一元一次方程的基本概念、解方程步骤以及练习题
一元一次方程练习题

3.1.1 一元一次方程练习题考点一.方程的概念1、含有的等式叫方程。
考点二.一元一次方程的概念1.只含有个未知数,未知数的次数都是次的方程,叫做一元一次方程。
考点三.列方程遇到实际问题时,要先设字母表示 ,然后根据问题中的 ,最后写出含有未知数的 ,就能列出方程.归纳:列方程解实际问题的步骤:第一步: ,第二步: ,第三步: .考点四.解方程及方程的解的含义解方程就是求出使方程中等号左右两边的的值,这个值就是方程的 .问题1:判断下列数学式子X+1, 0.5x-x, 2x-3=7, 3x+2=2x-5 , 2x2+3x-8=0,x+2y=7.是方程有_______________________________________ ,是一元一次方程有_______________________________【同步测控】1.自己编造两个方程: , .2.自己编造两个一元一次方程:, .问题2.根据问题列方程:1.用一根长24cm的铁丝未成一个正方形,正方形的变长是多少?2.一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间他到规定的检修时间2450小时?3.某校女生占全体学生数的52%,比男生多80人,这个学校有多少人?【同步测控】根据下列问题,设未知数,列出方程1.环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?2.甲种铅笔每只0.3元,乙种铅笔铅笔每只0.6元,用9元钱买了两种铅笔共20支,两种铅笔各买了多少支?【同步测控】1.一个梯形的下底比上底多2cm,高是5cm,面积是40cm2,求上底.2.x的2倍于10的和等于18;3.比b的一半小7的数等于a与b的和;4.把1400元奖学金按照两种奖项将给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生多少人?问题三、判断方程的根1.判断下列各数X=1,x=2,x=-1,x=0.5.那个是方程2x+3=5x-3的解?2.当x=?时,方程3x-5=1 两边相等?3.1.2 等式的性质练习考点一.等式的基本性质11.等式两边 (或减)同一个数(或式子),结果仍 ;2.可以用数学语言表述为:如果a=b ,那么a b= ;2.用数字验证等式的基本性质1:如① ,② 。
一元一次方程的基本概念及练习

一元一次方程的基本概念及练习等式的概念:用“="来表示相等关系的式子,叫做等式。
观察下面的式子,哪些是等式?哪些不是?①m +n =n +m ②x +2x ③3×3+1=2×5 ④3x +1〉5y ⑤2+3=5+4方程的概念:含有未知数的等式叫做方程。
要点:1、含有未知数;2、是等式。
这是判断一个式子是不是方程的两个必要条件,缺一不可。
判断下列各式是不是方程:(1)5x —9=2x (2)x y 322=- (3)1152+x(4)-1—1=—2 (5)4x -2=-x (6)125=-x x 方程的解的概念:能使方程两边的值相等的未知数的值,叫做方程的解.例如,在方程5x -9=2x 中,当x =3时,方程左边=5×3—9=6,方程右边=2×3=6,左边=右边,所以x =3是方程5x —9=2x 的解。
当x =2时,左边=5×2-9=1,右边=2×2=4,左边≠右边,所以x =2不是方程5x -9=2x 的解。
解方程的概念:求方程的解的过程,叫做解方程。
例1:已知2是关于x 的方程x +a =4的解,求a 的值。
解:因为2是关于x 的方程x +a =4的解,所以2+a =4,所以a =2例2:求方程x +2=3的解解:移项得x =3—2,所以x =1上面这个过程,就叫做解方程。
一元一次方程的概念:只含有一个未知数,并且含有未知数的项的次数都是一次,这样的方程叫做一元一次方程。
方程中的未知数叫做“元”。
只有一个未知数→“一元",所有含未知数的项都是一次→“一次” 一元一次要点:(1)一元一次方程的标准形式是ax+b=0,期中x 是未知数,a 、b 是已知数,且a ≠0;(2)一元一次方程必须满足三个条件:一是只含有一个未知数,二是未知数的次数是1次,三是未知数的系数不为0.例3:031=+-m x 是关于x 的一元一次方程,求m 的值。
(完整)人教版七年级数学上册-第三单元一元一次方程

2☆下列各数是方程a A.2 B. -2 C.1 D. 1和-23☆下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 C. x-y=6 D.都不是 4★若x=4是方程a x -2=4的解,则a 等于( ) A. 0 B. 21C.-3D.-25★★已知关于x 的一元一次方程a x -b x=m 有解,则有( )A. a ≠b B.a>b C.a<b D.以上都对二、【方程变形——解方程的重要依据】1、▲等式的基本性质(P_83~84页)·等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。
即:如果a =b ,那么a ±c =b 。
·等式的性质2:等式的两边同时乘 ,或除以 数,结果仍相等。
即:如果a =b ,那么ac =bc ; 或 如果a =b ( ),那么a/c =b/c[# 注:等式的性质(补充): 等式的两边,结果仍相等。
即:如果a =b ,那么b =a #]2、△分数的基本的性质[4]分数的分子、分母同时乘以或除以同一个不为0分数的值不变。
即:b a =bm am =mb ma ÷÷(其中m ≠0) [基础练习] 1☆ 利用等式的性质解方程:2x+13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 ,解得:x=2★ 下列变形中,正确的是( )55,253==-x x x A 得、由23,23-==-x x B 得、由21,4)1(2=-=-x x C 得、由23,032==y y D 得、由3★★解方程:103.013.031.02.0=--x x三、【解一元一次方程的一般..步骤】图示1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解。
解方程六年级上册练习题解决问题

解方程六年级上册练习题解决问题解方程是数学中的一种重要方法,是用于求解未知数的值的过程。
在六年级上册,解方程一般涉及到一元一次方程的求解。
本文将通过解答六年级上册练习题,来介绍解方程的基本方法和步骤。
1. 方程的基本概念方程是由等号连接的两个代数式,如3x + 4 = 10便是一个方程,其中3x + 4和10是代数式,等号表示它们是相等的。
方程中通常会有一个未知数,这里的未知数是x。
2. 解一元一次方程的步骤解一元一次方程的关键是通过逆运算消去方程中的常数项和系数,从而求得未知数的值。
以下是解一元一次方程的基本步骤:(1)将方程整理成标准形式:将方程中的项按照系数大小排列,并将常数项移到等号的另一边。
例如,将3x + 4 = 10整理成3x = 10 - 4。
(2)消去系数:通过逆运算,将方程中的系数项变为1。
在上面的例子中,可以将3x = 10 - 4变为x = (10 - 4) ÷ 3。
(3)计算得出未知数的值:根据消去系数后的方程,计算出未知数的值。
将上面的例子计算得x = 2。
3. 解题实例现在我们通过解题实例来进一步理解解方程的过程。
题目:解方程3x - 7 = 8 - x,并求出未知数的值。
解题步骤:(1)将方程整理成标准形式:将方程中的项按照系数大小排列,并将常数项移到等号的另一边。
将3x - 7 = 8 - x整理成3x + x = 8 + 7。
(2)消去系数:通过逆运算,将方程中的系数项变为1。
将3x + x = 8 + 7变为4x = 15。
(3)计算得出未知数的值:根据消去系数后的方程,计算出未知数的值。
将4x = 15计算得x = 15 ÷ 4。
解答:根据以上步骤,可以求得方程3x - 7 = 8 - x的解为x = 15 ÷ 4。
4. 总结通过上述例子,我们可以发现解方程的基本步骤是整理方程、消去系数和计算未知数的值。
对于一元一次方程,只要按照这个步骤进行,就可以得到方程的解。
一元一次方程的基本概念,解方程步骤以及练习题

一元一次方程的基本概念,解方程步骤以及练习题(满分100分,时间:90分钟)姓名_______________学号________________成绩__________一.填空题(每题3分,共24分)1、 比a 的21的相反数小1的数是_________。
2、 在一次式z y x -+-3中,系数小于零的项数是__________。
3、 若01342=-++y x ,那么22y x +=__________。
4、 求作一个一元一次方程使它的解为x=-2,这个一元一次方程为_____________________。
5、 已知()81=-m x m 是一元一次方程,那么m=__________。
6、 商店进了一批服装,进价为320元,售价定为480元,为了使利润不低于20%,最多可以打__________折。
7、 初一(1)班在一次数学试卷中,平均成绩是78分,男生、女生的平均成绩分别是75.5和81分,则这个班男、女生人数的比为____________。
8、 两码头相距150km ,船在静水中的速度为20 km/小时,当水流的速度由2km/ 小时提高到4km/小时,船往返一次两码头的时间____________。
(填增、减、不变)二、选择题(每题3分,共18分)1、当b=21-时,一次式)1(2)(2a b a -+-的值( )(A) 与a 无关 (B) 1 (C) 2 (D) 32、若 a a -=-11,则 ( )(A) a ≥ 1 (B) a ≤ 1 (C) a > 1 (D) a < 13、如果a =3,那么a (x+1)= 2 (x+1)的解是( )(A )0 (B) -1 (C) 无解 (D) 1 4、892=-x 的解有 ( )(A )1个 (B) 2个 (C) 3个 (D) 4个5、甲、乙两人从相距s 米的两地同时出发,相向而行,相遇时甲比乙多走了5米,则甲走的路程为( ) (A) s +5 (B)21s+5 (C) s+25 (D) 21s+25 6、两杯盐水,一杯质量为40克,盐的质量分数为20%;另一杯质量为60克,盐的质量分数为 x%,两杯盐水混合而成的盐水中,盐的质量为( )(A ) (8+53x) 克 (B )(8+53x) % 克 (C) (8+60x )克 (D) (8+x )克 三、解下列方程(每题7分,共24分) 1、)11(76)20(34y y y y --=-- 2、436521xx -=--3、146151413121=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x4、03.04.05233.12.18.18.1=-----x x x四、列方程解应用题(共28分1、 有含盐30%的盐水6千克,现在进行蒸发,当盐水变成含盐40%时,此时已蒸发掉水多少千克?(8分)2、 非典时期学校整治校园环境,清理一个多年的垃圾堆,初三年级一个班需15小时完工,初二年级一个班需20小时完工,初一年级一个班30小时完工。
第08讲一元一次方程的概念与解法(8大考点)(原卷版)

第08讲一元一次方程的概念与解法(8大考点)一、方程和一元一次方程的概念 1)方程:含有未知数的等式。
如何判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含一个未知数,且未知数的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 二、方程的解与解方程1)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程 三、等式的性质1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a cb c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=2-2x 3x+7+2x=2-2x+2x 3x+7+2x-7=2-2x+2x-7 5x=-5 5x ÷5=-5÷5 x=-13)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
四、合并同类项解一元一次方程(1)合并同类项:将同类项合并在一起的过程 方法:1)合并同类项;2)系数化为1 五、移项解一元一次方程 (1)移项 例:2x-3=4x-72x-3+3=4x-7+3(利用等式的性质) (左边的﹣3变到右边变成了+3) 2x=4x-4考点考向2x-4x=4x-4-4x (利用等式的性质) (右边的4x 变到左边变成了-4x ) -2x=-4 x=24−− x=2①我们发现,利用等式两边同加或同减一个数(式子),等式不变的性质,可以将方程化为同类项在同一边的情形(即未知数在一边,数值在另一边)。
一元一次方程解题技巧计算题+应用题方法总结和练习

一元一次方程解题技巧计算题类【解方程基本步骤】⒈去分母方程两边同时乘各分母的最小公倍数。
⒉去括号一般先去小括号,再去中括号,最后去大括号。
但顺序有时可依据情况而定使计算简便。
可根据乘法分配律。
⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项将原方程化为ax=b(a≠0)的形式。
⒌系数化一方程两边同时除以未知数的系数。
⒍得出方程的解同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
应用题类【应用题基本步骤】⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
【11大类型及对应破题法】(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
(2)等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
(3)调配问题从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。
一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程
一、主要概念
1、方程:含有未知数的等式叫做方程。
2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。
3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4、解方程:求方程的解的过程叫做解方程。
二、等式的性质
等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
三、解一元一次方程的一般步骤及根据
1、去分母-------------------等式的性质2
2、去括号-------------------分配律
3、移项----------------------等式的性质1
4、合并----------------------分配律
5、系数化为1--------------等式的性质2
6、验根----------------------把根分别代入方程的左右边看求得的值是否相等
四、解一元一次方程的注意事项
1、分母是小数时,根据分数的基本性质,把分母转化为整数;
2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;
3、去括号时,不要漏乘括号内的项,不要弄错符号;
4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;
5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;
6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
五、列方程解应用题的一般步骤
3x-2=2x+1 3-x=2-5(x-1)
3x=5(32-x) 2+3(8-x)=2(2x-15)
5-3x=8x+1 2x+5=3x+12
7(2x-1)-3(4x-1)=4(3x+2)-1 (5x+1)+ (1-x)= (9x+1)+ (1-3x) 2(x-2)+2=x+1 2(x-2)-3(4x-1)=9(1-x)
11x+64-2x=100-9x 15-(8-5x)=7x+(4-3x)
3(x-7)-2[9-4(2-x)]=22 12-2(2x-4)=x-5
5x-2(x-1)=17 5x+15-2x-2=10
15x+863-65x=54 3x+5(138-x)=540
3x-7(x-1)=3-2(x+3) 18x+3x-3=18-2(2x-1) 3(20-x)=6x-4(x-11) 6(x-3)+7=5x+8
4(x-9)=7x+3 x+3(3x-1)=x+3
2(x+4)-3(5x+1)=2-x 3x+(7-x)=17
3(20-x)=6x-4(x-11) 3(x-1)-7(x+5)=30(x+1) (1)2x+5=5x-7 (2) 4-3(2-x)=5x (3)3(x-2)=2-5(x-2)
(6) 3(2)1(21)x x x -+=-- (7)
2
x
=3x-1
(8) 2x -13 =x+2
2 +1 (9) 12131=--x
(10) x x -=+3
8
(11) 12542.13-=-x x
(12 ) 310.40.342x x -=+ (13) 111
1248
x x x x -=++ (17) 31257243
y y +-=-
(18) 576132x x -=-+
(19) 14
3321=---m
m。