二级减速器设计说明书

合集下载

_二级同轴式减速器设计说明书

_二级同轴式减速器设计说明书

_二级同轴式减速器设计说明书【正文】一、设计目标1.1 项目简介本文档是关于二级同轴式减速器的设计说明书。

该减速器用于将输入轴的高速旋转转换为输出轴的低速旋转,以满足特定的传动需求。

1.2 设计要求根据客户需求和市场需求,二级同轴式减速器需要满足以下要求:- 最大输入转速不超过2000 rpm;- 输出转速在100 - 1000 rpm之间可调;- 输出扭矩大于10 Nm;- 整机效率大于90%。

二、产品结构设计2.1 总体结构二级同轴式减速器的总体结构包括输入轴、输出轴、两级齿轮传动系统、壳体等核心组成部分。

2.2 输入轴设计输入轴是减速器接受高速旋转的部分,需要具备高强度和良好的刚性。

根据输入轴的材料选取、直径选取以及连接方式设计,确保输入轴满足设计要求。

2.3 输出轴设计输出轴是减速器输出低速旋转的部分,需要具备足够的强度和刚性,以及较高的精度。

根据输出轴的材料选取、直径选取等设计,确保输出轴满足设计要求。

2.4 齿轮传动系统设计二级同轴式减速器的齿轮传动系统包括两级齿轮传动。

根据设计要求和传动比,通过齿轮模数、齿数等参数的设计计算,确保齿轮传动系统符合减速器的工作要求。

2.5 壳体设计壳体是减速器的外壳,用于固定和保护内部组件。

根据减速器的尺寸、重量、制造工艺等要素,设计壳体的结构和形状。

三、材料选用与制造工艺3.1 材料选用根据减速器整体结构和各个部件的功能要求,选用合适的材料,例如硬质合金钢、铸铁等。

需要考虑材料的强度、耐磨性、韧性等因素,确保减速器在工作过程中具备可靠性和耐久性。

3.2 制造工艺根据减速器的结构特点和工艺性要求,确定适当的制造工艺,例如铸造、机械加工、热处理等。

在制造过程中,需要保证减速器的精度和质量。

四、性能测试与验证4.1 性能测试完成二级同轴式减速器的制造后,进行性能测试以验证其设计是否满足要求。

测试包括输入转速测试、输出转速测试、输出扭矩测试、效率测试等。

4.2 验证结果根据性能测试的结果,对减速器的设计进行评估和验证。

二级圆柱齿轮减速器设计计算说明书

二级圆柱齿轮减速器设计计算说明书

二级圆柱齿轮减速器设计计算说明书一、设计任务设计一用于带式运输机的二级圆柱齿轮减速器。

运输机工作经常满载,空载启动,工作有轻微振动,两班制工作。

运输带工作速度误差不超过 5%。

减速器使用寿命 8 年(每年 300 天)。

二、原始数据1、运输带工作拉力 F =______ N2、运输带工作速度 v =______ m/s3、卷筒直径 D =______ mm三、传动方案的拟定1、传动方案选用展开式二级圆柱齿轮减速器,其结构简单,效率高,适用在载荷平稳的场合。

2、电机选择选择 Y 系列三相异步电动机,其具有高效、节能、噪声低、振动小、运行可靠等优点。

四、运动学和动力学计算1、计算总传动比总传动比 i = n 电/ n 筒,其中 n 电为电动机满载转速,n 筒为卷筒轴工作转速。

2、分配各级传动比根据经验,取高速级传动比 i1 ,低速级传动比 i2 ,应满足 i = i1 ×i2 。

3、计算各轴转速高速轴转速 n1 = n 电/ i1 ,中间轴转速 n2 = n1 / i2 ,低速轴转速 n3 = n2 。

4、计算各轴功率高速轴功率 P1 =Pd × η1 ,中间轴功率 P2 =P1 × η2 ,低速轴功率 P3 =P2 × η3 ,其中 Pd 为电动机输出功率,η1 、η2 、η3 分别为各级传动的效率。

5、计算各轴转矩高速轴转矩 T1 = 9550 × P1 / n1 ,中间轴转矩 T2 = 9550 × P2 /n2 ,低速轴转矩 T3 = 9550 × P3 / n3 。

五、齿轮设计计算1、高速级齿轮设计(1)选择齿轮材料及精度等级小齿轮选用______材料,大齿轮选用______材料,精度等级选______。

(2)按齿面接触疲劳强度设计确定公式内各计算数值,计算小齿轮分度圆直径 d1 。

(3)确定齿轮齿数取小齿轮齿数 z1 ,大齿轮齿数 z2 = i1 × z1 。

二级减速器课程设计说明书

二级减速器课程设计说明书

二级减速器课程设计说明书一、设计任务设计一个用于特定工作条件的二级减速器,给定的输入功率、转速和输出转速要求,以及工作环境和使用寿命等限制条件。

二、传动方案的拟定经过对各种传动形式的比较和分析,最终选择了展开式二级圆柱齿轮减速器。

这种方案结构简单,尺寸紧凑,能够满足设计要求。

三、电动机的选择1、计算工作机所需功率根据给定的工作条件和任务要求,计算出工作机所需的功率。

2、确定电动机的类型和型号综合考虑功率、转速、工作环境等因素,选择合适的电动机类型和型号。

四、传动比的计算1、总传动比的计算根据电动机的转速和工作机的转速要求,计算出总传动比。

2、各级传动比的分配合理分配各级传动比,以保证减速器的结构紧凑和传动性能良好。

五、齿轮的设计计算1、高速级齿轮的设计计算根据传动比、功率、转速等参数,进行高速级齿轮的模数、齿数、齿宽等参数的设计计算。

2、低速级齿轮的设计计算同理,完成低速级齿轮的相关设计计算。

六、轴的设计计算1、高速轴的设计计算考虑扭矩、弯矩等因素,确定高速轴的直径、长度、轴肩尺寸等。

2、中间轴的设计计算进行中间轴的结构设计和强度校核。

3、低速轴的设计计算完成低速轴的设计计算,确保其能够承受工作中的载荷。

七、滚动轴承的选择与计算根据轴的受力情况和转速,选择合适的滚动轴承,并进行寿命计算。

八、键的选择与校核对连接齿轮和轴的键进行选择和强度校核,以确保连接的可靠性。

九、箱体结构的设计考虑减速器的安装、润滑、密封等要求,设计合理的箱体结构。

包括箱体的壁厚、加强筋、油标、放油螺塞等的设计。

十、润滑与密封1、润滑方式的选择根据齿轮和轴承的转速、载荷等因素,选择合适的润滑方式。

2、密封方式的选择为防止润滑油泄漏和外界灰尘进入,选择合适的密封方式。

十一、设计总结通过本次二级减速器的课程设计,对机械传动系统的设计过程有了更深入的理解和掌握。

在设计过程中,充分考虑了各种因素对减速器性能的影响,通过计算和校核确保了设计的合理性和可靠性。

二级减速器课程设计说明书

二级减速器课程设计说明书

二级减速器课程设计说明书一、引言二级减速器是一种用于降低机械设备速度和提高输出转矩的重要装置。

本课程设计说明书旨在介绍二级减速器的设计原理、结构和工作原理,并提供详细的步骤和指导,帮助学生完成二级减速器的课程设计。

二、设计背景在工程设计中,常常需要将高速运动的电机转速降低,同时增加输出扭矩以满足特定的工作需求。

二级减速器作为一种常用的传动装置,可以有效地实现这一目标。

由于二级减速器的设计和制造需要综合考虑多个因素,包括负载要求、轴承和齿轮的选择等,因此,本课程设计旨在增强学生对二级减速器设计的理解和应用。

三、设计目标本课程设计的目标是设计一台满足以下要求的二级减速器:1. 输入转速:500 rpm2. 输出转速:50 rpm3. 额定输出扭矩:1000 Nm4. 功率损失小于5%5. 整机尺寸紧凑,便于安装和维护四、设计过程1. 步骤一:确定输入和输出参数在设计二级减速器之前,首先需要明确输入和输出的转速和扭矩要求。

根据设计目标,确定输入转速为500 rpm,输出转速为50 rpm,额定输出扭矩为1000 Nm。

2. 步骤二:选择传动比根据输入和输出参数,计算所需的传动比。

传动比可以通过输出转速除以输入转速来计算。

在本案例中,传动比为50/500=0.1。

3. 步骤三:选择齿轮参数根据传动比,选择合适的齿轮组合。

需要考虑齿轮的模数、齿数、齿轮材料等因素。

同时,还需进行齿轮强度和齿面接触疲劳寿命的校核,确保设计的齿轮组合符合强度和寿命要求。

4. 步骤四:结构设计根据齿轮的选择,进行减速器结构的设计。

需要确定减速器的轴承类型、轴承尺寸、轴承布局等。

同时,还需进行结构强度校核,确保减速器在工作状态下能够承受额定扭矩和载荷。

5. 步骤五:优化设计对设计结果进行优化,考虑减速器整机的尺寸、重量和功率损失。

优化设计可以通过修改齿轮组合、调整传动比等方式来实现。

最终的设计结果应满足课程设计的要求,并在实际应用中具有较好的性能和可靠性。

二级减速器设计说明书

二级减速器设计说明书

目录一、传动方案拟定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1二、电动机的选择∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11、电动机类型和结构型式的选择∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12、确定电动机的功率∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13、确定电动机转速∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2三、运动参数及动力参数计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙21、总传动比∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22、减速器传动比∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23、计算各轴转速∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙24、计算各轴的功率∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙25.计算各转轴转矩∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2四、V带传动的设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3五、斜齿圆柱齿轮传动的设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4(一)高速级齿轮传动设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4(二)低速级齿轮传动设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8六、轴的设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11(一)轴Ⅰ的设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11(二)轴Ⅲ的设计计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12(三)轴Ⅱ的设计计算与弯扭强度校核∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13七、滚动轴承的选择与校核∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16(一)轴Ⅰ上轴承的选择与校核∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙16八、键连接的选择和校核∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18(一)V带处的键∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18(二)齿轮2处的键齿轮3处的键∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18(三)齿轮4处的键联轴器上的键∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18九、联轴器的选择∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19十、箱体的主要结构尺寸的设计∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙19十一、齿轮、轴承的润滑方法及润滑材料∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20设计小结∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20参考文献∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20一、传动方案拟定铸造车间型砂带式运输机的传动装置设计(1)工作条件:装置单向传送,载荷较平稳,空载启动,使用年限10年,每年按300天计算,两班制工作,输送带速度容许误差为±5%。

二级减速器课程设计说明书

二级减速器课程设计说明书
1
43.2 cos14 1.82mm 23
5.1.3 按齿根弯曲强度计算 弯曲强度设计公式为
mn
2KT1Y cos2
3
d z12
YFa YSa
F
(1) 确定公式内的各计算数值
1) 根据纵向重合度
1.82 ,从图中查得螺旋角影响系数 Y 0.88
(5-3 )
zv1 2) 计算当量齿数:
zv2
z1 cos3
mn 2mm, 按接触强度算得的分度圆直径 d1 43.2mm , 算出小齿轮齿数
z1 d1 cos mn
43.2 cos 2
21 ,
大齿轮齿数 z2 21 4.5 94.5 ,取 z2 95 .
这样设计出的齿轮传动 , 即满足了齿面接触疲劳强度 凑, 避免浪费 .
5.1.4. 几何尺寸计算
, 又满足齿根弯曲疲劳强度
根据计算出的功率 Pd 可选定电动机的额定功率 Ped 。应使 Ped 等于或稍大于 Pd 。
查《机械设计课程设计》表 20-1 得 Ped 2.2kw
3.3 选择电动机的转速
由《机械设计课程设计》表 2-1 圆柱齿轮传动的单级传动比为 3 ~ 6 ,故圆柱齿轮传动的二 级传动比为 9 ~ 36 ,所以电动机转速可选范围为
223
1
234
所以
1 - -联轴器效率 2 - -齿轮传动效率 3 - -滚动轴承效率 4 - -滚筒效率
0.992 0.97 2 0.993 0.96 0.86
所以
Pd
Pw
1.574 1.83 kw
0. 86
1 0.99 取 2 0.97
3 0.99 4 0.96
3.2.3 确定电动机额定功率 Ped

二级减速器设计说明书(完整)

机械设计课程设计计算说明书设计题目:设计带式输送机中的传动装置专业年级:学号:学生姓名:指导教师:机械工程系完成时间年月日机械设计课程设计任务书学生姓名:学号:专业:任务起止时间:201年月日至年月日设计题目:设计带式输送机中的传动装置一、传动方案如图1所示:1—输送胶带;2—传动滚筒;3—两级圆柱齿轮减速器;4—V带传动;5—电动机图1 带式输送机减速装置方案二、原始数据表2-1滚筒直径d /mm 800 传送带运行速度v /(m/s) 1.8运输带上牵引力F /N 2200每日工作时数T /h24传动工作年限 5 单向连续平稳转动,常温空载启动三、设计任务:1.减速器装配图1张(A0图纸)2.低速轴零件图1张(A3图纸)3.低速轴齿轮零件图1张(A3图纸)4.设计说明书1份在三周内完成并通过答辩参考资料:《机械设计》《课程设计指导书》《机械设计手册》《工程力学》《机械制图》指导教师签字:F目录一、电机的选择 (1)1.1 选择电机的类型和结构形式: (1)1.2 电机容量的选择 (1)1.3 电机转速确定 (1)二、传动装置的运动和动力参数计算 (2)2.1 分配传动比及计算各轴转速 (2)2.2 传动装置的运动和动力参数计算 (2)三、V带传动设计 (4)3.1 确定计算功率 (4)3.2 选择普通V带型号 (4)3.3 确定带轮基准直径并验算带速 (4)3.4 确定V带中心距和基础长度 (4)3.5 验算小带轮包角 (5)3.6 计算V带根数Z (5)3.7 计算压轴力 (5)四、设计减速器内传动零件(直齿圆柱齿轮) (5)4.1 高速级齿轮传动设计计算 (5)4.2 低速级齿轮传动设计计算 (7)4.3 传动齿轮的主要参数 (9)五、轴的结构设计计算 (9)5.1 高速轴的计算(1轴) (9)5.2 中间轴的计算(2轴) (12)5.3 低速轴的计算(3轴) (13)六、轴的强度校核 (16)6.1 高速轴校核 (16)6.2 中间轴校核 (18)6.3 低速轴校核 (20)七、校核轴承寿命 (22)7.1 高速轴 (22)7.2 中间轴 (23)7.3 低速轴 (23)八、键连接的选择和计算 (23)九、箱体的设计 (24)十、心得体会................................................................................ 错误!未定义书签。

机械设计课程设计二级减速器设计说明书

机械设计课程设计二级减速器设计说明书一、设计任务设计一个二级减速器,用于将电动机的高转速降低到所需的工作转速。

减速器的技术参数如下:输入轴转速:1400rpm输出轴转速:300rpm减速比:4.67工作条件:连续工作,轻载,室内使用。

二、设计说明书1.总体结构二级减速器主要由输入轴、两个中间轴、两个齿轮、输出轴和箱体等组成。

输入轴通过两个中间轴上的齿轮与输出轴上的齿轮相啮合,从而实现减速。

2.零件设计(1)齿轮设计根据减速比和转速要求,计算出齿轮的模数、齿数、压力角等参数。

选择合适的齿轮材料和热处理方式,保证齿轮的强度和使用寿命。

同时,要进行轮齿接触疲劳强度和弯曲疲劳强度的校核。

(2)轴的设计根据齿轮和轴承的类型、尺寸,计算出轴的直径和长度。

采用适当的支撑方式和轴承类型,保证轴的刚度和稳定性。

同时,要进行轴的疲劳强度校核。

(3)箱体的设计箱体是减速器的支撑和固定部件,应具有足够的强度和刚度。

根据减速器的尺寸和安装要求,设计出合适的箱体结构。

同时,要考虑到箱体的散热性能和重量等因素。

3.装配图设计根据零件设计结果,绘制出减速器的装配图。

装配图应包括所有零件的尺寸、配合关系、安装要求等详细信息。

同时,要考虑到维护和修理的方便性。

4.设计总结本设计说明书详细介绍了二级减速器的设计过程,包括总体结构、零件设计和装配图设计等部分。

整个设计过程严格遵循了机械设计的基本原理和规范,保证了减速器的性能和使用寿命。

通过本课程设计,提高了机械设计能力、工程实践能力和创新思维能力。

二级减速器设计说明书

二级减速器设计说明书
二级减速器设计说明书
二级减速器是结合了一级减速器和二级减速器来实现较低的转速和较大的扭矩传递,广泛应用于各种电器、机械设备中。

本文将对二级减速器设计过程进行介绍,以便于更多人了解其原理及实现方式。

第一步:分析减速器的工作原理
减速器的主要作用是将较快的转速降低至较低的转速,在减速器内通过齿轮传动、摩擦轮及滑动轴等部件,能够实现得到较低的转速,同时能够较大扭矩的传递。

第二步:选择适合的齿轮形式
选择齿轮的形式是影响减速器转效的重要一环。

目前常用的有齿轮齿条、齿轮锥齿轮、洗涤及蜗轮蜗杆等,以及它们之间的组合。

合理选择齿轮形式,可以较好地实现高效率的减速比和较大扭矩的传递。

第三步:变速器保养和检测
操作人员应当定期进行检修,以保证设备可靠性和寿命,如果发现不正常情况应及时进行维护和检测。

一般常见的检测内容包括:拆洗检查、定位检查、螺栓检查、动爪检查、紧固位置检查等。

第四步:选择合适的传动油脂
传动部件与彼此之间的接触是以油脂的形式来实现的,以此来降低摩擦系数,确保滑动时能够有足够的润滑,选择合适的油脂能够有效地保护部件,并延长其使用寿命。

第五步:安装及调试
安装的时候应确保设备的完整性,检查各部件的安装是否正确,在调试时需要根据设备的使用要求进行操作,如果发现问题需及时进行处理。

以上就是关于二级减速器的设计过程及相关内容的介绍。

如果想要减速器能够得到较好的控制效果,就需要仔细针对具体的使用要求进行设计,从而保证减速器能够达到规定的技术要求。

二级减速器课程设计说明书

目录设计任务书: (3)第一章电动机的选择 (4)1.1传动方案的拟定 (4)1.2电动机的选择 (4)1.3传动比的分配 (5)1.4传动装置的运动和动力参数计算 (5)第二章斜齿圆柱齿轮减速器的设计 (6)2.1高速轴上的大小齿轮传动设计 (6)2.2低速轴上的大小齿轮传动设计 (9)第三章联轴器的校核 (14)3.1联轴器的选择和结构设计 (14)3.2联轴器的选择及计算 (14)第四章轴的设计各轴轴径计算 (15)4.1轴的选择与结构设计 (15)4.2中间轴的校核 (17)第五章滚动轴承的选择及计算 (23)5.1轴承的选择与结构设计 (23)5.2深沟球轴承的寿命校核 (24)第六章键联接的选择及计算 (25)6.1键的选择与结构设计 (25)6.2键的校核 (26)第七章润滑和密封方式的选择 (27)7.1齿轮润滑 (27)7.2滚动轴承的润滑 (27)第八章箱体及设计的结构设计和选择 (28)第九章减速器的附件 (29)9.1窥视孔和视孔盖 (30)9.2通气器 (30)9.3轴承盖 (30)9.4定位销 (31)9.5油面指示装置 (31)9.6放油孔和螺塞 (31)9.7起盖螺钉 (32)9.8起吊装置 (32)参考文献 (32)结束语 (33)设计任务书:1.设计题目:二级展开式斜齿圆柱齿轮减速器2.工作条件及生产条件:该减速器用于带式运输机的传动装置。

工作时有轻微振动,经常满载,空载启动,单向运转,单班制工作。

运输带允许速度差为±5%,减速器小批量生产,使用期限为5年(每年300天)。

应完成任务:1.减速器装配图一张(A0);2.中间轴上大齿轮和中间轴零件图两张(A2);3.设计说明书一份(8000)字。

3 .设计原始数据:卷筒直径 D/mm 300运输带速度 v(m/s) 0.63运输带所需转矩 T(N²m) 400第一章 电动机的选择1.1 传动方案的拟定为了确定传动方案,可根据已知条件计算出工作机滚筒的转速为:60/()600.63(0.3)40.11/min w n v D r ππ=⨯=⨯÷⨯= 1.2 电动机的选择(1) 电动机类型的选择:电动机的类型根据动力源和工作条件,选用Y 系列三相异步电动机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二级减速器设计说明书学校代码: 10128学号: 201221812033设计说明书题目:二级减速器学生姓名:田伟康学院:机械学院系别:机械系专业:机械电子工程班级:机电12-1指导教师:那日苏讲师二〇一五年七月目录机械设计基础课程设计任务书 (1)一、传动方案的拟定及说明 (3)二、电动机的选择 (3)三、计算传动装置的运动和动力参数 (4)四、传动件的设计计算 (6)五、轴的设计计算 (15)六、滚动轴承的选择及计算 (23)七、键联接的选择及校核计算 (26)八、高速轴的疲劳强度校核 (27)九、铸件减速器机体结构尺寸计算表及附件的选择 (30)十、润滑与密封方式的选择、润滑剂的选择 (31)参考资料目录题目名称 带式运输机传动装置学生学院 专业班级 姓 名 学 号一、课程设计的内容设计一带式运输机传动装置(见 图1)。

设计内容应包括:传动装置的总体设计;传动零件、轴、轴承、联轴器等的设计计算和选择;减速器装配图和零件工作图设计;设计计算说明书的编写。

图2为参考传动方案。

二、课程设计的要求与数据动力及传动装置DvF 图1 带式运输机图2 参考传已知条件:1.运输带工作拉力: F = 2.6 kN;2.运输带工作速度:v = 2.0 m/s;3.卷筒直径: D = 320 mm;4.使用寿命:8年;5.工作情况:两班制,连续单向运转,载荷较平稳;6.制造条件及生产批量:一般机械厂制造,小批量。

三、课程设计应完成的工作1.减速器装配图1张;2.零件工作图2张(轴、齿轮各1张);3.设计说明书1份。

四、课程设计进程安排序号设计各阶段内容地点起止日期一设计准备: 明确设计任务;准备设计资料和绘图用具教1-201第18周一二传动装置的总体设计: 拟定传动方案;选择电动机;教1-201第18周一计算传动装置运动和动力参数传动零件设计计算:带传动、齿轮传动主要参数的设计计算至第18周二三减速器装配草图设计: 初绘减速器装配草图;轴系部件的结构设计;轴、轴承、键联接等的强度计算;减速器箱体及附件的设计教1-201第18周二至第19周一四完成减速器装配图:教1-201第19周二至第20周一五零件工作图设计教1-201第20周周二六整理和编写设计计算说明书教1-201第20周周三至周四七课程设计答辩工字2-617 第20周五五、应收集的资料及主要参考文献1 孙桓, 陈作模. 机械原理[M]. 北京:高等教育出版社,2001.2 濮良贵, 纪名刚. 机械设计[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信远. 机械设计/机械设计基础课程设计[M]. 北京:高等教育出版社,1995.4 机械制图、机械设计手册等书籍。

发出任务书日期:2008年 6 月23日指导教师签名:计划完成日期:2008年7 月11日基层教学单位责任人签章:主管院长签章:一、传动方案的拟定及说明传动方案给定为三级减速器(包含带轮减速和两级圆柱齿轮传动减速),说明如下:为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动方案,可先由已知条件计算其驱动卷筒的转速W n ,即 min 4.1193202100060100060r D v n W ≈⨯⨯⨯=⨯=ππ一般常选用同步转速为m in 3000r 的电动机作为原动机,因此传动装置总传动比约为16--23。

根据总传动比数值,可采用任务书所提供的传动方案就是以带轮传动加二级圆锥斜齿轮传动二、电动机选择1.电动机类型和结构型式按工作要求和工作条件,选用一般用途的Y132M-4吗系列三项异步电动机。

它为卧式封闭结构 2.电动机容量1) 卷筒轴的输出功率PW kW Fv P W 2.510000.226001000=⨯==2) 电动机输出功率Pd ηWd p P =传动装置的总效率 54233221ηηηηηη⋅⋅⋅⋅= 式中,...21ηη⋅为从电动机至卷筒轴之间的各传动机构和轴承的效率。

由参考书1表2-4查得:弹性联轴器99.01=η;滚子轴承98.02=η;圆柱齿轮传动97.03=η;卷筒轴滑动轴承95.04=η;V 带传动5η=0.96 则784.096.095.097.098.099.024≈⋅⋅⋅⋅=ηm in 4.119r n W =kW P W 2.5=784.0≈ηkW P d 63.6=故 kW p P Wd 63.6784.02.5===η 3.电动机额定功率ed P由[1]表20-1选取电动机额定功率kW P ed 5.7= 4.电动机的转速为了便于选择电动机转速,先推算电动机转速的可选范围。

由任务书中推荐减速装置传动比范围34~24='i ,则 电动机转速可选范围为min /6.4059~8.2864)34~21(4.1192r i n n W d=⨯='⋅=' 可见只有同步转速为\3000r/min 的电动机均符合。

选定电动机的型号为Y132S2--2。

主要性能如下表:电机型号 额定功率 满载转速 起运转矩 最大转矩 Y132S2--27.5KW 2900r/mi n2.0 2.25、计算传动装置的总传动比∑i 并分配传动比1)、总传动比∑i =784.02.5=ηWp ≈24.29(符合24<∑i <34) 2)、分配传动比 假设V 带传动分配的传动比2i 1=,则二级展开式圆柱齿轮减速器总传动比。

∑i =15.12i i 1=∑二级减速器中:高速级齿轮传动比12.415.12*4.1i *4.1i 2===∑。

i低速级齿轮传动比95.212.415.12i i i 23===∑。

三、计算传动装置的运动和动力参数 1.各轴转速减速器传动装置各轴从高速轴至低速轴依次编号为:Ⅰ轴、Ⅱ轴、∑i =24.292i =4.12 3i =2.95Ⅲ轴。

各轴转速为:mi n /11995.2352mi n/35212.41450mi n /145022900i mi n /29003210r i n n r i n n r n n r n n m m ≈==≈=======I I I I I I I II2.各轴输入功率按电动机所需功率d P 计算各轴输入功率,即kW P P kW P P kW P P kWP P d d 75.597.098.005.605.697.098.036.636.696.063.663.6323250=⨯⨯===⨯⨯===⨯====I I I I I I I I I ηηηηη第三根轴的功率,第二根轴的功率,第一根轴的功率,电动机的输入功率,3.各轴输入转矩T(N •m)mmN mm N i T T mm N mm N n P T ⋅⨯=⨯⨯⋅⨯=⋅=⋅⨯=⋅⨯⨯=⨯⨯=I 4415046006010191.4209610183.210183.2290063.61055.91055.9ηmm N mm N i T T mm N mm N i T T ⋅⨯=⨯⨯⨯⋅⨯==⋅⨯=⨯⨯⨯⋅⨯==I I I I I I I I 55332542210603.495.297.098.010642.110642.112.497.098.010191.43ηηηη将计算结果汇总列表备用。

项目 电动机高速轴Ⅰ中间轴Ⅱ低速轴ⅢN 转速(r/min ) 2900 1450352119P 功率(kW ) 6.636.366.055.75转矩T(N •m)410183.2⨯ 410191.4⨯ 510642.1⨯ 510603.4⨯i 传动比 2 4.12 2.95 效率η0.950.980.97min/119min /352min /1450min/29000r n r n r n r n ====I I I I I IkWP kW P kW P kW P 75.505.636.663.60====I I I I I ImmN T mm N T ⋅⨯⋅⨯=I 44010191.410183.2mm N T mm N T ⋅⨯=⋅⨯=I I I I I 5510603.410642.1四、传动件的设计计算 1.设计带传动的主要参数。

已知带传动的工作条件:两班制(共16h ),连续单向运转,载荷平稳,所需传递的额定功率p=6.63kw 小带轮转速m r /2900n 1= 大带轮转速m r /1450n 2=,传动比2i 1=。

设计内容包括选择带的型号、确定基准长度、根数、中心距、带的材料、基准直径以及结构尺寸、初拉力和压轴力等等(因为之前已经按5η选择了V 带传动,所以带的设计按V 带传动设计方法进行)1)、计算功率a p a p =kw kw P K A 29.763.61.1=⨯=⋅2)、选择V 带型 根据a p 、1n 由图8-10《机械设计》p157选择A 型带(d1=112—140mm )3)、确定带轮的基准直径d d 并验算带速v(1)、初选小带轮的基准直径d d ,由(《机械设计》p155表8-6和p157表8-8,取小带轮基准直径mm 125d 1=d (2)、验算带速v s m s m n d v d /0.19/100060290012510006011=⨯⨯⨯=⨯⋅⋅=ππ因为5m/s<19.0m/s<30m/s,带轮符合推荐范围 (3)、计算大带轮的基准直径 根据式8-15 mm 250mm 1252d i d 12d d =⨯=⋅=,初定2d d =250mm(4)、确定V 带的中心距a 和基准长度d L a 、 根据式8-20 《机械设计》p152 0.7)(2)(21210d d d d d d a d d +≤≤+V=19.0m/s2d d =250mm0a =500mm0.7)250125(2)250125(0+⨯≤≤+⨯a262.5≤a ≤750初定中心距0a =500mmb 、由式8-22计算带所需的基准长度 0l =20a +()()02212142a d d d d d d d d -++π=2×500+π×0.5×(125+250)+(250-125)(250-125)/4×500 =1597mm由表8-2先带的基准长度d l =1600mm c.计算实际中心距a =0a +(d l -0l )/2=500+(1600-1597)/2=501.5mm 中心距满足变化范围:262.5—750mm (5).验算小带轮包角1α=180°-(2d d -1d d )/a ×57.3°=180°-(250-125)/501.5×57.3° =166°>90° 包角满足条件 (6).计算带的根数单根V 带所能传达的功率根据1n =2900r/min 和1d d =125mm 表8-4a用插值法求得0p =3.04kw 单根v 带的传递功率的增量Δ0p 已知A 型v 带,小带轮转速1n =2900r/min 转动比 i=21n n =1d d /2d d =2 查表8-4b 得Δ0p =0.35kwd l =1600mm1α=166°计算v 带的根数查表8-5得包角修正系数αk =0.96,表8-2得带长修正系数L k =0.99r p =(0p +Δ0p )×αk ×L k =(3.04+0.35) ×0.96×0.99=5.34KWZ=Prpc=7.29/5.34=1.37 故取2根. (7)、计算单根V 带的初拉力和最小值min 0F =500*ααZVk p k c)5.2(-+qVV=190.0N对于新安装的V 带,初拉力为:1.5min 0F =285N 对于运转后的V 带,初拉力为:1.3min 0F =247N (8).计算带传动的压轴力P FP F =2Z 0F sin(1α/2)=754N(9).带轮的设计结构 A.带轮的材料为:HT200 B.V 带轮的结构形式为:腹板式. C .结构图 (略)2、齿轮传动设计 选择斜齿轮圆柱齿轮 先设计高速级齿轮传动 1)、选择材料热处理方式根据工作条件与已知条件知减速器采用闭式软齿面计算说明(HB<=350HBS),8级精度,查表10-1得小齿轮 40Cr 调质处理 HB 1=280HBS大齿轮 45钢 调质处理 HB 2=240HBS 2)、按齿面接触强度计算:取小齿轮1z =20,则2z =2i 1z ,2z =20⨯4.12=82.4,取2z =83并初步选定β=15°V 带取2根.min 0F =190.0NP F =754N确定公式中的各计算数值a.因为齿轮分布非对称,载荷比较平稳综合选择Kt=1.6b.由图10-30选取区域系数Zh=2.425c.由图10-26查得76.01=∂ε, 84.02=∂ε,则60.121=+=∂∂∂εεεd.计算小齿轮的转矩:m m 10189.441⋅⨯=N T 。

相关文档
最新文档