误差分析和数据处理

合集下载

数据处理与误差分析报告

数据处理与误差分析报告

数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。

在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。

本报告将对数据处理的方法进行介绍,并分析误差来源和处理。

2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。

通过筛选和校对,确保数据的准确性和一致性。

2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。

这样可以方便进行后续的分析和比较。

2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。

常见的数据归约方法包括维度约简和特征选择等。

2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。

通过统计分析,可以从整体上了解和描述数据的特征和分布情况。

3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。

观测误差可以分为系统误差和随机误差两种类型。

系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。

3.2 数据采集误差数据采集误差包括采样误差和非采样误差。

采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。

采取合理的抽样策略和数据校正方法,可以减小这些误差。

3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。

不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。

3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。

模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。

通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。

误差分析与数据处理.

误差分析与数据处理.

误差分析与数据处理.《误差分析与数据处理》在我们的日常生活和各种科学研究、工程实践中,数据无处不在。

然而,数据往往并非绝对准确,总是存在着一定的误差。

理解误差的来源、性质,并掌握有效的数据处理方法,对于获取准确可靠的信息至关重要。

误差,简单来说,就是测量值与真实值之间的差异。

它的产生可能源于多个方面。

首先,测量工具本身就可能存在精度限制。

比如,我们用一把尺子去测量物体的长度,如果这把尺子的刻度不够精细,那么测量结果就可能存在误差。

其次,测量的环境条件也会影响结果。

例如,温度、湿度、压力等环境因素的变化,可能导致测量对象的性质发生改变,从而引入误差。

再者,测量者的操作水平和方法也不容忽视。

测量时的读数不准确、测量姿势不正确等,都可能导致误差的产生。

误差可以分为系统误差和随机误差两大类。

系统误差是指在相同条件下,多次测量同一量时,误差的大小和符号保持恒定,或者按照一定规律变化的误差。

这种误差通常是由于测量仪器的不完善、测量方法的不正确或者测量环境的影响等原因造成的。

例如,使用未经校准的仪器进行测量,每次测量都会得到偏大或偏小的结果,这就是系统误差。

与之相对的是随机误差,也称为偶然误差。

它是指在相同条件下,多次测量同一量时,误差的大小和符号以不可预知的方式变化的误差。

随机误差是由许多微小的、独立的、不可控的因素共同作用产生的。

比如,测量时的微小震动、电源电压的波动等。

虽然随机误差的具体值无法预测,但从大量的测量数据来看,随机误差的分布通常遵循一定的统计规律,比如正态分布。

了解了误差的类型,接下来我们要探讨如何进行误差分析。

误差分析的第一步是识别误差的来源。

这需要我们对测量过程进行仔细的观察和思考,找出可能导致误差的各个环节。

然后,通过对测量数据的统计分析,可以定量地评估误差的大小。

常用的误差分析方法包括计算平均值、标准差、相对误差等。

平均值是一组数据的算术平均值,它可以反映数据的集中趋势。

但平均值并不能完全反映数据的离散程度,这时候就需要用到标准差。

实验误差分析及数据处理

实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z

Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n

i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。

误差与分析数据的处理

误差与分析数据的处理

误差与分析数据的处理概述在科学研究和实验中,我们常常会遇到误差。

误差是指观测值与真实值之间的差异,是由各种不确定性引起的。

正确地处理误差并分析数据是科学研究和实验的重要环节。

本文将介绍误差的分类以及分析数据时常用的方法和技巧。

误差分类根据误差的来源和性质,可以将误差分为以下几类:1.系统误差:系统误差是由于实验仪器、测量方法或操作者的偏差引起的误差。

例如,仪器的不准确性、测量方法的局限性以及操作者的技术水平都可能导致系统误差。

系统误差在实验过程中是相对固定的,可以通过校正或调整仪器、改进测量方法和提高操作技巧来减小。

2.随机误差:随机误差是由于各种无法预测和无法避免的因素引起的误差。

例如,环境条件的变化、仪器的漂移以及实验中的偶然因素都可能导致随机误差。

随机误差在实验过程中是随机出现的,并且不具有固定的方向和大小。

减小随机误差的方法包括增加样本量、重复实验以及使用统计方法对数据进行分析。

数据处理方法在分析数据时,我们常常需要采用一些方法来处理误差和提取有用的信息。

下面是一些常用的数据处理方法和技巧:1.平均值:平均值是最基本的数据处理方法之一。

通过将多个观测值相加并除以观测值的个数,可以得到平均值。

平均值可以反映数据的总体趋势,但在存在较大偏差或异常值的情况下不具有代表性。

2.方差和标准差:方差和标准差是衡量数据分散度的指标。

方差是观测值与平均值之间差异的平方的平均值,标准差是方差的平方根。

较大的方差和标准差表示数据较为分散,较小的方差和标准差表示数据较为集中。

3.置信区间:置信区间是对数据的估计范围。

通过计算平均值和标准差,可以得到数据的置信区间。

较大的置信区间表示数据的估计范围较大,较小的置信区间表示数据的估计范围较小。

4.线性回归:线性回归是一种用于量化数据之间关系的方法。

通过将数据拟合到一条直线上,可以得到数据之间的线性关系和相关性。

线性回归可以帮助我们预测和预测数据。

数据分析技巧在进行数据分析时,我们还需要一些技巧和策略来处理误差和解释数据。

数据处理及误差分析

数据处理及误差分析

数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。

在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。

因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。

2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。

它包括了数据清洗、数据转换、数据提取和数据集成等步骤。

2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。

清洗后的数据更加可靠和准确,能够更好地反映实际情况。

2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。

比如,将连续型数据离散化、进行数据标准化等。

2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。

通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。

2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。

通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。

3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。

误差可以分为系统误差和随机误差两种类型。

3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。

它们可能是由于仪器精度不高、实验环境变化等原因引起的。

系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。

3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。

它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。

4. 误差分析方法误差分析通常采用统计学和数学方法进行。

其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。

4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。

它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。

4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。

物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析在物理实验中,数据处理与误差分析是非常重要的环节。

准确地处理实验数据并分析误差,可以提高实验结果的可靠性和准确性。

本文将介绍一些常见的数据处理方法和误差分析技巧,帮助读者更好地理解和应用这些知识。

一、数据处理方法1.平均值的计算在实验中,经常需要多次测量同一物理量,然后将测量结果求平均值。

计算平均值可以减小测量误差的影响,提高结果的准确性。

求平均值的方法很简单,只需要将所有测量结果相加,然后除以测量次数即可。

2.误差的传递在物理实验中,往往需要通过测量一些基本物理量来计算其他物理量。

当存在多个物理量的测量误差时,需要对误差进行传递计算。

常见的误差传递公式有乘法、除法和幂函数的误差传递公式。

3.直线拟合与斜率的计算在一些实验中,我们需要通过实验数据拟合一条直线来获得一些重要信息,如斜率、截距等。

直线拟合可以通过最小二乘法来完成,根据实验数据点与拟合直线的最小距离来确定直线的参数。

而斜率的计算可以通过拟合得到的直线参数来得出。

二、误差分析技巧1.随机误差与系统误差在物理实验中,误差通常分为随机误差和系统误差。

随机误差是由实验条件不完全相同或测量仪器精度的限制造成的,它的值在一定范围内变化。

系统误差是由于实验条件的固有缺陷或仪器的固有误差造成的,它的值通常是恒定的。

在误差分析中,需要分别考虑和处理这两种误差。

2.误差的类型与来源误差可以分为绝对误差和相对误差。

绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与测量结果之间的比值。

误差的来源主要有仪器误差、人为误差和环境误差等。

3.误差的评估与控制误差的评估是确定测量结果可靠性和准确性的重要步骤。

通常可以采用标准差、百分误差和置信区间等方法来评估误差。

同时,通过合理地控制实验条件、使用精密的仪器和注意操作技巧等措施,可以降低误差的产生。

三、实例分析为了更好地理解数据处理与误差分析的应用,我们以一次重力实验为例进行分析。

物理实验-误差分析与数据处理

物理实验-误差分析与数据处理

物理实验-误差分析与数据处理误差分析是物理实验中非常重要的一部分,因为任何实验都不能避免误差的产生。

正确的误差分析可以帮助我们更准确地评估实验结果的可靠性。

误差的种类误差有很多种类,可以根据其来源分为系统误差和随机误差。

系统误差是由于仪器或测量方法的固有限制而产生的误差,比如温度、光照度等环境因素,或者是仪器的器差、零位偏移等固有缺陷。

随机误差则是因为测量本身具有的不确定性导致的,例如仪器的读数精度、人为判断的主观因素等。

误差的分析方法在进行误差分析时,需要进行多组实验,并对实验数据进行统计分析。

这样可以得到平均值、标准差等指标,从而判断实验结果的可靠性。

误差分析的方法包括:1.平均值分析法平均值分析法是利用多组数据求算数平均数,再计算出标准差、方差等参数,来分析误差的大小。

2.回归分析法回归分析法是利用统计方法对实验数据进行曲线拟合,从而得出其他数据点的数值,这样可以更准确地估计误差。

3.传递误差法传递误差法是针对复合测量而制定的,它是通过对不同测量值之间的误差进行逐步推导,来计算出最终结果的误差。

数据处理在误差分析的基础上,还需要进行数据处理。

数据处理是根据实验目的,对实验数据进行合理的处理和分析,从而得出合适的结论。

数据处理的步骤包括:1.数据整理将实验数据按照时间、位置、量程等标准进行整理归纳,使其能够清晰地反映实验情况。

2.数据统计对实验数据进行统计运算,并计算出平均值、标准差、方差等指标。

3.数据分析根据实验目的和统计结果,对实验数据进行分析和解释,从而得出更准确和科学的结论。

总结。

物理实验中的数据处理和误差分析方法

物理实验中的数据处理和误差分析方法

物理实验中的数据处理和误差分析方法在物理实验中,数据处理和误差分析是非常重要的环节。

准确地处理实验数据和分析误差有助于提高实验结果的可靠性和准确性,进而为科学研究提供可靠的依据。

本文将介绍一些常用的数据处理和误差分析方法。

一、数据处理方法1. 数据整理在开始数据处理之前,首先需要整理实验数据。

将实验数据按照一定的规则进行排列,比如按照实验的不同条件进行分类、按照时间顺序排列等。

这样有助于我们对数据进行更加有效的处理。

2. 数据可视化将实验数据进行可视化处理是数据处理中常用的方法之一。

通过绘制图表,可以直观地展示数据的分布和趋势。

常用的图表包括折线图、柱状图、散点图等。

通过观察图表可以更好地理解数据,找出其中的规律。

3. 数据拟合数据拟合是将实验数据与某种数学模型相拟合的过程。

通过拟合可以得到更加精确的结果。

常用的拟合方法包括线性拟合、最小二乘法拟合等。

通过拟合得到的模型参数可以更好地描述实验数据,并用于预测未知数据。

二、误差分析方法1. 绝对误差与相对误差绝对误差是指实际测量值与真实值之间的差别,可以通过多次测量取平均值来减小。

相对误差是绝对误差与测量值的比值,可以用来评估测量结果的精度。

在误差分析中,我们通常关注相对误差。

2. 系统误差与随机误差系统误差是由于实验装置、测量仪器等固有原因导致的误差,可以通过校正来减小。

随机误差是由于实验中不可预测的因素引起的误差,可以通过多次测量取平均值来减小。

3. 方差分析方差分析是一种常用的误差分析方法。

通过对不同因素引起的误差进行方差分析,可以确定各个因素对误差的贡献程度,进而找出影响实验结果的主要因素。

4. 不确定度分析不确定度是描述测量结果的范围的指标,用来表示测量结果的可靠程度。

不确定度分析是通过对测量过程中各种因素进行综合考虑,计算实验结果的不确定度。

常用的不确定度分析方法包括合成不确定度法、最小二乘法不确定度分析等。

5. 能力指标分析能力指标分析是对实验结果质量进行评估的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。

这说明在测定中有误差。

为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。

1.1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值。

通常一个物理量的真值是不知道的,是我们努力要求测到的。

严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。

科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。

故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。

(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。

一般我们称这一最佳值为平均值。

常用的平均值有下列几种:(1)算术平均值这种平均值最常用。

凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。

式中: n x x x 21、——各次观测值;n ――观察的次数。

(2)均方根平均值(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。

式中;n x x x 21、——各次观测值;n w w w 21、——各测量值的对应权重。

各观测值的权数一般凭经验确定。

(4)几何平均值(5)对数平均值以上介绍的各种平均值,目的是要从一组测定值中找出最接近真值的那个值。

平均值的选择主要决定于一组观测值的分布类型,在化工原理实验研究中,数据分布较多属于正态分布,故通常采用算术平均值。

(三)中位数(xM )一组测量数据按大小顺序排列,中间一个数据即为中位数。

当测定次数为偶数时,中位数为中间相邻的两个数据的平均值。

它的优点是能简便地说明一组测量数据的结果,不受两端具有过大误差的数据的影响。

缺点是不能充分利用数据。

1.2 准确度与误差准确度与误差是指测定值与真实值之间相符合程度。

准确度的高低常以误差的大小来衡量。

即:误差越小,准确度越高;误差越大,准确度越低。

误差有两种表示方法:绝对误差和相对误差。

1、绝对误差(E)某物理量在一系列测量中,某测量值与其真值之差称绝对误差。

实际工作中常以最佳值代替真值,测量值与最佳值之差称残余误差,习惯上也称为绝对误差。

绝对误差(E)=测定值(x)-真实值(T)2、相对误差(RE)为了比较不同测量值的精确度,以绝对误差与真值(或近似地与平均值)之比作为相对误差。

由于测定值可能大于真实值,也可能小于真实值,所以绝对误差和相对误差都有正、负之分。

绝对误差相同,相对误差可能相差很大。

相对误差是指误差在真实值中所占的百分比率。

相对误差不同说明它们的误差在真实值众所站的百分比率,用相对误差来衡量测定的准确度更具有实际意义。

但应注意有时为了说明一些仪器测量的准确度,用绝对误差更清楚。

例如分析天平的称量误差是±0.0002g,常量滴定的读书误差是±0.01mL等。

这些都是用绝对误差来说明的。

1.3 精密度与偏差精密度是指在相同条件下n次重复测定结果彼此相符合的程度。

精密度的大小用偏差表示,偏差愈小说明精密度愈高。

(一)偏差偏差有绝对偏差和相对偏差。

绝对偏差(d)=xx-相对偏差是指单次测定值与平均值的偏差。

相对偏差=%100⨯-xxx相对偏差是指绝对偏差在平均值中所占的百分率。

绝对偏差和相对偏差都有正负之分,单次测定的偏差之和等于零。

对多次测定数据的精密度常用算术平均偏差表示。

(二)算术平均偏差算术平均偏差是指单次测定值与平均值的偏差(取绝对值)之和,除以测定次数。

即算数平均偏差n xx d i -∑=)( (n i ,2,1=)算术平均偏差和相对平均偏差不计正负。

例 计算下面这一组测量值的平均值,算术平均偏差和相对平均偏差。

解: 55.51, 55.50, 55.46, 55.49, 55.51平均值=n x i ∑=49.55551.5549.5546.5550.5551.55=++++算数平均偏差=n xx d i -∑=)(=016.0502.000.003.001.002.0=++++相对平均偏差=%028.0%10049.55016.0%100=⨯=⨯x d(三)标准偏差在数理统计中常用标准偏差来衡量精密度。

1、总体标准偏差总体标准偏差是用来表达测定数据的分散程度,其数学表达式为: 总体标准偏差n x i 2)()(μσ-∑=2、样本标准偏差 一般测定次数有限,μ值不知道,只能用样本标准偏差来表示精密度,其数学表达式为: 样本标准偏差1)()(2--∑=n x x S i 上式中(n-1)在统计学中成为自由度,意思是在n次测定中,只有(n-1)个独立可变的偏差,因为n个绝对偏差之和等于零,所以只要知道(n-1)个绝对偏差,就可以确定第n个的偏差。

3、相对标准偏差标准偏差在平均值中所占的百分率叫做相对标准偏差,也叫变异系数或变动系数(cv),其计算式为:cv=%100⨯xS用标准偏差表示精密度比用算术平均偏差表示要好。

因为单次测定值的偏差经平方后,较大的偏差就能显着地反应出来。

所以产生和科研的分析报告中常用cv表示精密度。

例如,现有两组测量结果,各次测量的偏差分别为:第一组 0.3 0.2 0.4 -0.2 -0.4 0.0 0.1 -0.3 0.2 -0.3第二组 0.0 0.1 -0.7 0.2 0.1 -0.2 0.6 0.1 -0.3 0.1两组的算术平均偏差分别为:第一组24.01=∑=ndd i第二组24.02=∑=ndd i从两组的算术平均偏差的数据看,都等于0.24,说明两组的算术平均偏差相同。

但很明显的可以看出第二组的数据较分散,其中有2个数据即-0.7和0.6偏差较大。

用算术平均值表示显示不出这两个差异,但用标准偏差表示时,就明显的显示第二组数据偏差较大。

各次的标准偏差分别为:第一组 28.01)()(21=--∑=n x x S i第二组34.01)()(22=--∑=n x x S i 由此说明第一组的精密度较好。

4、样本标准偏差的简化计算 按上述公式计算,得先求出平均值,再求出)(x x i -,然后计算出S 值,比较麻烦。

可以通过数学推导,简化为下列等效公式: S=1)(22-∑-∑n n x x i i利用这个公式,可直接从测定值来计算S 值,而且很多计算器上都有2x x ∑∑以及功能,有的计算器上还有S 及σ功能,所以计算S 值还是十分方便的。

(四)极差一般分析中,平行测定次数不多,常用极差(R )来说明偏差的范围,极差也称为“全距”。

R=测定最大值—测定最小值相对极差=%100⨯x R(五)公差公差也称允差。

是指分析方法所允许的平行测定的绝对偏差,公差的数值是将多次测定的分析数据经过数理统计方法处理而确定的,生产实践中用以判断分析结果是否合格的依据。

若2次平行测定的数值之间在规定允差绝对值的2倍以内,认为有效,如果测定结果超出允许的公差范围,成为“超差”,就应重做。

例如:重铬酸钾发测定铁矿石中含铁,2次平行测定结果为33.18%和32.78%,2次结果之差为33.18%-32.78%=-0.40%。

生产部门规定铁矿石含铁量在30%~40%之间,允差为±0.3%。

因为0.4%小于允差±0.3%的绝对值的2倍(即0.6%),所以测定结果有效。

可以用2次测定结果的平均值作为分析结果,即这里要指出的是,以上公差表示方法只是其中的一种,在各种标准分析方法总公差的规定不尽相同,除上述表示方法外,还有用相对误差表示,或用绝对误差表示。

要看公差的具体规定。

1.4 准确度与精密度的关系关于准确度与精密度的关系的定义及确定方法,在前面已有叙述。

准确度和精密度是两个不同的概念,它们相互之间有一定的关系。

现举例说明。

例如现有2组各分析结果的数据如下表所示,并绘制成如图所示的图表(标准值为0.31)。

第一组测定结果:精密度很高,但是平均值与标准值相差很大,说明准确度很低。

第二组测定的结果:精密度不高,测定数据分散,虽然平均值接近标准值,但这是凑巧的来的,如只取2次或3次来平均,结果与标准值相差较大。

第三组数据的结果:测定的数据较集中并接近标准数据,说明其精密度和准确度都较高。

由此可见欲使准确度高,首先必须要求精密度也要高。

但精密度高并不说明其准确度也高,因为可能在测定中存在系统误差,可以说精密度是保证准确度的先决条件。

2 误差的来源与消除方法我们进行样品分析的目的是为了获取准的分析结果,然而即使我们用最可靠的分析方法,最精密的仪器,熟悉细致的操作,所测得的数据也不可能和真实值完全一致。

这说明误差是可观存在的。

但是如果我们掌握了产生误差的基本规律,就可以将误差减小到允许的范围内。

为此必须了解误差产生的性质和产生的原因以及减免的方法。

根据误差产生的原因和性质,我们将误差分为系统误差和偶然误差两大类。

2.1 系统误差系统误差又可成为可测误差。

它是由分析操作过程中的某些经常原因造成的。

在重复测定时,它会重复表现出来,对分析结果的影响比较固定。

这种误差可以设法减小得到可忽略的程度。

化验分析中,将系统误差产生的原因归纳为一下几个方面。

1、仪器误差这种误差是由于使用仪器本身不够精密所造成的。

如使用未经过校正的容量瓶、移液管和砝码等。

2、方法误差这种误差是由于分析方法本身造成的。

如在滴定过程中,由于分应进行的不完全,化学计量点和滴定终点不相符合,以及由于条件没有控制好和发生其它副反应等等原因,都会引起系统的测定误差。

3、试剂误差这种误差是由于所用蒸馏水含有杂质或所使用的试剂不纯所引起的。

4、操作误差这种误差是由于分析操作者掌握分析操作的条件不熟练,个人观察器官不敏锐和固有的习惯所致。

如对滴定终点颜色的判断偏深或偏浅,对仪器刻度标线读数不准确等都会引起测定误差。

2.2 偶然误差(一)偶然误差的规律偶然误差又称随机误差,是指测定值受各种因素的随机波动而引起的误差。

例如,测量时的环境温度、湿度和气压的微小波动,仪器性能的微小变化等,都会使分析结果在一定范围内波动。

偶然误差的形成取决于测定过程中一系列随机因素,其大小和方向都是不固定的。

因此,无法测量,也不可能校正,所以偶然误差又成不可测误差,它是客观存在的,是不可避免的。

根据上述规律,为了减少偶然误差,应该多做几次平行实验并取其平均值。

相关文档
最新文档