实验大数据误差分析报告与大数据处理

合集下载

数据处理与误差分析报告

数据处理与误差分析报告

数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。

在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。

本报告将对数据处理的方法进行介绍,并分析误差来源和处理。

2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。

通过筛选和校对,确保数据的准确性和一致性。

2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。

这样可以方便进行后续的分析和比较。

2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。

常见的数据归约方法包括维度约简和特征选择等。

2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。

通过统计分析,可以从整体上了解和描述数据的特征和分布情况。

3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。

观测误差可以分为系统误差和随机误差两种类型。

系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。

3.2 数据采集误差数据采集误差包括采样误差和非采样误差。

采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。

采取合理的抽样策略和数据校正方法,可以减小这些误差。

3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。

不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。

3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。

模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。

通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。

误差理论与大数据处理实验报告材料

误差理论与大数据处理实验报告材料

标准文档误差理论与数据处理实验报告姓名:黄大洲学号:3111002350班级:11级计测1班指导老师:陈益民实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。

1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。

i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。

残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。

当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。

2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1nii v =∑≤0.52n A ⎛⎫- ⎪⎝⎭ 式中A 为实际求得的算术平均值x 末位数的一个单位。

(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。

1、测量列中单次测量的标准差2222121...nini nnδδδδσ=+++==∑式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差211nii vn σ==-∑2、测量列算术平均值的标准差:x nσσ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。

实验数据误差分析与数据处理

实验数据误差分析与数据处理

实验数据误差分析与数据处理在实验中,数据误差是不可避免的,它可能来自于多种各方面的因素,如仪器的不精确性、环境条件的影响、样本变化的随机性等等。

因此,在实验数据分析中需要对误差进行合理的处理和分析。

首先,我们需要了解误差的类型。

误差可以分为系统误差和随机误差两种类型。

系统误差是由不可避免的系统偏差引起的,它会导致实验结果的偏离真实值的方向始终相同。

而随机误差是由于随机因素引起的,它会导致实验结果的波动性,其方向和大小是不确定的。

对于系统误差,我们可以采取一些校正措施来减小或消除它们的影响。

例如,我们可以校正仪器的零点,减少仪器本身的偏差。

另外,我们还可以进行实验重复,然后取平均值来消除系统偏差的影响。

对于随机误差,我们可以采取统计方法来分析和处理。

最常见的方法是计算测量值的平均值和标准差。

平均值可以反映实验结果的中心位置,而标准差可以反映实验结果的散布程度。

如果实验数据符合正态分布,我们可以使用正态分布的性质来计算置信区间,从而确定实验结果的误差范围。

此外,还有其他一些常见的数据处理方法,如线性回归分析、方差分析等。

这些方法可以用于分析变量之间的关系、对比实验组和对照组之间的差异等。

通过这些方法,我们可以从实验数据中获取更多的信息和结论。

最后,我们需要注意数据的合理性和可靠性。

在进行数据处理之前,我们应该首先对实验数据进行筛选和清洗,排除异常值和明显错误的数据。

同时,应该确保实验过程的可重复性和可靠性,提高实验数据的准确性和可信度。

总之,实验数据误差分析与数据处理是实验研究中不可或缺的环节。

通过对数据误差的分析和处理,我们可以更好地理解实验结果的可靠性和准确性,并从中提取有效的信息和结论。

因此,在进行实验研究时,我们应该重视数据误差的分析和处理,以确保实验结果的科学性和可信度。

误差与实验数据处理实验报告

误差与实验数据处理实验报告

误差与实验数据处理实验报告误差与实验数据处理实验报告引言:实验是科学研究的基础,而数据处理则是实验结果的关键环节。

在实验中,我们不可避免地会遇到误差,而正确处理误差对于实验结果的准确性和可靠性至关重要。

本实验旨在探讨误差的来源、分类以及如何进行实验数据处理,以提高实验结果的可信度。

一、误差的来源1.1 人为误差人为误差是由实验操作者的技术能力、主观判断和个人经验等因素引起的误差。

例如,在使用仪器时,操作者的手部不稳定、读数不准确等都可能导致人为误差的产生。

1.2 仪器误差仪器误差是由于仪器本身的设计、制造和使用不完美而产生的误差。

每个仪器都有其精度和灵敏度限制,而这些限制会对实验结果产生影响。

因此,在进行实验前,我们需要了解仪器的精度和灵敏度,并在数据处理时进行相应的修正。

1.3 环境误差环境误差是由实验环境中的温度、湿度、气压等因素引起的误差。

这些因素会对实验结果产生影响,因此,在实验过程中,我们需要控制环境条件,或者在数据处理时进行环境误差的修正。

二、误差的分类2.1 系统误差系统误差是由于实验装置、仪器或操作方法等造成的误差,其特点是在多次实验中具有一定的规律性。

系统误差可以通过校正仪器、改进操作方法等方式进行减小。

2.2 随机误差随机误差是由于实验过程中的偶然因素引起的误差,其特点是在多次实验中无规律可循。

随机误差可以通过增加实验次数、采用统计方法等方式进行减小。

三、实验数据处理方法3.1 平均值处理平均值处理是最常用的实验数据处理方法之一。

通过多次实验,取得的数据可以计算出平均值,从而减小随机误差的影响。

在计算平均值时,需要注意排除掉明显与其他数据不符的异常值,以保证结果的准确性。

3.2 不确定度分析不确定度是对实验结果的精度进行评估的指标。

在实验数据处理中,我们需要对每个数据的不确定度进行分析,以确定实验结果的可靠程度。

不确定度的计算可以采用传统的“合成法”或“最大偏差法”,具体选择哪种方法取决于实验的特点和要求。

科学实验中的数据处理与实验误差分析应用

科学实验中的数据处理与实验误差分析应用

科学实验中的数据处理与实验误差分析应用科学实验是科学研究的基础,通过实验可以验证理论、探索未知、发现规律。

然而,实验数据的处理和误差分析是科学实验中不可或缺的一部分。

本文将探讨科学实验中数据处理和实验误差分析的应用。

一、数据处理的重要性科学实验中产生的数据是实验结果的直接体现,而数据处理则是将这些数据转化为有意义的信息的过程。

数据处理的目的是提取有用的信息,发现规律,并为进一步的研究提供依据。

在数据处理中,常用的方法包括平均值计算、标准差分析、相关性分析等。

平均值计算可以得到实验结果的中心趋势,标准差分析可以评估实验结果的离散程度,相关性分析可以研究变量之间的关系。

这些方法的应用可以帮助科学家更好地理解实验结果,并对其进行解释和推断。

二、实验误差分析的意义实验误差是指实验结果与真实值之间的差异。

由于实验条件的限制和测量仪器的误差,实验结果往往存在一定的误差。

实验误差分析的目的是确定实验误差的来源和大小,评估实验结果的可靠性,并提供改进实验设计的建议。

实验误差可以分为系统误差和随机误差。

系统误差是由于实验条件或测量仪器的固有偏差造成的,具有一定的可重复性;随机误差是由于实验条件的不确定性或测量仪器的随机波动造成的,具有不可预测性。

在实验误差分析中,常用的方法包括误差传递、误差传播、误差分解等。

误差传递可以分析误差在实验过程中的传递规律,误差传播可以计算实验结果的误差范围,误差分解可以确定各个误差来源的贡献程度。

这些方法的应用可以帮助科学家更好地理解实验误差的本质,并提高实验结果的可信度。

三、数据处理与实验误差分析的实际应用数据处理和实验误差分析在各个科学领域都有广泛的应用。

以物理学为例,科学家在进行实验测量时,往往需要处理大量的数据。

通过数据处理,他们可以得到实验结果的平均值、标准差等统计量,并利用这些统计量来验证理论模型或发现新的物理规律。

在生物学领域,科学家经常进行实验观察和测量,以研究生物体的结构和功能。

大数据分析中偏差与误差的分析与解决

大数据分析中偏差与误差的分析与解决

大数据分析中偏差与误差的分析与解决【引言】近年来,随着大数据应用的普及,大数据分析在各行各业起到了至关重要的作用。

然而,大数据分析过程中常常会出现偏差与误差,对分析结果的准确性和可靠性带来了挑战。

本文将针对大数据分析中的偏差与误差进行深入分析,并提出解决的方法。

【1. 偏差与误差的定义】在大数据分析中,偏差是指系统性的错误,是由于分析方法或模型本身的局限性所导致的结果与真实情况之间的差异;而误差是指随机性的错误,是由于数据采集、处理和分析中的不确定性所引起的偶然差异。

偏差和误差的存在会对分析结果产生影响,降低了数据分析的可信度。

【2. 偏差与误差的来源】(1)数据收集:数据的采集方法和采样样本的选择可能导致偏差和误差的存在。

例如,如果数据采样不具有代表性,或数据存在缺失或错误,都会影响分析结果的准确性。

(2)分析模型:分析模型的选择和假设可能导致偏差和误差的产生。

一个错误的假设或模型选择可能导致分析结果的失真。

(3)数据处理:对数据的处理过程和方法也会引入偏差和误差。

例如,在数据预处理中的异常值处理、数据清洗过程中的误操作,会对分析结果产生较大影响。

【3. 偏差与误差的影响】(1)决策结果不准确:偏差和误差的存在使得分析结果与真实情况之间产生偏离,从而导致决策结果的不准确。

错误的决策可能会带来重大的经济和社会损失。

(2)信任度下降:偏差和误差的存在会降低人们对大数据分析的信任度。

如果分析结果经常出现误差,人们会对大数据分析的效果和价值产生怀疑,导致分析结果难以被接受和应用。

【4. 解决偏差与误差的策略】(1)数据质量管理:加强对数据质量的管理,确保数据的准确性、完整性和一致性。

采用科学合理的数据采样方法,避免数据采样偏差。

对数据进行预处理时,采用恰当的异常值处理方法,提高数据处理的准确性。

(2)模型选择与验证:在分析过程中,选择适合的分析模型,并进行验证和评估,确保其结果的准确性。

避免偏误的模型选择,充分理解分析模型的局限性,并进行有效的模型解释和评估。

实验数据误差分析和数据处理

实验数据误差分析和数据处理

实验数据误差分析和数据处理数据误差分析是首要的步骤,它通常包括以下几个方面:1.随机误差:随机误差是指在重复实验的过程中,由于个体差异等原因引起的测量结果的离散性。

随机误差是不可避免的,并且符合一定的统计规律。

通过进行多次重复测量,并计算平均值和标准差等统计指标,可以评估随机误差的大小。

2.系统误差:系统误差是由于仪器、测量方法或实验条件所引起的,使得测量结果与真实值的偏离。

系统误差可能是由于仪器刻度的不准确、环境温度的变化等原因导致的。

通过合理校准仪器、控制环境条件等方式可以减小系统误差。

在数据误差分析的基础上,进行数据处理是必不可少的步骤。

数据处理的目的是通过对实验结果的合理处理,得到更为准确的结论。

1.统计处理:统计方法是最常用的数据处理方法之一、通过使用统计学中的概率分布、假设检验、方差分析等方法,可以对实验数据进行科学、客观的分析和处理。

2.回归分析:回归分析是一种通过建立数学模型来研究变量之间关系的方法。

通过对实验数据进行回归分析,可以确定变量之间的数学关系,并预测未知数据。

3.误差传递与不确定度评定:在实验中,不同参数之间的误差如何相互影响,以及这些误差如何传递到最终结果中,是一个重要的问题。

通过不确定度评定方法,可以定量评估各个参数的不确定度,并估计最终结果的不确定度。

4.数据可视化和图表展示:通过绘制合适的图表,可以更直观地展示实验数据的分布规律、趋势以及变化情况。

例如,折线图、散点图、柱状图等可以有效地展示数据的分布和相关关系。

综上所述,实验数据误差分析和数据处理是进行科学研究的重要环节。

准确评估和处理数据误差可以提高实验结果的可靠性和准确性,为研究结果的正确性提供基础。

通过合理选择和应用适当的数据处理方法,可以从实验数据中得出有意义的结论,并为进一步研究提供指导。

实验数据误差分析和数据处理

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理第一节 实验数据的误差分析由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。

人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。

为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。

由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。

一、误差的基本概念测量是人类认识事物本质所不可缺少的手段。

通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。

科学上很多新的发现和突破都是以实验测量为基础的。

测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。

1.真值与平均值真值是待测物理量客观存在的确定值,也称理论值或定义值。

通常真值是无法测得的。

若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。

再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。

但是实际上实验测量的次数总是有限的。

用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:(1) 算术平均值 算术平均值是最常见的一种平均值。

设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为nx n x x x x ni in ∑==+⋅⋅⋅++=121 (2-1)(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。

即n n x x x x ⋅⋅⋅⋅=21几 (2-2)(3)均方根平均值nxn xx x x ni in∑==+⋅⋅⋅++=1222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章实验数据误差分析与数据处理第一节实验数据误差分析一、概述由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。

为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。

实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。

实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。

二、实验误差的来源实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。

1.实验装置误差测量装置是标准器具、仪器仪表和辅助设备的总体。

实验装置误差是指由测量装置产生的测量误差。

它来源于:(1)标准器具误差标准器具是指用以复现量值的计量器具。

由于加工的限制,标准器复现的量值单位是有误差的。

例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。

又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。

(2)仪器仪表误差凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。

例如,温度计、电流表、压力表、干涉仪、天平,等等。

由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。

例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。

但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。

(3)附件误差为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。

如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。

又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。

按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。

结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。

这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。

调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。

这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。

变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。

这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。

2.环境误差环境误差系指测量中由于各种环境因素造成的测量误差。

被测量在不同的环境中测量,其结果是不同的。

这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。

环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。

测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。

3.方法误差方法误差系指由于测量方法(包括计算过程)不完善而引起的误差。

事实上,不存在不产生测量误差的尽善尽美的测量方法。

由测量方法引起的测量误差主要有下列两种情况:第一种情况:由于测量人员的知识不足或研究不充分以致操作不合理,或对测量方法、测量程序进行错误的简化等引起的方法误差。

第二种情况:分析处理数据时引起的方法误差。

例如,轴的周长可以通过测量轴的直径d,然后由公式:L=πd计算得到。

但是,在计算中只能取其近似值,因此,计算所得的L也只能是近似值,从而引起周长L的误差。

4.人员误差人员误差系指测量人员由于生理机能的限制,固有习惯性偏差以及疏忽等原因造成的测量误差。

由于测量人员在长时间的测量中,因疲劳或疏忽大意发生看错、读错、听错、记错等错误造成测量误差,这类误差往往相当大是测量所不容许的。

为此,要求测量人员养成严格而谨慎的习惯,在测量中认真操作并集中精力,从制度上规定,对某些准确性较高而又重要的测量,由另一名测量人员进行复核测量。

5.测量对象变化误差被测对象在整个测量过程中处在不断地变化中。

由于测量对象自身的变化而引起的测量误差称为测量对象变化误差。

例如,被测温度计的温度,被测线纹尺的长度,被测量块的尺寸等,在测量过程中均处于不停地变化中,由于它们的变化,使测量不准而带来误差。

三、误差的分类误差是实验测量值(包括间接测量值)与真值(客观存在的准确值)之差别,误差可以分为下面三类:1. 系统误差由某些固定不变的因素引起的。

在相同条件下进行多次测量,其误差的数值大小正负保持恒定,或误差随条件按一定规律变化。

单纯增加实验次数是无法减少系统误差的影响,因为它在反复测定的情况下常保持同一数值与同一符号,故也称为常差。

系统误差有固定的偏向和确定的规律,可按原因采取相应的措施给予校正或用公式消除。

2. 随机误差(偶然误差)由一些不易控制的因素引起,如测量值的波动,肉眼观察误差等等。

随机误差与系统误差不同,其误差的数值和符号不确定,它不能从实验中消除,但它服从统计规律,其误差与测量次数有关。

随着测量次数的增加,出现的正负误差可以相互抵消,故多次测量的算术平均值接近于真值。

3.过失误差由实验人员粗心大意,如读数错误,记录错误或操作失误引起。

这类误差与正常值相差较大,应在整理数据时加以剔除。

四、实验数据的真值与平均值1.真值真值是指某物理量客观存在的确定值,它通常是未知的。

虽然真值是一个理想的概念,但对某一物理量经过无限多次的测量,出现的误差有正、有负,而正负误差出现的概率是相同的。

因此,若不存在系统误差,它们的平均值相当接近于这一物理量的真值。

故真值等于测量次数无限多时得到的算术平均值。

由于实验工作中观测的次数是有限的,由此得出的平均值只能近似于真值,故称这个平均值为最佳值。

2.平均值油气储运实验中常用的平均值有:(1)算术平均值设x1,x2,.,x n 为各次测量值, n 为测量次数,则算术平均值为:算术平均值是最常用的一种平均值,因为测定值的误差分布一般服从正态分布,可以证明算术平均值即为一组等精度测量的最佳值或最可信赖值。

(2)均方根平均值(3)几何平均值五、误差的表示方法1.绝对误差测量值与真值之差的绝对值称为测量值的误差,即绝对误差。

在实际工作中常以最佳值代替真值,测量值与最佳值之差称为残余误差,习惯上也称为绝对误差。

设测量值用x 表示,真值用X 表示,则绝对误差D 为D=|X-x|如在实验中对物理量的测量只进行了一次,可根据测量仪器出厂鉴定书注明的误差,或取测量仪器最小刻度值的一半作为单次测量的误差。

如某压力表精(确)度为1.5 级,即表明该仪表最大误差为相当档次最大量程的1.5%,若最大量程为0.4MPa,该压力表的最大误差为:0.4×1.5%=0.006MPa如实验中最常用的U 形管压差计、转子流量计、秒表、量筒等仪表原则上均取其最小刻度值为最大误差,而取其最小刻度值的一半作为绝对误差计算值。

2.相对误差绝对误差D 与真值的绝对值之比,称为相对误差:式中真值X 一般为未知,用平均值代替。

3.算术平均误差算术平均误差的定义为:x i——测量值,i=1,2,3, .,n ;d i——测量值与算术平均值(x )之差的绝对值,d i= x x i . 。

4.标准误差(均方误差)对有限测量次数,标准误差表示为:标准误差是目前最常用的一种表示精确度的方法,它不但与一系列测量值中的每个数据有关,而且对其中较大的误差或较小的误差敏感性很强,能较好地反映实验数据的精确度,实验愈精确,其标准误差愈小。

六、精密度、正确度和准确度1、精密度精密度是指对同一被测量作多次重复测量时,各次测量值之间彼此接近或分散的程度。

它是对随机误差的描述,它反映随机误差对测量的影响程度。

随机误差小,测量的精密度就高。

如果实验的相对误差为0.01%且误差由随机误差引起,则可以认为精密度为10-4。

2、正确度正确度是指被测量的总体平均值与其真值接近或偏离的程度。

它是对系统误差的描述,它反映系统误差对测量的影响程度。

系统误差小,测量的正确度就高。

如果实验的相对误差为0.01%且误差由系统误差引起,则可以认为正确度为10-4。

3、准确度准确度是指各测量值之间的接近程度和其总体平均值对真值的接近程度。

它包括了精密度和正确度两方面的含义。

它反映随机误差和系统误差对测量的综合影响程度。

只有随机误差和系统误差都非常小,才能说测量的准确度高。

若实验的相对误差为0.01%且误差由系统误差和随机误差共同引起,则可以认为精确度为10-4。

七、实验数据的有效数与记数法任何测量结果或计算的量,总是表现为数字,而这些数字就代表了欲测量的近似值。

究竟对这些近似值应该取多少位数合适呢?应根据测量仪表的精度来确定,一般应记录到仪表最小刻度的十分之一位。

例如:某液面计标尺的最小分度为1mm,则读数可以到0.1mm。

如在测定时液位高在刻度524mm 与525mm 的中间,则应记液面高为524.5mm,其中前三位是直接读出的,是准确的,最后一位是估计的,是欠准的,该数据为4 位有效数。

如液位恰在524mm刻度上,该数据应记为524.0mm,若记为524mm,则失去一位(末位)欠准数字。

总之,有效数中应有而且只能有一位(末位)欠准数字。

由上可见,当液位高度为524.5mm 时,最大误差为±0.5mm,也就是说误差为末位的一半。

在科学与工程中,为了清楚地表达有效数或数据的精度,通常将有效数写出并在第一位数后加小数点,而数值的数量级由10 的整数幂来确定,这种以10 的整数幂来记数的方法称科学记数法。

例如:0.0088 应记为8.8×10-3,88000(有效数3 位)记为8.80×104。

应注意科学记数法中,在10 的整数幂之前的数字应全部为有效数。

有效数字进行运算时,运算结果仍为有效数字。

总的规则是:可靠数字与可靠数字运算后仍为可靠数字,可疑数字与可疑数字运算后仍为可疑数字,可靠数字与可疑数字运算后为可疑数字,进位数可视为可靠数字。

对于已经给出了不确定度的有效数字,在运算时应先计算出运算结果的不确定度,然后根据它决定结果的有效数字位数。

加减运算规则:A.如果已知参与加减运算的各有效数字的不确定度,则先算出计算结果的不确定度,并保留1-2位,然后确定计算结果的有效位数。

相关文档
最新文档