实验误差与数据处理大学物理实验详解
大学物理实验-误差理论与数据处理综述

误差理论与数据处理
②依据测量的条件进行分类
※等精度测量:
就是在一定的条件下,由同一测量者,操作同 一测量工具,采用同一方法,测量同一对象, 这样的测量称为等精度测量.即测量的一切条 件都是不变的,变化的因素很小时也可认为是 等精度测量.
不等精度测量 :
③依据测量可重复性进行分类
单次测量: ※多次测量:
误差理论与数据处理
①误差的绝对值有界 有界性 ②小误差出现的概率大于大误差出现 单峰性 的概率 对称性 ③n很大时,绝对值相等、符号相反的 误差,概率相等 ④n很大时,由于正负误差相互抵消, 抵偿性 各误差的代数和趋于零。 通过数学推导,可以得到随机误差的概率密度 分布函数
误差理论与数据处理
或者
一般难以控制,往往不可抗拒。
如:电磁场等的微扰,测量者的心理等。
误差理论与数据处理
•服从的规律: 服从数理统计规律。 •处理方法:
多次测量取平均值,也就是用最佳 估计的办法得近似真值。
③过失误差
由于实验者粗心大意或环境突发干扰而造成的, 该测量值不属于正常测量范围,在处理数据时 应予以剔除。
误差理论与数据处理
误差理论与数据处理
误差理论与数据处理
《大学物理实验》课程安排
本学期(8次课16学时)
(1)误差理论与数据处理 (2)实验项目7个 14学时 2学时
误差理论与数据处理
本次课程内容:
一、基本概念 二、随机误差的正态分布率 三、数据处理 *(重点)
四、实验常用的数据处理 方法 *(重点) 五、物理实验课的基本程 序和要求
准确度高 精密度低
准确度高 精密度高
精 确 度 高
误差理论与数据处理
4)误差的表示方法:
大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
大学物理实验—误差及数据处理

误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
大学物理实验报告数据处理及误差分析

1测量与误差
一、测量及其分类
所谓测量,就是借助一定的实验器具,通过一定的实验方法,直接或间接地把待测量与选作计量单位的同类物理量进行比较的全部操作。简而言之,测量是指为确定被测对象的量值而进行的一组操作。
篇二:数据处理及误差分析
物理实验课的基本程序
物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。
1实验前的预习
为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。
实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目:
4.选择速度B、C、D、E重复上述实验。B
C
6.实验小结
(1)对实验结果进行误差分析。
将B表中的数据保存为B.txt,利用以下Python程序对B组数据进行误差分析,结果为-2.84217094304e-13 import math g=9.8 v_sum=0 v1=0 v=[]
my_file=open("B.txt","r")
2.最佳值与偏差
在实际测量中,为了减小误差,常常对某一物理量x进行多次等精度测量,得到一系列测量值x1,x2,…,xn,则测量结果的算术平均值为
1??2n
n1ni(2)ni?1
算术平均值并非真值,但它比任一次测量值的可靠性都要高。系统误差忽略不计时的算术平均值可作为最佳值,称为近真值。我们把测量值与算术平均值之差称为偏差(或残差):
课程:大学物理实验学期:2014-2015学年第一学期任课教师:
大学物理实验误差理论讲解

2 (x)2
方差
(x)2
标准误差
由误差理论,可以证明算术平均值的实验标准偏差
x
n
2
xi x
i 1
nn 1
37 2019/6/10
如果我们把测量结果表示为
x x x
则表示在(x x)范围内包含真值 x 的
可能性是68.3%
38 88522
1
0
30 2019/6/10
算术平均值 =(1.01+1.02+2*1.03+8*1.04+8*1.05+ 5*1.06+2*1.07+2*1.08+1.09)/30=1.05
偏差Δxi -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
17 2019/6/10
仪器误差
天平不等臂所造成的 系统误差
18 2019/6/10
aA
a A
bB
O
b
B
转轴与几何中心重合
,由于 aa bb
所以可用弧长反映角
度的大小。
由于偏心,使之用
弧长反映角度 时产
生的系统误差。如: AABB 这是由偏心
造成的。
19 2019/6/10
在一组等精度的重复测量
f(Δx)
中,其偏差位于(, )
范围内的概率为100%。
0
Δx
34 2019/6/10
f (x)
1
e
x
2
2
2
2
σ:(1)常数,(2)误差(从量纲的角度来 判断)如图所示,可以证明:
f(Δx)
大物实验数据处理

x Y ax c e f x3 x 4
b 1
总不确定度
d 2
Y YE(Y )
间接测量量的不确定度的计算过程分三步
1、先估计个直接测量量 X i 的不确定度 X i 2、写出不确定度的传递公式; 3、结果
Y Y Y Y 1 E (Y ) (单位)
M 例: V
(Y1 Y2 Y3 ) Y n
M V
Y的计算:
1、和差形式的函数
2
(如Y ax1 bx2 )
2
f f 2 2 Y x1 x2 x1 x2
2、乘积商形式的函数
测量结果x=
x
Δ (单位)
不确定度Δ值可以通过一定的方法估算。
2、测量结果的表达(报告)方法 测量结果的科学表达方法:
X X
(单位)
表达式的物理意义( X , X )
恒为正,不确定度与误差是完全不同的概念。
相对不确定度: E 100%
x
置信度
不确定度包括两方面:
仪器误差(限)举例
a:游标卡尺,仪器示值误差一律取卡尺分度值。
b:螺旋测微计,量程在0—25mm及25—50mm的一 级千分尺的仪器示值误差均为仪 0.004mm。 c:天平的示值误差,本书约定天平标尺分度值的 一半为仪器的示值误差。 d:电表的示值误差, m 量程 准确度等级%。
(0 8)
(6)求总不确定度
A B
2
2
(7)写出最终结果表示: x x
S 2 B n
E 100% x
(单位)
大物实验----误差理论与数据处理

随机误差具有以下的性质: (1)单峰性 绝对值小的误差出现的机会(概率) 大,绝对值大的误差出现的机会(概率)小。 (2)对称性 大小相等、 符号相反的误差出现的概 率相等。 (3)有界性 非常大的正 负误差出现的概率趋于零。 (4)抵偿性 当测量次数 非常多时,由于正负误差 相互抵消,各误差的代数 随机误差的正态分布曲线 和趋于零。
(1)理论分析法 观测者凭借有关某项实验的物理理论、实验 方法和实验经验等对实验理论公式的近似性、所 采用的实验方法的完善性等进行研究与分析。 (2)对比法 (3)数据分析法
4.系统误差的减小或消除
(1)利用标准器具减消系统误差; (2)修正已经确定的定值系统误差; (3)采用合理、规范的测量步骤减消系统误差; (4)选择或改进测量方法减消系统误差。
根据统计理论可得:
f ( ) 1 e 2
2 2 2
式中σ是一个取决于具体测量条件的常数称为标 准误差(或称均方误差)。 σ反映的是一组测量数据的离散程度,常称 它为测量列的标准误差;它的数学表达式为:
( xi a ) 2 lim n n
可以证明
f ( )d 0.683 68.3%
称为绝对误差。 相对误差是误差与真值之比;通常用标准偏 差和平均值之比作为相对误差的估计值。相对误 差常他用符号 E 来表示,并表示成百分数。
三.过失误差(异常值)的剔除 1.拉依达准则:适用于测量次数n较大的测 量。 2.肖维涅准则: x cn S (x) (16页) 3.格拉布斯准则:x g( n, P ) S ( x)
(3)人的因素 由于观测者本人的生理或心理特 点所造成的误差。 (4)环境 由于环境条件如温度、气压、湿度的 变化等所引起的误差。
大学物理实验测量误差及数据处理

公选课: 专利与发明创造
知识经济
本课内容:
呼唤专利
建立专利意识 探寻创意来源 掌握申请方法
实验三环节
1. 预习
预习--操作--数据处理
(报告样本)
简述主要内容、过程及注意事项;推导相关公式; 画出流程图、线路图、光路图及装置示意图等
专栏专用,可附页
设计数据记录表(其中一份为草稿)
1 n 1 可求平均值 x x i ( x1 x2 ... xn ) n i 1 n
x 是 x i 的最佳估计值 因为多次测量的平均值接近真值,我们 就以平均值代替真值
3.3.2 平均值的实验标准差
S( x) S ( xi ) n
(x
i 1
3.5 合成不确定度 3.5.1 在A、B两类不确定度分别计算、且互不相关时, 合成不确定度Uc(x)
2 2 2 uc ( x ) s(2x ) uB s ( x) 仪 ( x)
3.5.2 我们的实验中采用合成不确定度uc(不采用扩展 不确定度U).
3.53 要完整地评价测量结果,除近真值和不确 定度的数值外还应给出其分布、有效自由度、 置信概率等参量。学生实验中暂不作要求。
大学物理实验绪论
汪仕元 1355 888 6954 821815208@
前
人类知识分两类:
自然科学分两类:
言
社会人文学 自然科学
物理学 数学
物理学分两类:
理论物理
应用物理
物理实验是物理学的基础
实验生发理论 奥斯特做电学实验时发现电流的磁效应 伽利略从单摆实验中找到了等时性
实验检验理论 比萨斜塔抛物实验检出重物快落理论之谬 迈克尔逊干涉实验否定了以太理论证实了相对论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.测量值与不确定x) (单位)
Ur
u(x) x
100%
测量值与不确定度、相对不确定度需要修正
结果正确表示举例
测测量量值值y 不不确确定定度度u u(y()y) 修修正正u u(y()y) 正正确确表表示示
131.34.24626 131.34.24323 131.34.242 131.34.4
11.37
11.37
三、数据分析
1.测量总是伴随着误差 2.实验误差分类(实验采用不确定度反映误差)
➢绝对误差 x x x0 x 测量值, x0真值
➢ 相对误差
Er
x
x0
100 %
在实验中, x0是测量的目标, x0和这两项误差难以
获得。
3.不确定度(uncertainty)—— u
不确定度是表征被测量真值在某个量值范围的 一个评定,是评价测量结果的一个参数。
掌握
二、数据处理
(3)函数运算:
乘方、开方、三角函数、自然对数等函数的有效位数 与自变量的有效位数相同。(角度为60进制,20°6′应视 为20°06′,有四位有效数字。Sin 20°06′=0.3436)
(4)混合运算:
按各步骤对应的运算方法逐步进行。
(11.37-10.52) 275 = 0.85 275 =2 1 掌握
1
2
3
4
5
mi(g) 187.92 187.24 187.55 187.19 187.31
mi m 0.48 -0.20 0.11 -0.15 -0.13
数据处理:
算术平均值:
m
1 5
5 i 1
mi
187 .44(g)
A类不确定度:uA (m)
1 n(n 1)
n i 1
(mi
m)2
=0.124(g)
有效数字相加减时,所得结果中可疑数字 的位置与所有参与运算的各个有效数字中可疑 数字位数最高的一个相同(即结果的小数点位数 与参与运算的数的最少的小数位数相同)。
掌握
二、数据处理
(2)乘除法 1 3. 6
× 1. 6 816
136 2 1. 7 6
结果取 2 2
有效数字相乘(或相除),结果的有效位数 与参与运算的各有效数字中有效位数最少者相同
大学物理实验
——实验绪论部分
主讲 段智英
实验要求
1.提前预习,写出预习报告,没有预习报告不允许作实验;
预习报告:实验目的、实验仪器、实验原理(包括计算公式、
电路图、光路图和装置简图等)、实验步骤(须精心设计实验数 据记录表格)
2.按时上课,旷课该实验记零分; 3.独立完成实验的全过程,实验报告、实验数据相同者双方均 记零分。 4.实验完成,整理好仪器,当堂交报告后,方可离开实验室。
实验报告
实验名称___________________
实验者______(包括姓名、学号、班级)、实验时间_____
一、实验目的 二、实验仪器 三、实验原理(包括计算公式、电路图、光路图和装置简图等) 四、实验步骤(包括实验数据记录——须精心设计表格) 五、数据记录与处理 六、实验结果
x x u(x) (单位)
二、数据处理
1. 有效数字的运算
运算规则:
可靠数字与可靠数字运算,结果仍为可 靠数字; 了 可靠数字与可疑数字、可疑数字与可疑 解 数字进行运算,结果为可疑数字;
二、数据处理
基本运算规律
(1)加减法 97.4
6.238 103.638
计算结果:103.6
26.2 3.926
22.274 22.3
4、直接测量量的不确定度u
1).对某量进行n次重复测量用A类不确定度uA
uA(x)
1 n(n 1)
n
(xi x)2
i1
(P11 :(1-7))
2).单次测量用B类不确定度uB的估算
uB (x)
仪 3
(P11 : (1-8))
5、间接测量的不确定度u (传递公式)
适用于加减关系的函数式(P12 :(1-13) )
适用于乘除关系的函数式(P12 (1-14) 先计算相对不确定度) 注意:有的实验为方便计算,结果都采用A类不 确定度简单计算。
6.实验结果表示
x x u(x) (单位)
Ur
u(x) x
100%
u:不确定度
Ur: 相对不确定度
表明被测量的真值包含在 ( x u , x u) 范围
内的概率为0.683
0.00.3013515 0.01.31232 0.00.0050454 0.00.0050454
0.00.404 0.01.414 0.00.00606 0.00.00606
131.34.3430.00.404
131.34.2420.01.414 131.34.2420.00.101
131.34.40.01.1
有效数字的位数应从左边第一个不为零的数字算起。
如 2.0020, 有5位有效数字; 0.00021, 有两位有效数字。
有效数字的位数愈多,测量的精确度愈高
一、数据记录
注意: 有效位数的舍入规则
4舍6入5凑偶
12.405 →12.40,
1.535 → 1.54
特别注意:
有效数字的位数和小数的位数的概念 不可等同!
相对不确定度:
Ur
0.124 187.44
实验数据记录与处理
实验记录的数据必须是有效数字、原始 数据
实验数据间的运算要符合有效数字的运 算规则
实验采用不确定度反映误差
实验结果表示 x x u(x) (单位)
Ur
u(x) x
100%
举例
一、直接测量结果的数据处理——举例
例1 用天平称一物体的质量m进行了5次,数据如下:
测量次数
u(x) Ur x 100%
七、问题讨论(包括结果分析、回答思考题)
一、数据记录 二、数据处理 三、数据分析
一、数据记录
1、原始数据必须记录 2、实验中记录的数据必须为有效数字
0
1
2
3
4
5 cm
估读值—可疑数字
用米尺测得:3.63cm 最小刻度以下的估读位——可疑位
定义:由测量得到的数位可靠数字和最后一位可疑数 字统称为有效数字
方法:1.先修正不确定度,不确定度只保留一位有效数字,但当第一位有效数字为1或2
时可取两位有效数字。0.057—0.06,0.0126---0.013
2.后比较测量值和不确定度,结果的小数位数和二者中小数位数少的相同。
切记:1.不确定度和相对不确定度按“只进不舍”取舍。0.053----0.06
2.测量值按“4舍6入5凑偶” 取舍。 3.不可随便在数的末尾加0 。