江苏省高三数学招生考试模拟测试试题(十二)

合集下载

江苏省镇江市2024~2025学年高三上学期期中模拟测数学试卷(含答案)

江苏省镇江市2024~2025学年高三上学期期中模拟测数学试卷(含答案)

2024~2025学年第一学期高三期中模拟测试卷(1)姓名:___________ 班级:___________一、单选题1.若,则()A.B.C.D.2.已知全集,集合,,则如图所示的图中阴影部分表示的集合为()A.B.C.D.3.若等比数列{an}的前n项和为S n,且S5=10,S10=30,则S20=()A.80B.120C.150D.1804.命题“”为真命题的一个充分不必要条件是()A.B.C.D.5.记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.C.D.36.在△ABC中,,为上一点,且,若,则的值为()A.B.C.D.7.已知,,且,则的最小值为().A.4B.6C.8D.128.设,则()A.B.C.D.二、多选题9.将函数的图象向左平移个单位得到函数,则下列说法正确的是()A.的周期为B.的一条对称轴为C.是奇函数D.在区间上单调递增10.已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线11.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有()A.动点B.三棱锥体积的最小值为C.与不可能垂直D.当三棱锥的体积最大时,其外接球的表面积为三、填空题12.已知为第一象限角,为第三象限角,,,则.13.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.14.若曲线在点处的切线也是曲线的切线,则.四、解答题15.已知函数的定义域为,对任意且,都满足.(1)求;(2)判断的奇偶性;(3)若当时,,且,求不等式的解集.1i1zz=+-z=1i--1i-+1i-1i+RU={}2560A x x x=--≤3lg3xB x yx-⎧⎫==⎨⎬+⎩⎭Venn(]3,1--(]1,3-(]1,3[]3,6[]21,2,0x x a∀∈-≤4a≤4a≥5a≤5a≥()y f x=3252π,23BAC AD DB∠==P CD12AP mAC AB=+||3,||4AC AB==AP CD⋅76-761312-1312x>0y>26xy x y++=2x y+0.110.1e,ln0.99a b c===-,a b c<<c b a<<c a b<<a c b<<()sin26f x xπ⎛⎫=-⎪⎝⎭6π()g x()g xπ()g x3xπ=()g x()g x,36ππ⎡⎤-⎢⎣⎦3()1f x x x=-+()f x()f x(0,1)()y f x=2y x=()y f x=1111ABCD A B C D-E1DD F11C CDD1//B F1A BEF11B D EF-131B F1A B11B D DF-25π2αβtan tan4αβ+=tan tan1αβ+sin()αβ+=e xy x=+()0,1ln(1)y x a=++a=()f x(,0)(0,)-∞+∞,x y∈R||||x y≠()22()()f x y f x y f x y++-=-(1),(1)f f-()f x1x>()0f x>(2)1f=(2)(1)2f x f x+--<16.如图,三棱锥中,,,,E 为BC 的中点.(1)证明:;(2)点F 满足,求二面角的正弦值.17.已知函数.(1)讨论的单调性;(2)证明:当时,.18.已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.19.记△ABC 的内角的对边分别为,已知.(1)求; (2)若,求△ABC 面积.参考答案:题号12345678910答案C D C D A D A CAD AC 题号11 答案ABD12.A BCD -DA DB DC ==BD CD ⊥60ADB ADC ∠=∠= BC DA ⊥EF DA =D AB F --()()e xf x a a x =+-()f x 0a >()32ln 2f x a >+{}n a 11a =11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a ,,A B C ,,a b c 2222cos b c a A+-=bc cos cos 1cos cos a B b A ba Bb A c--=+()tan tan tan 1tan tan αβαβαβ++==--因为,,则,,又因为,则,,则,则,解得法二:因为为第一象限角,为第三象限角,则,则13.【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.方法二:棱台的体积为.故答案为:.14.【详解】由得,,故曲线在处的切线方程为;由得,设切线与曲线相切的切点为,由两曲线有公切线得,解得,则切点为,切线方程为,根据两切线重合,所以,解得.故答案为:15.【详解】(1)因为对任意且,都满足,令,得,,令,得,.(2)对任意非零实数,,令,可得.在上式中,令,得,即对任意非零实数,都有,是偶函数.(3)对任意且,有,由(2)知,在区间上单调递增.,,是定义域为的偶函数,且在区间上单调递增,原不等式转化为,解得或或,原不等式的解集为.16.【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,设平面与平面的一个法向量分别为,二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而所以二面角17.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;π3π2π,2π,2ππ,2π22k k m mαβ⎛⎫⎛⎫∈+∈++⎪ ⎪⎝⎭⎝⎭,Zk m∈()()()22ππ,22π2πm k m kαβ+∈++++,Zk m∈()tan0αβ+=-<()()3π22π,22π2π2m k m kαβ⎛⎫+∈++++⎪⎝⎭,Zk m∈()sin0αβ+<()()sincosαβαβ+=-+()()22sin cos1αβαβ+++=()sinαβ+=αβcos0,cos0αβ><cosα==cosβ==sin()sin cos cos sin cos cos(tan tan)αβαβαβαβαβ+=+=+4cos cosαβ====282142=36()1446323⨯⨯⨯=()122343⨯⨯⨯=32428-=(13164283⨯⨯+=28ln2e xy x=+e1xy'=+0|e12xy='=+=e xy x=+()0,121y x=+()ln1y x a=++11yx'=+()ln1y x a=++()()00,ln1x x a++121yx'==+012x=-11,ln22a⎛⎫-+⎪⎝⎭112ln21ln222y x a x a⎛⎫=+++=++-⎪⎝⎭ln20a-=ln2a=ln2,x y∈R||||x y≠()22()()f x y f x y f x y++-=-1,0x y==(1)(1)(1)f f f+=(1)0f∴=1,0x y=-=(1)(1)(1)0f f f-+-==(1)0f∴-=a b,22a b a bx y+-==()()()f a f b f ab+=1b=-()(1)()f a f f a+-=-a()()f a f a=-()f x∴12,(0,)x x∈+∞12x x<22111,0x xfx x⎛⎫>∴>⎪⎝⎭()()()22211111x xf x f x f f x f xx x⎛⎫⎛⎫=⨯=+>⎪ ⎪⎝⎭⎝⎭()f x∴(0,)+∞(2)1,211(2)(2)(4)f f f f=∴=+=+=(2)(1)2f x f x+--<(2)(1)2(1)(4)(44),f x f x f x f f x∴+<-+=-+=-()f x(,0)(0,)-∞+∞(0,)+∞∴0|2||44|x x<+<-2x<-225x-<<2x>∴2(,2)2,(2,)5∞∞⎛⎫--⋃-⋃+⎪⎝⎭,AE DE DB DC=DE BC⊥DA DB DC==60ADB ADC∠=∠= ACDABD△AC AB∴=AE BC⊥AE DE E=,AE DE⊂ADE⊥BC ADE AD⊂ADE BC DA⊥2DA DB DC===BD CD⊥BC DE AE∴==2224AE DE AD∴+==AE DE∴⊥,AE BC DE BC E⊥=,DE BC⊂BCD AE∴⊥BCD E,,ED EB EA,,x y z(0,0,0)D A B EDAB ABF()()11112222,,,,,n x y z n x y z==D AB F--θ(AB=(EF DA==(F()AF=1111⎧=⎪∴=11x=1(1,1,1)n=222==⎪⎩21y=2(0,1,1)n=cos=sinθ==D AB F--()()e xf x a a x=+-R()e1xf x a=-'a≤e0x>e0xa≤()e10xf x a=-<'()f x R当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,,要证,即证,即证恒成立,令,则令,则,则所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则,则在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.18.【详解】解:(1)[方法一]【最优解】:显然为偶数,则,所以,即,且,所以是以2为首项,3为公差的等差数列,于是.[方法二]:奇偶分类讨论由题意知,所以.由(为奇数)及(为偶数)可知,数列从第一项起,若为奇数,则其后一项减去该项的差为1,若为偶数,则其后一项减去该项的差为2.所以,则.[方法三]:累加法由题意知数列满足.所以,,则.所以,数列的通项公式.(2)[方法一]:奇偶分类讨论.[方法二]:分组求和由题意知数列满足,所以.所以数列的奇数项是以1为首项,3为公差的等差数列;同理,由知数列的偶数项是以2为首项,3为公差的等差数列.0a >()e 10xf x a =-='ln x a =-ln x a <-()0f x '<()f x (),ln a -∞-ln x a >-()0f x '>()f x ()ln ,a -+∞0a ≤()f x R 0a >()f x (),ln a -∞-()f x ()ln ,a -+∞()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=3()2ln 2f x a >+2312ln 2ln a a a ++>+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min102g a g ==--=>()0g a >0a >3()2ln 2f x a >+()e 1xh x x =--()e 1x h x '=-e x y =R ()e 1x h x '=-R ()00e 10h =-='0x <()0h x '<0x >()0h x '>()h x (),0-∞()0,∞+()()00h x h ≥=e 1x x ≥+0x =()2ln 22()e e eln 1xxx af x a a x a a x a x x a a x +=+-=+-=+-≥+++-ln 0x a +=ln x a =-3()2ln 2f x a >+23ln 12ln 2x a a x a +++->+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min 102g a g ==--=>()0g a >0a >3()2ln 2f x a >+2n 21222212,1n n n n a a a a +++=+=+2223n n a a +=+13n n b b +=+121+12b a a ==={}n b 122,5,31n b b b n ===-1231,2,4a a a ===122432,15b a b a a ====+=11n n a a +-=n 12n n a a +-=n n n *23()n n a a n N +-=∈()11331n b b n n =+-⨯=-{}n a *113(1)1,()22nn n a a a n +-==++∈N 11213(1)11222b a a -==++=+=322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++ 12(1)131n n n =+-+=-⨯122,5b b =={}n b 31n b n =-20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-={}n a 12212121,1,2n n n n a a a a a -+==+=+2122123n n n a a a +-=+=+{}n a 2221213n n n a a a ++=+=+{}n a从而数列的前20项和为:.19.【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以故的面积为.{}n a 201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC V 11sin 122ABC S bc A ==⨯△。

江苏省苏州市(新版)2024高考数学苏教版模拟(综合卷)完整试卷

江苏省苏州市(新版)2024高考数学苏教版模拟(综合卷)完整试卷

江苏省苏州市(新版)2024高考数学苏教版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知某地A、B、C三个村的人口户数及贫困情况分别如图(1)和图(2)所示,为了解该地三个村的贫困原因,当地政府决定采用分层随机抽样的方法抽取15%的户数进行调查,则样本容量和抽取C村贫困户的户数分别是().A.150,15B.150,20C.200,15D.200,20第(2)题过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A.B.C.D.第(3)题已知直线平面,直线平面,有下列四个结论,其中正确结论是:①;②;③;④.A.①与②B.①与③C.②与④D.③与④第(4)题新高考数学中的不定项选择题有4个不同选项,其错误选项可能有0个、1个或2个,这种题型很好地凸显了“强调在深刻理解基础之上的融会贯通、灵活运用,促进学生掌握原理、内化方法、举一反三”的教考衔接要求.若某道数学不定项选择题存在错误选项,且错误选项不能相邻,则符合要求的4个不同选项的排列方式共有()A.24种B.36种C.48种D.60种第(5)题已知分别为双曲线E:的左、右焦点,过的直线与的左、右两支分别交于两点.若是等边三角形,则双曲线E的离心率为()A.B.3C.D.第(6)题定义在上的函数若满足:,且,则称函数为“指向的完美对称函数”.已知是“1指向2的完美对称函数”,且当时,.若函数在区间上恰有5个零点,则实数的取值范围为( )A.B.C.D.第(7)题已知集合,,则()A.B.C.D.第(8)题已知,,则下列不等式一定成立的是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则()A .的图象关于直线对称B.C.D.在区间上的极大值为第(2)题已知数列的前项和为,下列说法正确的是()A.若,则是等差数列B.若,则是等比数列C .若,则数列为递增数列D.若数列为等差数列,,则最小第(3)题将函数图象上各点的横坐标缩小为原来的,纵坐标不变,再将所得图象向左平移个单位长度得到函数的图象,则()A.B.的图象相邻两条对称轴间距离为C .在上单调递减D.在上的值域为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题数列满足,,其中,.①当时,_____;②若存在正整数,当时总有,则的取值范围是_____.第(2)题曲线与轴所围成的图形面积为______.第(3)题如图所示,将两块全等的直角三角形纸片和叠放在一起,其中,顶点与边的中点重合,交于点交于点,则重叠部分的面积为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题若存在常数,使得对定义域内的任意,都有成立,则称函数在其定义域上是“利普希兹条件函数”.(1)若函数是“利普希兹条件函数”,求常数的最小值;(2)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若是周期为2的“利普希兹条件函数”,证明:对任意的实数,都有.第(2)题在中,角的对边分别是,,,.(1)求;(2)若在上,,且,求的最大值.第(3)题如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=2,DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:AD⊥PB;(2)求A点到平面BPC的距离.第(4)题在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为,.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线垂直,根据(1)中你得到的参数方程,确定D的坐标.第(5)题在中,角A,B,C所对的边分别为a,b,c,且.(1)若,求的值;(2)若,的面积为,求c的值.。

江苏省扬州市(新版)2024高考数学苏教版模拟(强化卷)完整试卷

江苏省扬州市(新版)2024高考数学苏教版模拟(强化卷)完整试卷

江苏省扬州市(新版)2024高考数学苏教版模拟(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,则的元素个数为()A.1B.3C.5D.7第(2)题设集合,,则()A.B.C.D.第(3)题已知是以为公比的等比数列,,,则()A.B.C.D.第(4)题设复数z满足,则z的虚部为()A.B.C.D.1第(5)题已知函数在上有3个极值点,则的取值范围为()A.B.C.D.第(6)题小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A.B.C.D.第(7)题已知i是虚数单位,复数z满足,则z等于().A.B.C.i D.第(8)题若纯虚数满足,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知向量在向量方向上的投影向量为,向量,且与夹角,则向量可以为()A.B.C.D.第(2)题已知函数,则下列说法正确的是()A.若恒成立,则B.当时,的零点只有个C.若函数有两个不同的零点,则D.当时,若不等式恒成立,则正数的取值范围是第(3)题已知是定义域为的函数,满足,当时,,则下列说法正确的是()A.的最小正周期为4B.的图象只关于直线对称C.当时,函数有5个零点D.当时,函数的最小值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某项球类比赛的决赛阶段只有中国、美国、德国、巴西、西班牙、法国六个国家参加,球迷甲、乙、丙对哪个国家会获得此次比赛的冠军进行了一番讨论.甲认为,西班牙和法国都不可能获得冠军;乙认为,冠军是美国或者是德国;丙坚定地认为冠军绝不是巴西.比赛结束后,三人发现他们中恰有两个人的看法是对的,那么获得冠军的国家是_________.第(2)题已知正的边长为2,PQ为内切圆O的一条直径,M为边上的动点,则的取值范围为______________.第(3)题在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·20,则点P的横坐标的取值范围是_________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题国内某大学想了解本校学生的运动状况,采用简单随机抽样的方法从全校学生中抽取2000人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是,记平均每天运动的时间不少于2小时的学生为“运动达人”,少于2小时的学生为“非运动达人”.整理分析数据得到下面的列联表:单位:人性别运动时间合计运动达人非运动达人男生11003001400女生400200600合计150********零假设为:运动时间与性别之间无关联.根据列联表中的数据,算得,根据小概率值的独立性检验,则认为运动时间与性别有关,此推断犯错误的概率不大于.(1)如果将表中所有数据都缩小为原来的,在相同的检验标准下,再用独立性检验推断运动时间与性别之间的关联性,结论还一样吗?请用统计语言解释其中的原因.(2)采用样本性别比例分配的分层随机抽样抽取20名同学,并统计每位同学的运动时间,统计数据为:男生运动时间的平均数为2.5,方差为1;女生运动时间的平均数为1.5,方差为0.5,求这20名同学运动时间的均值与方差.附:,其中.临界值表:0.10.050.010.0050.0012.7063.8416.6357.87910.828第(2)题某工厂有25周岁以上(含25周岁)工人200名,25周岁以下工人100名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了120名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:,,,,,分别加以统计得到如图所示的频率分布直方图:(1)从样本中日平均生产件数不低于90件的工人中随机抽取2人,求至少抽到一名“25周岁以下”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请根据已知条件填写列联表,并判断是否有的把握认为“生产能手”与“工人所在的年龄组”有关?生产能手非生产能手合计25周岁以上25周岁以下合计附:0.1000.0500.0250.010,2.7063.8415.0246.635第(3)题的内角A,B,C的对边分别为,设.(Ⅰ)求A(Ⅱ)求的取值范围第(4)题已知过点的直线与抛物线交于两点,抛物线在点处的切线为,在点处的切线为,直线与直线交于点,当直线的倾斜角为时,.(1)求抛物线的方程;(2)设线段的中点为,求的取值范围.第(5)题已知的内角,,所对的边分别为,,,且.(1)求角;(2)若,,,求的长.。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

江苏省扬州市2024高三冲刺(高考数学)苏教版模拟(综合卷)完整试卷

江苏省扬州市2024高三冲刺(高考数学)苏教版模拟(综合卷)完整试卷
要的丝绸材质布料面积为( )
A.
B.
C.
第 (8)题
如图,在平行四边形
中,M,N分别为 , 上的点,且


,则
()
D. ,连接 , 交于P点,若
A.
B.
C.
D.
二、多选题:本题共3小题,每小题6分,共18分 (共3题)
第 (1)题 关于空间两条不同直线 和两个不同平面
A.
,则
C.
,则
,下列命题正确的是(
A.
B.
C.
D.
第 (7)题 灯罩的更新换代比较快,而且灯具大部分都是设计师精心设计,对于灯来说,不用将灯整个都换掉,只需要把灯具的外部灯罩
进行替换就可以改变灯的风格.杰斯决定更换卧室内的两个灯罩来换换氛围,已知该灯罩呈圆台结构,上下底皆挖空,上底半 径为10 ,下底半径为18 ,母线长为17 ,侧面计划选用丝绸材质布料制作,若不计做工布料的浪费,则更换两个灯罩需
四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)
第 (1)题
已知点


和动点
(1)求 点的轨迹方程;
(2)设 点的轨迹为曲线 按向量
满足 是

的等差中项.
平移后得到曲线 ,曲线 上不同的两点M,N的连线交 轴于点
( 为坐标原点)为锐角,求实数 的取值范围;
(3)在(2)的条件下,如果 时,曲线 在点 和 处的切线的交点为 ,求证: 在一条定直线上.

,求证: 为偶数;
(3)求证:不存在“5阶H表”.

两两不等,则称此表为“n阶H表”,
第 (5)题 在直角坐标系
中,直线 的参数方程为

江苏省常州市(新版)2024高考数学苏教版模拟(综合卷)完整试卷

江苏省常州市(新版)2024高考数学苏教版模拟(综合卷)完整试卷

江苏省常州市(新版)2024高考数学苏教版模拟(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知点.若曲线上存在两点,使为正三角形,则称为“正三角形”曲线.给定下列三条曲线:①;②;③.其中,“正三角形”曲线的个数是()A.0B.1C.2D.3第(2)题执行如图所示的程序框图,输出的s值为()A.B.C.D.第(3)题若,,,则a,b,c的大小关系为()A.B.C.D.第(4)题已知集合,则()A.B.C.D.第(5)题下列四类函数中,具有性质“对任意的,函数满足”的是A.幂函数B.对数函数C.指数函数D.余弦函数第(6)题“不以规矩,不能成方圆”出自《孟子·离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的方尺,是古人用来测量、画圆和方形图案的工具.敦煌壁画就有伏羲女娲手执规矩的记载(如图(1)).今有一块圆形木板,以“矩”量之,如图(2).若将这块圆形木板截成一块四边形形状的木板,且这块四边形木板的一个内角满足,则这块四边形木板周长的最大值为()A.B.C.D.第(7)题如图,中,,为的中点,将沿折叠成三棱锥,则该棱锥体积最大值为()A.B.C.D.第(8)题设、分别为双曲线(,)的左、右焦点.若在双曲线右支上存在点P,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线与抛物线的准线围成三角形的面积为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题年月,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆都包含,点组成的“曲圆”半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中,下半圆与轴交于点若过原点的直线与上半椭圆交于点,与下半圆交于点,则()A.椭圆的离心率为B.的周长为C.面积的最大值是D.线段长度的取值范围是第(2)题已知双曲线的离心率为,过其右焦点的直线与交于点,下列结论正确的是()A.若,则B.的最小值为C.若满足的直线恰有一条,则D.若满足的直线恰有三条,则第(3)题已知定义在上的函数满足,,且,则()A.的最小正周期为4B.C.函数是奇函数D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知同一平面内的单位向量,满足,则______.第(2)题展开式中的系数是_________.第(3)题现有三张卡片每张卡片上分别写着蔬菜园,水果园,动物园三个景区中的两个且卡片不重复,甲、乙、丙各选一张去对应的两个景区参观,甲看了乙的卡片后说:“我和乙都去动物园”,乙看了丙的卡片后说“我和丙不都去水果园”,则甲丙同去的景区是___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在三棱柱中,,,E,F分别为,的中点,且EF⊥平面.(1)求棱BC的长度;(2)若,且的面积,求二面角的正弦值.第(2)题在中,设角的对边分别为,且.(1)求;(2)求角的最大值.第(3)题已知函数(1)若时,求的最值;(2)若函数,且为的两个极值点,证明:第(4)题已知且,如果数列满足:对于任意的,均有,其中,那么称数列为“紧密数列”.(1)若“紧密数列”:为等差数列,,求数列的公差d的取值范围;(2)数列为“紧密数列”,求证:对于任意互不相等的,均有;(3)数列为“紧密数列”,对于任意的,且成立,求S的最小值.第(5)题已知双曲线(,)过,,,四个点中的三个点.(1)求双曲线的方程;(2)若直线与双曲线交于,两点,且,求证:直线经过一个不在双曲线上的定点,并求出该定点的坐标.。

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案

2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。

1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。

6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。

江苏省苏州市2023届高三上学期12月高考模拟数学试题

江苏省苏州市2023届高三上学期12月高考模拟数学试题

一、单选题二、多选题1. 在中,角,,的对边分别为,,.若,则角的最大值为( )A.B.C.D.2.在平面上,已知定点,动点.当在区间上变化时,动线段所形成图形的面积为( )A.B.C.D.3. 已知向量,,则的坐标为( )A.B.C.D.4. 已知命题和命题,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 过抛物线C :(p >0)的焦点F 作直线l 交抛物线C 于A ,B两点,且满足,则直线l 的倾斜角为( )A .45°B .60°和120°C .30°和150°D .45°和135°6.数列的前n项和为,且,若对任意,恒成立,则实数的取值范围为( )A.B.C.D.7. 在棱长为2的正方体中,O是底面的中心,E ,F 分别是的中点,那么异面直线和所成角的余弦值等于( )A.B.C.D.8. 下面正确的是( )A.B.C.D.9.已知函数,为的导函数,则( )A.的最小值为2B .在单调递增C .直线与曲线相切D .直线与曲线相切10. 已知变量,之间的经验回归方程为,且变量,的数据如图所示,则下列说法正确的是( )235911121073A.该回归直线必过B .变量,之间呈正相关关系C .当时,变量的值一定等于D .相应于的残差估计值为11. 已知F 是双曲线E:(,)的右焦点,直线与双曲线E 交于A ,B 两点,M 为双曲线E 上异于A ,B 的一点,且MA ,MB 不与坐标轴垂直,O 为坐标原点,P ,Q 分别为AF ,BF的中点,且,记双曲线E 的离心率为e ,直线MA 与MB 的斜率分别为,.则( )江苏省苏州市2023届高三上学期12月高考模拟数学试题三、填空题四、解答题A.B.C.D.12. 下列命题正确的是( )A .若,则B.若,则C .若,则D .若,则13. 设集合,则___________.14. 已知,则__________,当时,的值为________.15.请写出一个符含下列要求的数列的通项公式:①为无穷数列;②为单调递增数列;③.这个数列的通项公式可以是______.16. 椭圆的离心率是,且以两焦点间的线段为直径的圆的内接正方形面积是.(1)求椭圆的方程;(2)过左焦点的直线与相交于、两点,直线,过作垂直于的直线与直线交于点,求的最小值和此时的直线的方程.17. 如图所示,在四棱锥中,底面,,,点为棱的中点.用空间向量进行以下证明和计算:(1)证明:;(2)若为棱上一点,满足,求二面角的正弦值.18. 记的内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求证:,,是等差数列;(2)求的最大值.19. 已知函数,,当时,恒成立.(1)求实数的取值范围;(2)若正实数、满足,证明:.20.已知数列的前n 项和为,且满足,.(1)求;(2)证明:对任意的,都有.21. 如图,在四棱锥中,平面,底面是直角梯形,,,,,E是PB的中点.(1)求证:平面平面;(2)若,直线PA与平面所成角的正弦值为,求二面角的余弦值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1高三模拟测试卷(十二)数学(满分160分,考试时间120分钟)参考公式:样本数据x1,x2,…,x n的方差s2=1n?i=1n (x i-x-)2,其中x-=1n i=1n x i.一、填空题:本大题共14小题,每小题5分,共70分.1. 设集合A={x|x>1},B={x|x2<9},则A∩B=__________..2. 设a,b∈R,i为虚数单位,若(a+bi)·i=2-5i,则ab的值为__________..(第5题)3. 在平面直角坐标系xOy中,已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线的方程为y=3x,则该双曲线的离心率为__________..4. 已知一组数据9.8,10.1,10,10.2,9.9,那么这组数据的方差为__________..5. 右图是一个算法流程图,运行后输出的结果是__________..6. 若函数f(x)=asin??????x+π4+3sin??????x-π4是偶函数,则实数a的值为__________..7. 正四棱锥的底面边长为2 cm,侧面与底面所成二面角的大小为60°,则该四棱锥的侧面积为__________cm2.8. 将函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移2个单位后得到的函数图象关于原点对称,则实数φ的值为____________..9. 二次函数y=f(x)=ax2+bx+c(x∈R)的部分对应值如下表:-4-3-2-11232y 6 0 -4 -6 -6 -4 06则关于x的不等式f(x)≤0的解集为__________..10. 在正五边形ABCDE中,已知AB→·AC→=9,则该正五边形的对角线的长为__________..11. 用大小完全相同的黑、白两种颜色的正六边形积木拼成如图所示的图案,按此规律再拼5个图案,并将这8个图案中的所有正六边形积木充分混合后装进一个盒子中,现从盒子中随机取出一个积木,则取出黑色积木的概率是__________..12. 若函数f(x)=?????(x-a)2,x≤0,x-lnx+5+a,x>0的最小值为f(0),则实数a的取值范围是__________..13. 在平面直角坐标系xOy中,已知点P(-1,0),Q(2,1),直线l:ax+by+c=0,其中实数a,b,c成等差数列,若点P在直线l上的射影为H,则线段QH的取值范围是__________..14. 在平面直角坐标系xOy中,将函数y=3+2x-x2-3(x∈[0,2])的图象绕坐标原点O按逆时针方向旋转角θ,若θ∈[0,α],旋转后所得曲线都是某个函数的图象,则α的最大值为__________..二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分) 已知θ∈??????3π4,5π4,sin??????θ-π4=55.(1) 求sinθ的值;(2) 求cos??????2θ+2π3的值.316.(本小题满分14分)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1) DE∥平面AA1C1C;(2) BC1⊥AB1.17. (本小题满分14分)在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为2.(1) 若椭圆C经过点??????62,1,求椭圆C的标准方程;(2) 设A(-2,0),F为椭圆C的左焦点.若椭圆C上存在点P,满足PAPF=2,求椭圆C的离心率的取值范围.18. (本小题满分16分)如图,扇形AOB是一个植物园的平面示意图,其中∠AOB=2π3,半径OA=OB=1 km.为了便于游客观赏,拟在园内铺设一条从入口A到出口B的观赏道路,道路由弧AC,线段CD,线段DE和弧EB组成,且满足:AC︵=EB︵,CD∥AO,DE∥OB,OD∈??????33,63(单位:km).设∠AOC=θ.(1) 用θ表示CD的长度,并求出θ的取值范围;(2) 当θ为何值时,观赏道路最长?19. (本小题满分16分)已知公差不为0的等差数列{a n}的首项为1,前n项和为S n,且数列??????S n a n是等差数列.(1) 求数列{a n}的通项公式;4(2) 设lgb n=a n3n(n∈N*),问:b1,b k,b m(k,m均为正整数,且1<k<m)能否成等比数列?若能,求出所有的k和m的值;若不能,请说明理由.20. (本小题满分16分)设a为正常数,函数f(x)=ax,g(x)=lnx. (1) 求函数h(x)=f(x)·g(x)的极值;(2) 证明:x0∈R,使得当x>x0时,f(x)>g(x)恒成立.(十二)1. (1,3) 解析:B={x|-3<x<3},则A∩B={x|1<x<3}.本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. 10 解析:a+bi=-i·(2-5i)=-5-2i,则ab=10.本题主要考查复数的概念及四则运算等基础知识.本题属于容易题.3. 2 解析:双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线的方程为y=bax,则ba=3,b2=3a2,则c2=a2+b2=4a2,c=2a,所以双曲线的离心率为2.本题考查双曲线方程及其渐近线的方程等基础知识.本题属于容易题.4. 0.02 解析:平均数为10,由方差公式得s2=15[(9.8-10)2+(10.1-10)2+(10.2-10)2+(9.9-10)2]=0.02.本题考查了平均数及方差的概念及计算公式.本题属于容易题.5. 25 解析:由流程图可知,循环体执行5次,从而有S=1+3+5+7+9=25.本题考查了算法语句及流程图的基本概念.本题属于容易题.6.-3 解析:由f??????π4=a,f??????-π4=-3,函数f(x) 是偶函数,则f??????π4=f??????-π4,a=-3.本题考查了偶函数的概念,本题属于容易题.7.8 解析:由边长为2 cm,侧面与底面所成二面角的大小为60°,得四棱锥的斜高为2,一个侧面的面积为2 cm2,则侧面积为8 cm2.本题考查了棱锥的底面边长、侧面与底面所成二面角、斜高的关系,以及侧面积的求法.本题属于容易题.8. 4-π解析:由函数f(x)=sin(2x+φ)的图象向右平移2个单位得到y=sin(2x +φ-4) 的图象,此函数为奇函数,则φ-4=kπ,而0<φ<π,φ=4-π.本题考查了函数图象的平移以及奇函数的性质.本题属于容易题.9. [-3,2] 解析:由表格数据作出二次函数的草图,结合数据即可发现不等式f(x)≤0的解集为[-3,2].本题考查了三个二次之间的关系.本题属于容易题.10.32 解析:AB→·AC→=12AC2=9,则AC=32,即该正五边形的对角线的长为32.本题考查了三个二次之间的关系.本题属于容易题.11.949 解析:由图案的规律可知:黑色积木共有1+2+3+…+8=36个,白色积木共6+(6+4)+(6+4×2)+…+(6+4×7)=160个,黑、白两种颜色的正六边形积木共196个,则取出黑色积木的概率=36196=949.本题考查了简单的等差数列的求和与古典概型的概率.本题属于容易题.12. [0,3] 解析:由y=(x-a)2,x≤0的最小值为f(0),则a≥0.g(x)=x-lnx+5+a(x>0)必须满足g(1)≥f(0),即-2≤a≤3,所以0≤a≤3.本题考查了函数的图象与性5质,重点考查了数形结合思想的应用.本题属于中等题.13. [2,32] 解析:因为a,b,c成等差数列,有2b=a+c,即a-2b+c=0,对比方程ax+by+c=0可知,动直线恒过定点(1,-2),记为A,点P(-1,0)在动直线ax+by+c=0上的射影为H,即∠AHP=90°,所以点H在以PA为直径的圆上,该圆的圆心C为(0,-1),半径为2,点Q到圆心的距离QC为22,所以线段QH的取值范围是[2,32].本题考查了直线过定点与圆的性质.本题属于难题.14.π 3 解析:由函数y=3+2x-x2-3得y+3=3+2x-x2,两边平方,化简得(x-1)2+(y+3)2=4 (x∈[0,2])为两段圆弧(圆心角均为60°,其中一段过原点),而原点与圆心连线的倾斜角为30°,因此,要使旋转后的图象仍为一个函数的图象,旋转θ后的切线倾斜角最多为90°,也就是说,最大旋转角为90°-30°=60°,则α的最大值为60°,即π 3.本题考查了圆的方程与性质,突出了化归思想的运用.本题属于难题.15.解:(1) 设α=θ-π4,因为θ∈??????3π4,5π4,所以α∈??????π2,π,且θ=α+π 4.(2分) 因为sinα=sin??????θ-π4=55,所以cosα=-1-sin2α=-255.(4分)于是sinθ=sin??????α+π4=sinαcosπ4+cosαsinπ4=55×22+??????-255×22=-1010.(6分) (2) 因为cosθ=cos??????α+π4=cosαcosπ4-sinαsinπ4=??????-255×22-55×22=-31010,(8分) 所以sin2θ=2sinθcos θ=2×??????-1010×??????-31010=35,(10分) cos2θ=1-2sin2θ=1-2×??????-10102=45.(12分)所以cos??????2θ+2π3=cos2θcos2π3-sin2θsin2π3=45×??????-12-35×32=-4+3310.(14分) 16.证明:(1) 在直棱柱ABCA1B1C1中,侧面BB1C1C是矩形,故对角线的交点E是B1C的中点.(2分)又D是AB1的中点,DE是中位线,所以DE∥AC.(4分) 因为DE?平面AA1C1C,AC?平面AA1C1C,所以DE∥平面AA1C1C.(6分)(2) 因为在直棱柱ABCA1B1C1中,BC=CC1,所以侧面BB1C1C是正方形,于是B1C⊥BC1.(8分) 因为AA1C1C是矩形,所以AC⊥CC1. (注:或因为CC1⊥底面ABC,AC?平面ABC,CC1⊥AC) 又AC⊥BC,BC∩CC1=C,BC,CC1?平面BB1C1C,所以AC⊥平面BB1C1C.(10分)6因为BC1?平面BB1C1C,所以AC⊥BC1. 因为AC∩CB1=C,AC,CB1?平面AB1C,所以BC1⊥平面AB1C.(12分)由AB1?平面AB1C,得BC1⊥AB1.(14分)17.解:(1) 由题设知,椭圆C的焦距2c=2,即c=1,所以a2=b2+1.(2分)因为椭圆C经过点??????62,1,所以32a+1b2=,即32(b2+1+1b2=1,(4分)化简、整理得2b4-3b2-2=0,解得b2=2(负值已舍去).故椭圆C的标准方程为x23+y22=1.(6分)(2) 易知F(-1,0),设P(x0,y0),于是x20a2+y20b2=1. ①因为PAPF=2,即PA2=2PF2,所以(x0+2)2+y20=2(x0+1)2+2y20,即x20+y20=2. ②(8分)联立①②,并注意到a2=b2+1,解得x20=2a2-a2b2=a2(3-a2).(10分)因为-a≤x0≤a,所以0≤x20≤a2.于是0≤a2(3-a2)≤a2,即2≤a2≤3,亦即2≤a≤3.(12分)所以33≤1a≤22,即33≤ca≤22.故椭圆C的离心率的取值范围是??????33,22.(14分) 18.解:(1) 因为AC ︵=EB︵,CD∥AO,DE∥OB,所以∠AOD=π3.(2分)于是在△OCD中,OC=1,∠CDO=2π3,∠OCD=θ,∠COD=π3-θ,从而由正弦定理得ODsin∠OCD=CDsin∠COD=OCsin∠CDO,即OD sinθ=CDsin??????π3-θ=OCsin2π3=233. 所以OD=233sinθ,CD=233sin??????π3-θ.(5分) 因为OD∈??????33,63,即33≤233sinθ≤63,所以12≤sinθ≤22,而0<θ≤π3,所以π6≤θ≤π4.故CD=233sin??????π3-θ??????π6≤θ≤π4.(8分)(2) 由(1)知,观赏道路长L=2(AC︵+CD)=2θ+433sin(π3-θ)??????π6≤θ≤π4,即L=2θ+2cosθ-233sinθ.(10分)所以L′=2-2sinθ-233cosθ=2-433cos??????θ-π3.(12分)7令L′=0,得cos??????θ-π3=32,因为π6≤θ≤π4,所以θ=π6.(14分)因为当π6<θ≤π4时,-π6<θ-π3≤-π12,L′=2-433cos??????θ-π3<0,所以当θ=π6时,L取得最大值,即观赏道路最长.(16分)19.解:(1) 设等差数列{a n}的公差为d(d≠0),因为a1=1,所以a2=1+d,a3=1+2d,从而S2=2+d,S3=3+3d.(3分)因为数列??????S n a n是等差数列,所以2×S2a2=S1a1+S3a3,即2(2+d)1+d=1+3+3d1+2d,(5分)化简得d2-d=0,而d≠0,所以d=1. 故a n=a1+(n-1)d=n.(7分)(2) 假设存在正整数数组k和m,使b1,b k,b m成等比数列,则lgb1,lgb k,lgb m成等差数列,于是2k3k=13+m3m.(9分)所以m=3m??????2k3k-13 (*).易知k=2,m=3满足(*).(11分)因为当k≥3,且k∈N*时,2(k+1)3k+1-2k3k=2-4k3k+1<0,所以数列??????2k3k(k≥3,k∈N)为递减数列,(14分)于是2k3k-13≤2×333-13<0,所以,当k≥3时,不存在正整数k和m满足(*).综上,当且仅当k=2,m=3时,b1,b k,b m成等比数列.(16分) 20.(1) 解:易得h(x)=ax·lnx(a>0),则h′(x)=a(lnx+1),令h′(x)=0,得x=1e,(2分)且当0<x<1e时,h′(x)<0;当x>1e时,h′(x)>0,所以函数h(x)存在极小值h??????1e=-ae,不存在极大值.(5分) (2) 证明:取x0=1a2,满足x>x0,f(x)>g(x).(7分)令φ(x)=ax-lnx(a>0),由φ′(x)=a-1x=0,得x=1a,列表:x ??????0,1a 1a ??????1a,+∞φ′(x) - 0 +8φ(x) 极小值1+lna若a>1e时,[φ(x)]min=1+lna>0,所以φ(x)>0,取x0=1a2>0,则满足题意;若a=1e时,[φ(x)]min=1+lna=0,所以φ(x)≥0,取x0=1a2>1a,则满足题意;(11分)若0<a<1e时,[φ(x)]min=1+lna<0,取x0=1a2>1a,则当x>x0时,φ(x)>φ??????1a2=1a-2ln1a,令t=1a,记r(t)=t-2lnt,且t>e,则r′(t)=1-2t=t-2t>0,故r(t)为(e,+∞)上单调增函数,所以r(t)>r(e)=e-2>0,从而1a-2ln1a>0,所以φ(x)>0,满足题意.综上,存在x0=1a2,使得x>x0,φ(x)>0,即f(x)>g(x).(16分)。

相关文档
最新文档