数据处理与误差分析报告
误差理论与数据处理实验报告

误差理论与数据处理实验报告姓名:小叶9101学号:小叶9101班级:小叶9101指导老师:小叶目录实验一误差的基本概念实验二误差的基本性质与处理实验三误差的合成与分配实验四线性参数的最小二乘法处理实验五回归分析实验心得体会实验一误差的基本概念一、实验目的通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。
二、实验原理1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示误差=测得值-真值1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。
绝对误差=测得值-真值2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值2、精度反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。
3、有效数字与数据运算含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
数字舍入规则如下:①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。
②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。
③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
即当末位为偶数时则末位不变,当末位为奇数时则末位加1。
三、实验内容1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有四、实验数据整理(一)用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
1、分析:绝对误差:绝对误差=测得值-真值相对误差:相对误差=绝对误差/真值≈绝对误差/测得值2、程序%绝对误差和相对误差的求解x=1897.64 %已知数据真值x1=1897.57 %已知测量值d=x1-x %绝对误差l=(d/x)%相对误差3、在matlab中的编译及运行结果(二)按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。
数据处理与误差分析报告

数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。
在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。
本报告将对数据处理的方法进行介绍,并分析误差来源和处理。
2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。
通过筛选和校对,确保数据的准确性和一致性。
2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。
这样可以方便进行后续的分析和比较。
2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。
常见的数据归约方法包括维度约简和特征选择等。
2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。
通过统计分析,可以从整体上了解和描述数据的特征和分布情况。
3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。
观测误差可以分为系统误差和随机误差两种类型。
系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。
3.2 数据采集误差数据采集误差包括采样误差和非采样误差。
采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。
采取合理的抽样策略和数据校正方法,可以减小这些误差。
3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。
不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。
3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。
模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。
通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。
实验数据误差分析与数据处理

实验数据误差分析与数据处理在实验中,数据误差是不可避免的,它可能来自于多种各方面的因素,如仪器的不精确性、环境条件的影响、样本变化的随机性等等。
因此,在实验数据分析中需要对误差进行合理的处理和分析。
首先,我们需要了解误差的类型。
误差可以分为系统误差和随机误差两种类型。
系统误差是由不可避免的系统偏差引起的,它会导致实验结果的偏离真实值的方向始终相同。
而随机误差是由于随机因素引起的,它会导致实验结果的波动性,其方向和大小是不确定的。
对于系统误差,我们可以采取一些校正措施来减小或消除它们的影响。
例如,我们可以校正仪器的零点,减少仪器本身的偏差。
另外,我们还可以进行实验重复,然后取平均值来消除系统偏差的影响。
对于随机误差,我们可以采取统计方法来分析和处理。
最常见的方法是计算测量值的平均值和标准差。
平均值可以反映实验结果的中心位置,而标准差可以反映实验结果的散布程度。
如果实验数据符合正态分布,我们可以使用正态分布的性质来计算置信区间,从而确定实验结果的误差范围。
此外,还有其他一些常见的数据处理方法,如线性回归分析、方差分析等。
这些方法可以用于分析变量之间的关系、对比实验组和对照组之间的差异等。
通过这些方法,我们可以从实验数据中获取更多的信息和结论。
最后,我们需要注意数据的合理性和可靠性。
在进行数据处理之前,我们应该首先对实验数据进行筛选和清洗,排除异常值和明显错误的数据。
同时,应该确保实验过程的可重复性和可靠性,提高实验数据的准确性和可信度。
总之,实验数据误差分析与数据处理是实验研究中不可或缺的环节。
通过对数据误差的分析和处理,我们可以更好地理解实验结果的可靠性和准确性,并从中提取有效的信息和结论。
因此,在进行实验研究时,我们应该重视数据误差的分析和处理,以确保实验结果的科学性和可信度。
实验误差分析及数据处理

u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
或
Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n
∑
i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。
误差与实验数据处理实验报告

误差与实验数据处理实验报告误差与实验数据处理实验报告引言:实验是科学研究的基础,而数据处理则是实验结果的关键环节。
在实验中,我们不可避免地会遇到误差,而正确处理误差对于实验结果的准确性和可靠性至关重要。
本实验旨在探讨误差的来源、分类以及如何进行实验数据处理,以提高实验结果的可信度。
一、误差的来源1.1 人为误差人为误差是由实验操作者的技术能力、主观判断和个人经验等因素引起的误差。
例如,在使用仪器时,操作者的手部不稳定、读数不准确等都可能导致人为误差的产生。
1.2 仪器误差仪器误差是由于仪器本身的设计、制造和使用不完美而产生的误差。
每个仪器都有其精度和灵敏度限制,而这些限制会对实验结果产生影响。
因此,在进行实验前,我们需要了解仪器的精度和灵敏度,并在数据处理时进行相应的修正。
1.3 环境误差环境误差是由实验环境中的温度、湿度、气压等因素引起的误差。
这些因素会对实验结果产生影响,因此,在实验过程中,我们需要控制环境条件,或者在数据处理时进行环境误差的修正。
二、误差的分类2.1 系统误差系统误差是由于实验装置、仪器或操作方法等造成的误差,其特点是在多次实验中具有一定的规律性。
系统误差可以通过校正仪器、改进操作方法等方式进行减小。
2.2 随机误差随机误差是由于实验过程中的偶然因素引起的误差,其特点是在多次实验中无规律可循。
随机误差可以通过增加实验次数、采用统计方法等方式进行减小。
三、实验数据处理方法3.1 平均值处理平均值处理是最常用的实验数据处理方法之一。
通过多次实验,取得的数据可以计算出平均值,从而减小随机误差的影响。
在计算平均值时,需要注意排除掉明显与其他数据不符的异常值,以保证结果的准确性。
3.2 不确定度分析不确定度是对实验结果的精度进行评估的指标。
在实验数据处理中,我们需要对每个数据的不确定度进行分析,以确定实验结果的可靠程度。
不确定度的计算可以采用传统的“合成法”或“最大偏差法”,具体选择哪种方法取决于实验的特点和要求。
实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理第一节实验数据误差分析一、概述由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差;为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论;实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案;实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高;二、实验误差的来源实验误差从总体上讲有实验装置包括标准器具、仪器仪表等、实验方法、实验环境、实验人员和被测量五个来源;1.实验装置误差测量装置是标准器具、仪器仪表和辅助设备的总体;实验装置误差是指由测量装置产生的测量误差;它来源于:1标准器具误差标准器具是指用以复现量值的计量器具;由于加工的限制,标准器复现的量值单位是有误差的;例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的;又如,标称值为1kg的砝码的实际质量真值并不等于1kg等等;2仪器仪表误差凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值;例如,温度计、电流表、压力表、干涉仪、天平,等等;由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差;例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等;但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差;3附件误差为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件;如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差;又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等;按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差;结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等;这些误差大部分是由于制造工艺不完善和长期使用磨损引起的;调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等;这些误差是由于仪器仪表在使用时,未调整到理想状态引起的;变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等;这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的;2.环境误差环境误差系指测量中由于各种环境因素造成的测量误差;被测量在不同的环境中测量,其结果是不同的;这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一;环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着;测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差;3.方法误差方法误差系指由于测量方法包括计算过程不完善而引起的误差;事实上,不存在不产生测量误差的尽善尽美的测量方法;由测量方法引起的测量误差主要有下列两种情况:第一种情况:由于测量人员的知识不足或研究不充分以致操作不合理,或对测量方法、测量程序进行错误的简化等引起的方法误差;第二种情况:分析处理数据时引起的方法误差;例如,轴的周长可以通过测量轴的直径d,然后由公式:L=πd计算得到;但是,在计算中只能取其近似值,因此,计算所得的L也只能是近似值,从而引起周长L的误差;4.人员误差人员误差系指测量人员由于生理机能的限制,固有习惯性偏差以及疏忽等原因造成的测量误差;由于测量人员在长时间的测量中,因疲劳或疏忽大意发生看错、读错、听错、记错等错误造成测量误差,这类误差往往相当大是测量所不容许的;为此,要求测量人员养成严格而谨慎的习惯,在测量中认真操作并集中精力,从制度上规定,对某些准确性较高而又重要的测量,由另一名测量人员进行复核测量;5.测量对象变化误差被测对象在整个测量过程中处在不断地变化中;由于测量对象自身的变化而引起的测量误差称为测量对象变化误差;例如,被测温度计的温度,被测线纹尺的长度,被测量块的尺寸等,在测量过程中均处于不停地变化中,由于它们的变化,使测量不准而带来误差;三、误差的分类误差是实验测量值包括间接测量值与真值客观存在的准确值之差别,误差可以分为下面三类:1. 系统误差由某些固定不变的因素引起的;在相同条件下进行多次测量,其误差的数值大小正负保持恒定,或误差随条件按一定规律变化;单纯增加实验次数是无法减少系统误差的影响,因为它在反复测定的情况下常保持同一数值与同一符号,故也称为常差;系统误差有固定的偏向和确定的规律,可按原因采取相应的措施给予校正或用公式消除;2. 随机误差偶然误差由一些不易控制的因素引起,如测量值的波动,肉眼观察误差等等;随机误差与系统误差不同,其误差的数值和符号不确定,它不能从实验中消除,但它服从统计规律,其误差与测量次数有关;随着测量次数的增加,出现的正负误差可以相互抵消,故多次测量的算术平均值接近于真值;3.过失误差由实验人员粗心大意,如读数错误,记录错误或操作失误引起;这类误差与正常值相差较大,应在整理数据时加以剔除;四、实验数据的真值与平均值1.真值真值是指某物理量客观存在的确定值,它通常是未知的;虽然真值是一个理想的概念,但对某一物理量经过无限多次的测量,出现的误差有正、有负,而正负误差出现的概率是相同的;因此,若不存在系统误差,它们的平均值相当接近于这一物理量的真值;故真值等于测量次数无限多时得到的算术平均值;由于实验工作中观测的次数是有限的,由此得出的平均值只能近似于真值,故称这个平均值为最佳值;2.平均值油气储运实验中常用的平均值有:1算术平均值设x,x,.,x为各次测量值, n 为测量次数,则算术平均值为:算术平均值是最常用的一种平均值,因为测定值的误差分布一般服从正态分布,可以证明算术平均值即为一组等精度测量的最佳值或最可信赖值;2均方根平均值3几何平均值五、误差的表示方法1.绝对误差测量值与真值之差的绝对值称为测量值的误差,即绝对误差;在实际工作中常以最佳值代替真值,测量值与最佳值之差称为残余误差,习惯上也称为绝对误差;设测量值用x 表示,真值用X 表示,则绝对误差D 为D=|X-x|如在实验中对物理量的测量只进行了一次,可根据测量仪器出厂鉴定书注明的误差,或取测量仪器最小刻度值的一半作为单次测量的误差;如某压力表精确度为级,即表明该仪表最大误差为相当档次最大量程的%,若最大量程为,该压力表的最大误差为:×%=如实验中最常用的U 形管压差计、转子流量计、秒表、量筒等仪表原则上均取其最小刻度值为最大误差,而取其最小刻度值的一半作为绝对误差计算值;2.相对误差绝对误差D 与真值的绝对值之比,称为相对误差:式中真值X 一般为未知,用平均值代替;3.算术平均误差算术平均误差的定义为:x——测量值,i=1,2,3, .,n ;d——测量值与算术平均值x 之差的绝对值,d= x x i . ;4.标准误差均方误差对有限测量次数,标准误差表示为:标准误差是目前最常用的一种表示精确度的方法,它不但与一系列测量值中的每个数据有关,而且对其中较大的误差或较小的误差敏感性很强,能较好地反映实验数据的精确度,实验愈精确,其标准误差愈小;六、精密度、正确度和准确度1、精密度精密度是指对同一被测量作多次重复测量时,各次测量值之间彼此接近或分散的程度;它是对随机误差的描述,它反映随机误差对测量的影响程度;随机误差小,测量的精密度就高;如果实验的相对误差为%且误差由随机误差引起,则可以认为精密度为10-4;2、正确度正确度是指被测量的总体平均值与其真值接近或偏离的程度;它是对系统误差的描述,它反映系统误差对测量的影响程度;系统误差小,测量的正确度就高;如果实验的相对误差为%且误差由系统误差引起,则可以认为正确度为10-4;3、准确度准确度是指各测量值之间的接近程度和其总体平均值对真值的接近程度;它包括了精密度和正确度两方面的含义;它反映随机误差和系统误差对测量的综合影响程度;只有随机误差和系统误差都非常小,才能说测量的准确度高;若实验的相对误差为%且误差由系统误差和随机误差共同引起,则可以认为精确度为10-4;七、实验数据的有效数与记数法任何测量结果或计算的量,总是表现为数字,而这些数字就代表了欲测量的近似值;究竟对这些近似值应该取多少位数合适呢应根据测量仪表的精度来确定,一般应记录到仪表最小刻度的十分之一位;例如:某液面计标尺的最小分度为1mm,则读数可以到;如在测定时液位高在刻度524mm 与525mm 的中间,则应记液面高为,其中前三位是直接读出的,是准确的,最后一位是估计的,是欠准的,该数据为4 位有效数;如液位恰在524mm刻度上,该数据应记为,若记为524mm,则失去一位末位欠准数字;总之,有效数中应有而且只能有一位末位欠准数字;由上可见,当液位高度为时,最大误差为±,也就是说误差为末位的一半;在科学与工程中,为了清楚地表达有效数或数据的精度,通常将有效数写出并在第一位数后加小数点,而数值的数量级由10 的整数幂来确定,这种以10 的整数幂来记数的方法称科学记数法;例如:应记为×10-3,88000有效数3 位记为×104;应注意科学记数法中,在10 的整数幂之前的数字应全部为有效数;有效数字进行运算时,运算结果仍为有效数字;总的规则是:可靠数字与可靠数字运算后仍为可靠数字,可疑数字与可疑数字运算后仍为可疑数字,可靠数字与可疑数字运算后为可疑数字,进位数可视为可靠数字;对于已经给出了不确定度的有效数字,在运算时应先计算出运算结果的不确定度,然后根据它决定结果的有效数字位数;加减运算规则:A.如果已知参与加减运算的各有效数字的不确定度,则先算出计算结果的不确定度,并保留1-2位,然后确定计算结果的有效位数;B.如果没给出参与加减运算的各有效数字的不确定度,则先找出可疑位最高的那个有效数字,计算结果的可疑位应与该有效数字的可疑位对齐;乘除运算规则若干个有效数字相乘除时,计算结果积或商的有效数字位数在大多数情况下与参与运算的有效数字位数最少的那个分量的有效位数相同; 乘方、开方运算规则有效数字在乘方或开方时,若乘方或开方的次数不太高,其结果的有效数字位数与原底数的有效数字位数相同; 对数运算规则有效数字在取对数时,其有效数字的位数与真数的有效数字位数相同或多取1位;第二节 实验数据处理基本方法数据处理是指从获得数据开始到得出最后结论的整个加工过程,包括数据记录、整理、计算、分析和绘制图表等;数据处理是实验工作的重要内容,涉及的内容很多,这里仅介绍一些基本的数据处理方法; 一、列表法对一个物理量进行多次测量或研究几个量之间的关系时,往往借助于列表法把实验数据列成表格;其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系;所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能;列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称符号和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理;3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理; 二、图解法图线能够直观地表示实验数据间的关系,找出物理规律,因此图解法是数据处理的重要方法之一;图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸即毫米方格纸、对数坐标纸和极坐标纸等,根据作图需要选择;在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯;2.曲线改直 由于直线最易描绘,且直线方程的两个参数斜率和截距也较易算得;所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线;下面为几种常用的变换方法;1c xy =c 为常数;令xz 1=,则cz y =,即y 与z 为线性关系; 2y c x =c 为常数;令2x z =,则z cy 21=,即y 与z 为线性关系;3b ax y =a 和b 为常数;等式两边取对数得,x b a y lg lg lg +=;于是,y lg 与x lg 为线性关系,b 为斜率,a lg 为截距;4bx ae y =a 和b 为常数;等式两边取自然对数得,bx a y +=ln ln ;于是,y ln 与x 为线性关系,b 为斜率,a ln 为截距;3.确定坐标比例与标度 合理选择坐标比例是作图法的关键所在;作图时通常以自变量作横坐标x 轴,因变量作纵坐标y 轴;坐标轴确定后,用粗实线在坐标纸上描出坐标轴,并注明坐标轴所代表物理量的符号和单位;坐标比例是指坐标轴上单位长度通常为cm 1所代表的物理量大小;坐标比例的选取应注意以下几点:1原则上做到数据中的可靠数字在图上应是可靠的,即坐标轴上的最小分度m m 1对应于实验数据的最后一位准确数字;坐标比例选得过大会损害数据的准确度;2坐标比例的选取应以便于读数为原则,常用的比例为“1∶1”、“1∶2”、“1∶5”包括“1∶”、“1∶10”…,即每厘米代表“1、2、5”倍率单位的物理量;切勿采用复杂的比例关系,如“1∶3”、“1∶7”、“1∶9”等;这样不但不易绘图,而且读数困难;坐标比例确定后,应对坐标轴进行标度,即在坐标轴上均匀地一般每隔cm 2标出所代表物理量的整齐数值,标记所用的有效数字位数应与实验数据的有效数字位数相同;标度不一定从零开始,一般用小于实验数据最小值的某一数作为坐标轴的起始点,用大于实验数据最大值的某一数作为终点,这样图纸可以被充分利用;4.数据点的标出 实验数据点在图纸上用“+”符号标出,符号的交叉点正是数据点的位置;若在同一张图上作几条实验曲线,各条曲线的实验数据点应该用不同符号如×、⊙等标出,以示区别;5.曲线的描绘 由实验数据点描绘出平滑的实验曲线,连线要用透明直尺或三角板、曲线板等拟合;根据随机误差理论,实验数据应均匀分布在曲线两侧,与曲线的距离尽可能小;个别偏离曲线较远的点,应检查标点是否错误,若无误表明该点可能是错误数据,在连线时不予考虑;对于仪器仪表的校准曲线和定标曲线,连接时应将相邻的两点连成直线,整个曲线呈折线形状;6.注解与说明 在图纸上要写明图线的名称、坐标比例及必要的说明主要指实验条件,并在恰当地方注明作者姓名、日期等;7.直线图解法求待定常数 直线图解法首先是求出斜率和截距,进而得出完整的线性方程;其步骤如下:1选点;在直线上紧靠实验数据两个端点内侧取两点),(11y x A 、22,(y x B ,并用不同于实验数据的符号标明,在符号旁边注明其坐标值注意有效数字;若选取的两点距离较近,计算斜率时会减少有效数字的位数;这两点既不能在实验数据范围以外取点,因为它已无实验根据,也不能直接使用原始测量数据点计算斜率;2求斜率;设直线方程为bx a y +=,则斜率为1212x x y y b --=1-5-13求截距;截距的计算公式为11bx y a -= 1-5-2三、逐差法当两个变量之间存在线性关系,且自变量为等差级数变化的情况下,用逐差法处理数据,既能充分利用实验数据,又具有减小误差的效果;具体做法是将测量得到的偶数组数据分成前后两组,将对应项分别相减,然后再求平均值;例如,在弹性限度内,弹簧的伸长量x 与所受的载荷拉力F 满足线性关系kx F =实验时等差地改变载荷,测得一组实验数据如下表:求每增加1Kg 砝码弹簧的平均伸长量x ∆;若不加思考进行逐项相减,很自然会采用下列公式计算[])(71)()()(7118782312x x x x x x x x x -=-++-+-=∆ 结果发现除1x 和8x 外,其它中间测量值都未用上,它与一次增加7个砝码的单次测量等价;若用多项间隔逐差,即将上述数据分成前后两组,前一组),,,(4321x x x x ,后一组),,,(8765x x x x ,然后对应项相减求平均,即[])()()()(44148372615x x x x x x x x x -+-+-+-⨯=∆ 这样全部测量数据都用上,保持了多次测量的优点,减少了随机误差,计算结果比前面的要准确些;逐差法计算简便,特别是在检查具有线性关系的数据时,可随时“逐差验证”,及时发现数据规律或错误数据; 四、最小二乘法由一组实验数据拟合出一条最佳直线,常用的方法是最小二乘法;设物理量y 和x 之间的满足线性关系,则函数形式为bx a y +=最小二乘法就是要用实验数据来确定方程中的待定常数a 和b ,即直线的斜率和截距;我们讨论最简单的情况,即每个测量值都是等精度的,且假定x 和y 值中只有y 有明显的测量随机误差;如果x 和y 均有误差,只要把误差相对较小的变量作为x 即可;由实验测量得到一组数据为),2,1;,(n i y x i i =,其中i x x =时对应的i y y =;由于测量总是有误差的,我们将这些误差归结为i y 的测量偏差,并记为1ε,2ε,…,n ε,见图1-5-2;这样,将实验数据),(i i y x 代入方程bx a y +=后,得到⎪⎪⎭⎪⎪⎬⎫=+-=+-=+-n n n bx a y bx a y bx a y εεε)()()(222111我们要利用上述的方程组来确定a 和b ,那么a 和b 要满足什么要求呢 显然,比较合理的a 和b 是使1ε,2ε,…,n ε数值上都比较小;但是,每次测量的误差不会相同,反映在1ε,2ε,…,n ε大小不一,而且符号也不尽相同;所以只能要求总的偏差最小,即min 21→∑=i ni ε 令 2121)(i in i i ni bx a yS --==∑∑==ε使S 为最小的条件是0=∂∂a S ,0=∂∂bS ,022>∂∂a S ,022>∂∂b S由一阶微商为零得y⎪⎪⎭⎪⎪⎬⎫=--∑-=∂∂=--∑-=∂∂==0)(20)(211i i i n i i i n i x bx a y b Sbx a y aS 解得 212112111)(i ni i ni ini i ni i i n i i n i x n x y x y x x a ======∑-⎪⎭⎫ ⎝⎛∑∑∑-∑∑=1-5-32121111)(ini i ni i i ni i ni i ni x n x y x n y x b =====∑-⎪⎭⎫ ⎝⎛∑∑-∑∑=1-5-4令111x n x n i =∑=,i n i y n y 11=∑=,21121⎪⎭⎫⎝⎛∑==x n x n i ,2121i n i x n x =∑=,)(111i n i y x n xy =∑=,则x b y a -= 1-5-5 22xx xyy x b --⋅=1-5-6如果实验是在已知y 和x 满足线性关系下进行的,那么用上述最小二乘法线性拟合又称一元线性回归可解得斜率a 和截距b ,从而得出回归方程bx a y +=;如果实验是要通过对x 、y 的测量来寻找经验公式,则还应判断由上述一元线性拟合所确定的线性回归方程是否恰当;这可用下列相关系数r 来判别))((2222y y x x yx xy r --⋅-= 1-5-7其中21121⎪⎭⎫ ⎝⎛∑==y n y n i ,2121i n i y n y =∑=;可以证明,||r 值总是在0和1之间;||r 值越接近1,说明实验数据点密集地分布在所拟合的直线的近旁,用线性函数进行回归是合适的;1||=r 表示变量x 、y 完全线性相关,拟合直线通过全部实验数据点;||r 值越小线性越差,一般9.0||≥r 时可认为两个物理量之间存在较密切的线性关系,此时用最小二乘法直线拟合才有实际意义;。
数据处理及误差分析

数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。
在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。
因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。
2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。
它包括了数据清洗、数据转换、数据提取和数据集成等步骤。
2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。
清洗后的数据更加可靠和准确,能够更好地反映实际情况。
2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。
比如,将连续型数据离散化、进行数据标准化等。
2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。
通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。
2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。
通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。
3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。
误差可以分为系统误差和随机误差两种类型。
3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。
它们可能是由于仪器精度不高、实验环境变化等原因引起的。
系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。
3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。
它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。
4. 误差分析方法误差分析通常采用统计学和数学方法进行。
其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。
4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。
它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。
4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。
大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理实验课的基本程序物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。
§1 实验前的预习为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。
实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。
预习报告包括下列栏目: 实验名称 写出本次实验的名称。
实验目的 应简单明确地写明本次实验的目的要求。
实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。
若讲义与实际所用不符,应以实际采用的原理图为准。
实验内容 简明扼要地写出实验内容、操作步骤。
为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。
注意要正确地表示出有效数字和单位。
§2 课堂操作进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分尺调零、天平调水平和平衡、光路调同轴等高等)。
准备就绪后开始测量。
测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。
数据之间要留有间隙,以便补充。
发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。
实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。
运算的错误可以修改,原始数据则不能擅自改动。
全部数据必须经老师检查、签名,否则本次实验无效。
两人同作一个实验时,要既分工又协作,以便共同完成实验。
实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。
§3 实验报告实验报告是实验工作的总结。
要用简明的形式将实验报告完整而又准确地表达出来。
实验报告要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。
应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。
完整的实验报告应包括下述几部分内容:数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签名的原始数据记录纸要附在本次报告一起交)。
数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。
按照实验要求计算待测的量值、绝对误差及相对误差。
书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。
而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。
结果表达 按下面格式写出最后结果:)N ()(N )N (总绝对误差测量结果待测量∆±=..%100(⨯∆=NN)Er 相对误差结果分析对本次实验的结果及主要误差因数作简要的分析讨论,并完成课后的思考题。
还可以谈谈实验的心得体会。
如果实验是为了观察某一物理现象或者观察某一物理规律,可只扼要地写出实验结论。
以上是对报告的一般性要求。
不同的实验,可以根据具体情况有所侧重和取舍,不必千篇一律。
误 差 处 理物理实验的任务,不仅仅是定性地观察物理现象,也需要对物理量进行定量测量,并找出各物理量之间的内在联系。
由于测量原理的局限性或近似性、测量方法的不完善、测量仪器的精度限制、测量环境的不理想以及测量者的实验技能等诸多因素的影响,所有测量都只能做到相对准确。
随着科学技术的不断发展,人们的实验知识、手段、经验和技巧不断提高,测量误差被控制得越来越小,但是绝对不可能使误差降为零。
因此,作为一个测量结果,不仅应该给出被测对象的量值和单位,而且还必须对量值的可靠性做出评价,一个没有误差评定的测量结果是没有价值的。
下面介绍测量与误差、误差处理、有效数字、测量结果的不确定度评定等基本知识,这些知识不仅在后面的实验中要经常用到,而且也是今后从事科学实验工作所必须了解和掌握的。
§1 测量与误差一、 测量及其分类所谓测量,就是借助一定的实验器具,通过一定的实验方法,直接或间接地把待测量与选作计量单位的同类物理量进行比较的全部操作。
简而言之,测量是指为确定被测对象的量值而进行的一组操作。
按照测量值获得方法的不同,测量分为直接测量和间接测量两种。
直接从仪器或量具上读出待测量的大小,称为直接测量。
例如,用米尺测物体的长度,用秒表测时间间隔,用天平测物体的质量等都是直接测量,相应的被测物理量称为直接测量量。
如果待测量的量值是由若干个直接测量量经过一定的函数运算后才获得的,则称为间接测量。
例如,先直接测出铁圆柱体的质量m 、直径D 和高度h ,再根据公式hD m24πρ=计算出铁的的密度ρ,这就是间接测量,ρ称为间接测量量。
按照测量条件的不同,测量又可分为等精度测量和不等精度测量。
在相同的测量条件下进行的一系列测量是等精度测量。
例如,同一个人,使用同一仪器,采用同样的方法,对同一待测量连续进行多次测量,此时应该认为每次测量的可靠程度相同,故称之为等精度测量,这样的一组测量值称为一个测量列。
在不同测量条件下进行的一系列测量,例如不同的人员,使用不同的仪器,采用不同的方法进行测量,则各次测量结果的可靠程度自然也不相同,这样的测量称为不等精度测量。
处理不等精度测量的结果时,需要根据每个测量值的“权重”,进行“加权平均”,因此在一般物理实验中很少采用。
等精度测量的误差分析和数据处理比较容易,下面所介绍的误差和数据处理知识都是针对等精度测量的。
二、误差与偏差1.真值与误差任何一个物理量,在一定的条件下,都具有确定的量值,这是客观存在的,这个客观存在的量值称为该物理量的真值。
测量的目的就是要力图得到被测量的真值。
我们把测量值与真值之差称为测量的绝对误差。
设被测量的真值为χ0,测量值为χ,则绝对误差ε为ε = χ – χ0 (1)由于误差不可避免,故真值往往是得不到的。
所以绝对误差的的概念只有理论上的价值。
2.最佳值与偏差在实际测量中,为了减小误差,常常对某一物理量x 进行多次等精度测量,得到一系列测量值1x ,2x ,…,n x ,则测量结果的算术平均值为∑==+++=ni i nn n1211χχχχχΛ (2) 算术平均值并非真值,但它比任一次测量值的可靠性都要高。
系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。
我们把测量值与算术平均值之差称为偏差(或残差): χχ-=i i v (3)三、误差的分类正常测量的误差,按其产生的原因和性质可分为系统误差和随机误差两类,它们对测量结果的影响不同,对这两类误差处理的方法也不同。
1.系统误差在同样条件下,对同一物理量进行多次测量,其误差的大小和符号保持不变或随着测量条件的变化而有规律地变化,这类误差称为系统误差。
系统误差的特征是具有确定性,它的来源主要有以下几个方面:仪器因素 由于仪器本身的固有缺陷或没有按规定条件调整到位而引起误差。
例如,仪器标尺的刻度不准确,零点没有调准,等臂天平的臂长不等,砝码不准,测量显微镜精密螺杆存在回程差,或仪器没有放水平,偏心、定向不准等。
理论或条件因素 由于测量所依据的理论本身的近似性或实验条件不能达到理论公式所规定的要求而引起误差。
例如,称物体质量时没有考虑空气浮力的影响,用单摆测量重力加速度时要求摆角θ→0,而实际中难以满足该条件。
人员因素 由于测量人员的主观因素和操作技术而引起误差。
例如,使用停表计时,有的人总是操之过急,计时比真值短;有的人则反应迟缓,计时总是比真值长;再如,有的人对准目标时,总爱偏左或偏右,致使读数偏大或偏小。
对于实验者来说,系统误差的规律及其产生原因,可能知道,也可能不知道。
已被确切掌握其大小和符号的系统误差称为可定系统误差;对于大小和符号不能确切掌握的系统误差称为未定系统误差。
前者一般可以在测量过程中采取措施予以消除,或在测量结果中进行修正。
而后者一般难以做出修正,只能估计其取值范围。
2.随机误差在相同条件下,多次测量同一物理量时,即使已经精心排除了系统误差的影响,也会发现每次测量结果都不一样。
测量误差时大时小,时正时负,完全是随机的。
在测量次数少时,显得毫无规律,但是当测量次数足够多时,可以发现误差的大小以及正负都服从某种统计规律。
这种误差称为随机误差。
随机误差的特征是它的不确定性,它是由测量过程中一些随机的或不确定的因素引起的。
例如,人的感受(视觉、听觉、触觉)灵敏度和仪器稳定性有限,实验环境中的温度、湿度、气流变化,电源电压起伏,微小振动以及杂散电磁场等都会导致随机误差。
除系统误差和随机误差外,还有过失误差。
过失误差是由于实验者操作不当或粗心大意造成的,例如看错刻度、读错数字、记错单位或计算错误等。
过失误差又称粗大误差。
含有过失误差的测量结果称为“坏值”,被判定为坏值的测量结果应剔除不用。
实验中的过失误差不属于正常测量的范畴,应该严格避免。
3.精密度、正确度和准确度评价测量结果,常用到精密度、正确度和准确度这三个概念。
这三者的含义不同,使用时应注意加以区别。
精密度反映随机误差大小的程度。
它是对测量结果的重复性的评价。
精密度高是指测量的重复性好,各次测量值的分布密集,随机误差小。
但是,精密度不能确定系统误差的大小。
正确度反映系统误差大小的程度。
正确度高是指测量数据的算术平均值偏离真值较少,测量的系统误差小。
但是,正确度不能确定数据分散的情况,即不能反映随机误差的大小。
准确度反映系统误差与随机误差综合大小的程度。
准确度高是指测量结果既精密又正确,即随机误差与系统误差均小。
现以射击打靶的弹着点分布为例,形象地说明以上三个术语的意义。
如图1所示,其中图(a)表示精密度高而正确度低,图(b)表示正确度高而精密度低,图(c)表示精密度和正确度均低,即准确度低,图(d)表示精密度和正确度均高,即准确度高。
通常所说的“精度”含义不明确,应尽量避免使用。
精密度高,正确度低正确度高,精密度低精密度和正确度均低精密度和正确度均高图1 精密度、正确度和准确度示意图§2 误差处理一、处理系统误差的一般知识1.发现系统误差的方法系统误差一般难于发现,并且不能通过多次测量来消除。
人们通过长期实践和理论研究,总结出一些发现系统误差的方法,常用的有:理论分析法包括分析实验所依据的理论和实验方法是否有不完善的地方;检查理论公式所要求的条件是否得到了满足;量具和仪器是否存在缺陷;实验环境能否使仪器正常工作以及实验人员的心理和技术素质是否存在造成系统误差的因素等。
实验比对法对同一待测量可以采用不同的实验方法,使用不同的实验仪器,以及由不同的测量人员进行测量。
对比、研究测量值变化的情况,可以发现系统误差的存在。