

五、推导下列函数表达式的误差传递公式和标准误差传递公式。

1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。

1.用M尺<最小分度为1mm)测量物体长度。

3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。

68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。

1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。

b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。

长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。

大学物理实验—误差及数据处理

大学物理实验—误差及数据处理

误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。

这节课我们学习误差及数据处理的知识。

数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。

一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。

测量值:数值+单位。

分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。

直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。

间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。

例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。

等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。

非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。

2.误差真值A:我们把待测物理量的客观真实数值称为真值。

一般来说,真值仅是一个理想的概念。

实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。

误差ε:测量值与真值之间的差异。

误差可用绝对误差表示,也可用相对误差表示。

绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。

为了全面评价测量的优劣, 还需考虑被测量本身的大小。

绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。

相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。

(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。

实验数据误差分析和数据处理

实验数据误差分析和数据处理

实验数据误差分析和数据处理数据误差分析是首要的步骤,它通常包括以下几个方面:1.随机误差:随机误差是指在重复实验的过程中,由于个体差异等原因引起的测量结果的离散性。

随机误差是不可避免的,并且符合一定的统计规律。

通过进行多次重复测量,并计算平均值和标准差等统计指标,可以评估随机误差的大小。

2.系统误差:系统误差是由于仪器、测量方法或实验条件所引起的,使得测量结果与真实值的偏离。

系统误差可能是由于仪器刻度的不准确、环境温度的变化等原因导致的。

通过合理校准仪器、控制环境条件等方式可以减小系统误差。

在数据误差分析的基础上,进行数据处理是必不可少的步骤。

数据处理的目的是通过对实验结果的合理处理,得到更为准确的结论。

1.统计处理:统计方法是最常用的数据处理方法之一、通过使用统计学中的概率分布、假设检验、方差分析等方法,可以对实验数据进行科学、客观的分析和处理。

2.回归分析:回归分析是一种通过建立数学模型来研究变量之间关系的方法。

通过对实验数据进行回归分析,可以确定变量之间的数学关系,并预测未知数据。

3.误差传递与不确定度评定:在实验中,不同参数之间的误差如何相互影响,以及这些误差如何传递到最终结果中,是一个重要的问题。

通过不确定度评定方法,可以定量评估各个参数的不确定度,并估计最终结果的不确定度。

4.数据可视化和图表展示:通过绘制合适的图表,可以更直观地展示实验数据的分布规律、趋势以及变化情况。

例如,折线图、散点图、柱状图等可以有效地展示数据的分布和相关关系。

综上所述,实验数据误差分析和数据处理是进行科学研究的重要环节。

准确评估和处理数据误差可以提高实验结果的可靠性和准确性,为研究结果的正确性提供基础。

通过合理选择和应用适当的数据处理方法,可以从实验数据中得出有意义的结论,并为进一步研究提供指导。

大学物理实验中的误差和不确定性

大学物理实验中的误差和不确定性

大学物理实验中的误差和不确定性在大学物理实验中,误差和不确定性是无法避免的。

它们对实验结果的精确性和可靠性有很大影响。

本文将对大学物理实验中的误差来源、误差分析方法以及不确定性进行探讨,以期帮助读者更好地理解和处理实验数据。

一、误差来源1. 人为误差:人为误差源于实验者自身的不准确操作或测量判断。

例如,实验者在读数时可能存在读数不准确、操作不规范等情况,从而引入人为误差。

2. 仪器误差:仪器本身存在的误差也是实验中常见的来源之一。

不同仪器的精度和灵敏度不尽相同,所以在进行实验时需要仔细选择和使用仪器,以减小仪器误差对实验结果的影响。

3. 随机误差:随机误差是由一系列随机因素引起的误差。

例如,由于环境的微弱变化或测量手法的不完美,导致的重复测量结果不完全一致。

二、误差分析方法1. 重复测量法:重复测量法是通过多次重复测量同一物理量的数值,然后计算平均值和标准偏差,以减小随机误差对结果的影响。

重复测量法可以提高实验结果的可靠性和精确性。

2. 构造误差概率密度分布图:通过对测量数据进行概率密度分布图的构建,可以了解误差在整个测量范围内的分布情况。

常见的误差分布有正态分布、均匀分布等,通过分析误差的概率分布情况,可以更好地理解误差的特性。

3. 方差分析法:方差分析法可以用来分析不同因素对实验结果的影响程度。

通过对实验数据进行方差分析,可以确定主要误差来源,并且对影响程度较大的因素进行优化,提高实验的精确性。

三、不确定性不确定性是物理实验中非常重要的一个概念。

不确定性是对测量结果的不确定程度进行量化的指标,一般用标准不确定度或扩展不确定度来表示。

1. 标准不确定度:标准不确定度是测量结果的一种误差范围估计值,通常用统计学的方法计算得出。

标准不确定度用来表示一个测量结果的可靠性和精确性。

2. 扩展不确定度:扩展不确定度是对标准不确定度进行修正和扩展的一种误差范围估计值,一般是用于报告测量结果。

扩展不确定度是由标准不确定度与置信度相乘得到的。

大物实验----误差理论与数据处理

大物实验----误差理论与数据处理



随机误差具有以下的性质: (1)单峰性 绝对值小的误差出现的机会(概率) 大,绝对值大的误差出现的机会(概率)小。 (2)对称性 大小相等、 符号相反的误差出现的概 率相等。 (3)有界性 非常大的正 负误差出现的概率趋于零。 (4)抵偿性 当测量次数 非常多时,由于正负误差 相互抵消,各误差的代数 随机误差的正态分布曲线 和趋于零。
(1)理论分析法 观测者凭借有关某项实验的物理理论、实验 方法和实验经验等对实验理论公式的近似性、所 采用的实验方法的完善性等进行研究与分析。 (2)对比法 (3)数据分析法
4.系统误差的减小或消除
(1)利用标准器具减消系统误差; (2)修正已经确定的定值系统误差; (3)采用合理、规范的测量步骤减消系统误差; (4)选择或改进测量方法减消系统误差。


根据统计理论可得:
f ( ) 1 e 2
2 2 2


式中σ是一个取决于具体测量条件的常数称为标 准误差(或称均方误差)。 σ反映的是一组测量数据的离散程度,常称 它为测量列的标准误差;它的数学表达式为:
( xi a ) 2 lim n n
可以证明
f ( )d 0.683 68.3%
称为绝对误差。 相对误差是误差与真值之比;通常用标准偏 差和平均值之比作为相对误差的估计值。相对误 差常他用符号 E 来表示,并表示成百分数。
三.过失误差(异常值)的剔除 1.拉依达准则:适用于测量次数n较大的测 量。 2.肖维涅准则: x cn S (x) (16页) 3.格拉布斯准则:x g( n, P ) S ( x)
(3)人的因素 由于观测者本人的生理或心理特 点所造成的误差。 (4)环境 由于环境条件如温度、气压、湿度的 变化等所引起的误差。

大学物理实验误差分析

大学物理实验误差分析

而 省 却 了 相 关 的计 算 测 量 结 果 及 其 不 确
定度表 示为 :
y Y±U) 量单 位 ; - -( 计 k 2
表达式中: Y为物 理 量 ; y为物 理 量 的 平 均值 ; U为 置信 概 率 近 似9 %的 扩 展不 确 定 5 度 。 些 院 校 及 某 些 研 究 部 门 只 使 用合 成 一
性 , 映 着 随 即 误 差 量 以 及 未 定 的 系 统 误 反 差 分 布 关 系 , 际 上 也 可 近 似 看 作 是 一 个 实 误 差 极 限 值 , 于 一定 的 置信 区 间 , 征 的 处 表 是 测 量 结 果 。 纯 理 论 上 而 言 , 确 定 度 可 从 不 通 过 误 差 理 论 来 求 得 , 般 用标 准 偏 差 来 一
科 技 教 育
SIC &TC 00Y CNE EH Le E N
匪圆
大 学 物 理 实验 误 差 分析
陈 铭 琦 ( 无锡 市广播 电视大 学 江苏 无锡 2 0 1 1 1) 4 摘 要 : 学物理 实验课 是对 高等学校 学生进行科 学实验 训练 的一 门独立的必修基 础课 , 差理论教 学是 实验教 学的重要 内容 , 大 误 贯穿于整 个 实验 过 程 。 章 阐述 了 大 学 物 理 实验 误 差 分 析 相 关概 念 , 析 了误 差 以 及 不 确 定 度 相 关 问题 。 文 分 关 键 词 : 学物 理 实验 误 差 分 析 不 确 定度 大 中 图分 类 号 : 6 G 4 文献 标 识 码 : A 文章 编 号 : 6 2 3 9 ( 0 )2 b一 2 1 0 I 7 — 7 12 1 1 ( ) 0 0 — 1 o 大 学 课 程 中 开 设 物 理 实 验 不 仅 是 为 了 让 大 家 定 性 地 了解 物 理 现 象 , 重 要 的 是 更 对 相 关 物 理 量 进 行 定量 地 测 量 和 分 析 , 在 测 量 过 程 中 因 为试 验 方 法 , 器 , 剂 及 自 仪 试 分析 方 法 , 在 误 差 分 析 反 方 面 起 到 了不 并 容忽视的重要作用 。 U () I=电表 量 程 ×a %/√i 式 中a为 电表 的级 别 。 当可 以 进 行 单 次 测量 时 , 其标 准不 确 定 度 的B类评 定 可 以替 代合成标 准不确定度 。

大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析
在不同测量条件下进行的一系列测量,例如不同的人员,使用不同的仪器,采用不同的方法进行测量,则各次测量结果的可靠程度自然也不相同,这样的测量称为不等精度测量。处理不等精度测量的结果时,需要根据每个测量值的“权重”,进行“加权平均”,因此在一般物理实验中很少采用。
等精度测量的误差分析和数据处理比较容易,下面所介绍的误差和数据处理知识都是针对等精度测量的。
按照测量值获得方法的不同,测量分为直接测量和间接测量两种。
直接从仪器或量具上读出待测量的大小,称为直接测量。例如,用米尺测物体的长度,用秒表测时间间隔,用天平测物体的质量等都是直接测量,相应的被测物理量称为直接测量量。
如果待测量的量值是由若干个直接测量量经过一定的函数运算后才获得的,则称为间接测量。例如,先直接测出铁圆柱体的质量m、直径D和高度h,再根据公式??4m计算出铁的的密度2?Dh
3实验报告
实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。
完整的实验报告应包括下述几部分内容:数据表格在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签名的原始数据记录纸要附在本次报告一起交)。数据处理根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。结果表达按下面格式写出最后结果:
仪器因素由于仪器本身的固有缺陷或没有按规定条件调整到位而引起误差。例如,仪器标尺的刻度不准确,零点没有调准,等臂天平的臂长不等,砝码不准,测量显微镜精密螺杆存在回程差,或仪器没有放水平,偏心、定向不准等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

篇一:大学物理实验1误差分析云南大学软件学院实验报告课程:大学物理实验学期: - 学年第一学期任课教师:专业:学号:姓名:成绩:实验1 误差分析一、实验目的1. 测量数据的误差分析及其处理。

二、实验内容1.推导出满足测量要求的表达式,即 0? (?)的表达式;0= (( * )/ (2*θ))2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程,记入下表中:3.根据上表计算出字母A对应的发射初速,注意数据结果的误差表示。

将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[]_ = ("A. "," ")_ = _ . ad ()[:-1] = _ [:]. ('\ ')_ = _ . ad ()[:-1] = _ [:]. ('\ ') a(0,10):.a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _+= [ ] 0= _ /10.0 04.选择速度B、C、D、重复上述实验。

BC6.实验小结(1) 对实验结果进行误差分析。

将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为-2.84217094304 -13 a =9.8 _ =0 1=0 =[]_ = ("B. "," ")_ = _ . ad ()[:-1] = _ [:]. ('\ ')_ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10):.a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0a (0,10):1+= [ ]- 0 1/10.0 1(2) 举例说明“精密度”、“正确度”“精确度”的概念。

1. 精密度计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。

2. 正确度计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差正确度高定精密度高说测值系统误差定其随机误差亦。

3. 精确度计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。

比如说系统误差就是秤有问题,称一斤的东西少2两。

这个一直恒定的存在,谁来都是这样的。

这就是系统的误差。

随机的误差就是在使用秤的方法。

篇二:数据处理及误差分析物理实验课的基本程序物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。

1实验前的预习为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。

实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。

预习报告包括下列栏目:实验名称写出本次实验的名称。

实验目的应简单明确地写明本次实验的目的要求。

实验原理扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。

若讲义与实际所用不符,应以实际采用的原理图为准。

实验内容简明扼要地写出实验内容、操作步骤。

为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。

注意要正确地表示出有效数字和单位。

2课堂操作进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分尺调零、天平调水平和平衡、光路调同轴等高等)。

准备就绪后开始测量。

测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。

数据之间要留有间隙,以便补充。

发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。

实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。

运算的错误可以修改,原始数据则不能擅自改动。

全部数据必须经老师检查、签名,否则本次实验无效。

两人同作一个实验时,要既分工又协作,以便共同完成实验。

实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。

3实验报告实验报告是实验工作的总结。

要用简明的形式将实验报告完整而又准确地表达出来。

实验报告要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。

应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。

完整的实验报告应包括下述几部分内容:数据表格在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签名的原始数据记录纸要附在本次报告一起交)。

数据处理根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。

按照实验要求计算待测的量值、绝对误差及相对误差。

书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。

而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。

结果表达按下面格式写出最后结果:(待测量)? ..测量结果)(总绝对误差)? (相对误差)100%结果分析对本次实验的结果及主要误差因数作简要的分析讨论,并完成课后的思考题。

还可以谈谈实验的心得体会。

如果实验是为了观察某一物理现象或者观察某一物理规律,可只扼要地写出实验结论。

以上是对报告的一般性要求。

不同的实验,可以根据具体情况有所侧重和取舍,不必千篇一律。

误差处理物理实验的任务,不仅仅是定性地观察物理现象,也需要对物理量进行定量测量,并找出各物理量之间的内在联系。

由于测量原理的局限性或近似性、测量方法的不完善、测量仪器的精度限制、测量环境的不理想以及测量者的实验技能等诸多因素的影响,所有测量都只能做到相对准确。

随着科学技术的不断发展,人们的实验知识、手段、经验和技巧不断提高,测量误差被控制得越来越小,但是绝对不可能使误差降为零。

因此,作为一个测量结果,不仅应该给出被测对象的量值和单位,而且还必须对量值的可靠性做出评价,一个没有误差评定的测量结果是没有价值的。

下面介绍测量与误差、误差处理、有效数字、测量结果的不确定度评定等基本知识,这些知识不仅在后面的实验中要经常用到,而且也是今后从事科学实验工作所必须了解和掌握的。

1测量与误差一、测量及其分类所谓测量,就是借助一定的实验器具,通过一定的实验方法,直接或间接地把待测量与选作计量单位的同类物理量进行比较的全部操作。

简而言之,测量是指为确定被测对象的量值而进行的一组操作。

按照测量值获得方法的不同,测量分为直接测量和间接测量两种。

直接从仪器或量具上读出待测量的大小,称为直接测量。

例如,用米尺测物体的长度,用秒表测时间间隔,用天平测物体的质量等都是直接测量,相应的被测物理量称为直接测量量。

如果待测量的量值是由若干个直接测量量经过一定的函数运算后才获得的,则称为间接测量。

例如,先直接测出铁圆柱体的质量、直径D和高度,再根据公式4 计算出铁的的密度2?Dρ,这就是间接测量,ρ称为间接测量量。

按照测量条件的不同,测量又可分为等精度测量和不等精度测量。

在相同的测量条件下进行的一系列测量是等精度测量。

例如,同一个人,使用同一仪器,采用同样的方法,对同一待测量连续进行多次测量,此时应该认为每次测量的可靠程度相同,故称之为等精度测量,这样的一组测量值称为一个测量列。

在不同测量条件下进行的一系列测量,例如不同的人员,使用不同的仪器,采用不同的方法进行测量,则各次测量结果的可靠程度自然也不相同,这样的测量称为不等精度测量。

处理不等精度测量的结果时,需要根据每个测量值的“权重”,进行“加权平均”,因此在一般物理实验中很少采用。

等精度测量的误差分析和数据处理比较容易,下面所介绍的误差和数据处理知识都是针对等精度测量的。

二、误差与偏差1.真值与误差任何一个物理量,在一定的条件下,都具有确定的量值,这是客观存在的,这个客观存在的量值称为该物理量的真值。

测量的目的就是要力图得到被测量的真值。

我们把测量值与真值之差称为测量的绝对误差。

设被测量的真值为χ0,测量值为χ,则绝对误差ε为ε=χ–χ0(1)由于误差不可避免,故真值往往是得不到的。

所以绝对误差的的概念只有理论上的价值。

2.最佳值与偏差在实际测量中,为了减小误差,常常对某一物理量进行多次等精度测量,得到一系列测量值 1, 2,…,,则测量结果的算术平均值为?121 ? (2) ?1算术平均值并非真值,但它比任一次测量值的可靠性都要高。

系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。

我们把测量值与算术平均值之差称为偏差(或残差):? (3)三、误差的分类正常测量的误差,按其产生的原因和性质可分为系统误差和随机误差两类,它们对测量结果的影响不同,对这两类误差处理的方法也不同。

1.系统误差在同样条件下,对同一物理量进行多次测量,其误差的大小和符号保持不变或随着测量条件的变化而有规律地变化,这类误差称为系统误差。

系统误差的特征是具有确定性,它的主要有以下几个方面:仪器因素由于仪器本身的固有缺陷或没有按规定条件调整到位而引起误差。

例如,仪器标尺的刻度不准确,零点没有调准,等臂天平的臂长不等,砝码不准,测量显微镜精密螺杆存在回程差,或仪器没有放水平,偏心、定向不准等。

理论或条件因素由于测量所依据的理论本身的近似性或实验条件不能达到理论公式所规定的要求而引起误差。

例如,称物体质量时没有考虑空气浮力的影响,用单摆测量重力加速度时要求摆角?→0,而实际中难以满足该条件。

人员因素由于测量人员的主观因素和操作技术而引起误差。

例如,使用停表计时,有的人总是操之过急,计时比真值短;有的人则反应迟缓,计时总是比真值长;再如,有的人对准目标时,总爱偏左或偏右,致使读数偏大或偏小。

对于实验者来说,系统误差的规律及其产生原因,可能知道,也可能不知道。

已被确切掌握其大小和符号的系统误差称为可定系统误差;对于大小和符号不能确切掌握的系统误差称为未定系统误差。

前者一般可以在测量过程中采取措施予以消除,或在测量结果中进行修正。

而后者一般难以做出修正,只能估计其取值范围。

2.随机误差在相同条件下,多次测量同一物理量时,即使已经精心排除了系统误差的影响,也会发现每次测量结果都不一样。

测量误差时大时小,时正时负,完全是随机的。

相关文档
最新文档