常用数学符号及数学表达式的读法

合集下载

数学符号及读法大全(详细)

数学符号及读法大全(详细)

1数学符号及读法大全符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作e xa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同 a^xlogb a 以b为底a的对数; b logba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

下边界值写在其下部,上边界值写在其上部。

如j从1到100 的和可以表示成:。

这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ变量 (x2 + y2 + z2)1/2或球面坐标系中到原点的距离r 变量 (x2 + y2)1/2或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积det M M的行列式M-1矩阵M的逆矩阵v×w向量v和w的向量积或叉积2 符号含义θvw向量v和w之间的夹角A•B×C标量三重积,以A、B、C为列的矩阵的行列式uw在向量w方向上的单位向量,即 w/|w|df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似df/dx f关于x的导数,同时也是f的线性近似斜率f ' 函数f关于相应自变量的导数,自变量通常为x∂f/∂x y、z固定时f关于x的偏导数。

数学符号及读法大全(详细)

数学符号及读法大全(详细)

数学符号及读法大全符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作e xa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同 a^xlogb a 以b为底a的对数; b logba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

下边界值写在其下部,上边界值写在其上部。

如j从1到100 的和可以表示成:。

这表示 1 + 2 + … + nM 表示一个矩阵或数列或其它|v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量<v| 被写成行或可被看成从1×k阶矩阵的向量dx 变量x的一个无穷小变化,dy, dz, dr等类似ds 长度的微小变化ρ变量 (x2 + y2 + z2)1/2或球面坐标系中到原点的距离r 变量 (x2 + y2)1/2或三维空间或极坐标中到z轴的距离|M| 矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积||M|| 矩阵M的行列式的值,为一个面积、体积或超体积det M M的行列式M-1矩阵M的逆矩阵v×w向量v和w的向量积或叉积符号含义θvw向量v和w之间的夹角A•B×C标量三重积,以A、B、C为列的矩阵的行列式uw在向量w方向上的单位向量,即 w/|w|df 函数f的微小变化,足够小以至适合于所有相关函数的线性近似df/dx f关于x的导数,同时也是f的线性近似斜率f ' 函数f关于相应自变量的导数,自变量通常为x∂f/∂x y、z固定时f关于x的偏导数。

六年级数学符号读法大全

六年级数学符号读法大全

六年级数学符号读法大全一、运算符号。

1. “+”- 读法:加号或正号。

在加法运算中,如3 + 2,读作“三加二”;当它在一个数前面表示正数时,如+5,读作“正五”。

2. “-”- 读法:减号或负号。

在减法运算中,如5 - 3,读作“五减三”;当它在一个数前面表示负数时,如 - 2,读作“负二”。

3. “×”- 读法:乘号。

在乘法运算中,如4×5,读作“四乘五”。

在不引起混淆的情况下,乘号有时也可以用“·”表示,如a·b,也读作“a乘b”。

4. “÷”- 读法:除号。

在除法运算中,如10÷2,读作“十除以二”。

也可以表示成分数形式,如(10)/(2),读作“十分之二”(这里是表示除法运算关系时的读法,在分数意义下还有其他读法)。

5. “=”- 读法:等于号。

如3 + 2 = 5,读作“三加二等于五”。

6. “≠”- 读法:不等于号。

如4≠5,读作“四不等于五”。

7. “<”- 读法:小于号。

如3<4,读作“三小于四”。

8. “>”- 读法:大于号。

如5>3,读作“五大于三”。

9. “≤”- 读法:小于等于号。

如x≤5,读作“x小于等于五”。

10. “≥”- 读法:大于等于号。

如y≥3,读作“y大于等于三”。

二、括号符号。

1. “( )”- 读法:小括号或圆括号。

在运算中,如(3 + 2)×4,读作“三加二的和乘四”。

2. “[ ]”- 读法:中括号或方括号。

如[2+(3 - 1)]×5,读作“二加三减一的差的和乘五”。

3. “{ }”- 读法:大括号或花括号。

如{1+[2+(3 - 1)]}×2,读作“一加二加三减一的差的和的和乘二”。

三、其他数学符号。

1. “%”- 读法:百分号。

如25%,读作“百分之二十五”。

2. “π”- 读法:圆周率(pài)。

在数学计算中,如圆的周长C = 2πr,这里的π就读作“pài”。

各种数学符号及读法大全

各种数学符号及读法大全

各种数学符号及读法大全数学是一门充满符号的科学,这些符号就像一种特殊的语言,帮助我们更简洁、准确地表达数学概念和进行运算。

下面就为大家介绍一些常见的数学符号及其读法。

一、基本运算符号1、加号(+):读作“加”,例如“2 +3”读作“二加三”。

2、减号(-):读作“减”,比如“5 2”读作“五减二”。

3、乘号(×):读作“乘”,像“4 × 5”读作“四乘五”。

在数学中,有时也会用“·”表示乘号,例如“3·2”,同样读作“三乘二”。

4、除号(÷):读作“除以”,例如“6 ÷ 3”读作“六除以三”。

二、比较符号1、等于号(=):读作“等于”,比如“2 + 3 =5”读作“二加三等于五”。

2、大于号(>):读作“大于”,例如“5 >3”读作“五大于三”。

3、小于号(<):读作“小于”,像“2 <4”读作“二小于四”。

4、大于等于号(≥):读作“大于等于”,比如“x ≥ 5”读作“x 大于等于五”。

5、小于等于号(≤):读作“小于等于”,例如“y ≤ 8”读作“y 小于等于八”。

三、括号1、小括号():通常读作“括号”,例如“(2 + 3)× 4”读作“括号二加三括号乘四”。

2、中括号:读作“中括号”,像“ 5 (3 1)÷ 2”读作“中括号五减去括号三减一括号除以二”。

3、大括号{}:读作“大括号”,比如“{ 2, 4, 6, 8 }”读作“大括号二,四,六,八”。

四、分数符号1、分数线(—):例如“3/5”,读作“五分之三”。

分子在前,分母在后。

2、带分数:由整数部分和分数部分组成,例如“2 又1/3”,读作“二又三分之一”。

五、指数符号1、平方(²):例如“5²”,读作“五的平方”。

2、立方(³):像“2³”,读作“二的立方”。

3、多次方:比如“4 的 5 次方”写作“4^5”,读作“四的五次方”。

数学符号及读法大全

数学符号及读法大全

数学符号及读法大全一、基本符号及读法1. 加号(+):读作“加”或“正”。

例如,2 + 3 读作“二加三”或“二正三”。

2. 减号():读作“减”或“负”。

例如,5 2 读作“五减二”或“五负二”。

3. 乘号(×):读作“乘”。

例如,4 × 6 读作“四乘六”。

4. 除号(÷):读作“除以”。

例如,8 ÷ 2 读作“八除以二”。

5. 等号(=):读作“等于”。

例如,3 + 4 = 7 读作“三加四等于七”。

6. 不等号(≠):读作“不等于”。

例如,5 ≠ 6 读作“五不等于六”。

7. 大于号(>):读作“大于”。

例如,7 > 5 读作“七大于五”。

8. 小于号(<):读作“小于”。

例如,3 < 8 读作“三小于八”。

9. 大于等于号(≥):读作“大于等于”。

例如,x ≥ 5 读作“x大于等于五”。

10. 小于等于号(≤):读作“小于等于”。

例如,y ≤ 10 读作“y小于等于十”。

二、指数与对数符号及读法1. 指数符号(^):读作“的幂”。

例如,2^3 读作“二的三次幂”。

2. 对数符号(log):读作“以为底的对数”。

例如,log₂8 读作“以二为底八的对数”。

三、集合符号及读法1. 属于符号(∈):读作“属于”。

例如,3 ∈ {1, 2, 3} 读作“三属于集合{一、二、三}”。

2. 不属于符号(∉):读作“不属于”。

例如,4 ∉ {1, 2, 3} 读作“四不属于集合{一、二、三}”。

3. 空集符号(∅):读作“空集”。

例如,∅表示一个不包含任何元素的集合。

四、几何符号及读法1. 直线符号(→):读作“直线”。

例如,AB → 表示直线AB。

2. 射线符号(⇀):读作“射线”。

例如,AC ⇀表示射线AC。

3. 线段符号(|):读作“线段”。

例如,BC | 表示线段BC。

4. 角符号(∠):读作“角”。

例如,∠ABC 表示角ABC。

数学符号及读法大全

数学符号及读法大全

数学符号及读法大全常用数学输入符号:≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita 西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ表示求和,通常是某项指数。

数学方程式。符号。以及读法

数学方程式。符号。以及读法

数学方程式满意回答2013-04-05 14:04三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan (A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctg ActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga co s2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB =sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA +tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sin AsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2 2+4+6+8+10+12+14+…+(2n) =n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+ 63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/ 2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/ 2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L 注:其中, S'是直截面面积,L是侧棱长柱体体积公式;V=s*h 圆柱体V=pi*r2hα——阿尔法β——贝塔γ——伽马Δ——德尔塔ξ——可sei ψ——可赛ω——奥秘噶μ——米哟λ——南木打σ——西格玛τ——套φ——fai2、数学运算符:∑—连加号∏—连乘号∪—并∩—补∈—属于∵—因为∴—所以√—根号‖—平行⊥—垂直∠—角⌒—弧⊙—圆∝—正比于∞—无穷∫—积分≈—约等≡—恒等3、三角函数:sin—赛因cos—考赛因tan—叹近体cot—考叹近体sec—赛看近体csc —考赛看近体大写小写英文注音国际音标注音中文注音Α α alpha alfa 阿耳法Β β beta beta 贝塔Γ γ gamma gamma 伽马Δδ deta delta 德耳塔Ε ε epsilon epsilon 艾普西隆Ζ ζ zeta zeta 截塔Η η eta eta 艾塔Θ θ theta θita 西塔Ι ι iota iota 约塔Κ κ kappa kappa 卡帕∧ λ lambda lambda 兰姆达Μ μ mu miu 缪Ν ν nu niu 纽Ξ ξ xi ksi 可塞Ο ο omicron omikron奥密可戎∏ π pi pai 派Ρ ρ rho rou 柔∑ σ sigma sigma 西格马Τ τ tau tau 套Υ υ upsilon jupsilon 衣普西隆Φ φ phi fai 斐Χ χ chi khai 喜Ψ ψ psi psai 普西Ω ω omega omiga 欧米伽常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮ ≯ ∷ ± +-× ÷ /∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ⊥ ‖ ∠ ⌒ ≌ ∽ √ ()【】{}Ⅰ Ⅱ ⊕ ⊙∥α β γ δ ε ζ η θ Δ大写小写英文国际音标中文注音Αα alpha alfa 阿耳法Β β beta beta 贝塔Γ γ gamma gamma 伽马Δ δ deta delta 德耳塔Ε ε epsilon epsilon 艾普西隆Ζ ζ zeta zeta 截塔Η η eta eta 艾塔Θ θ theta θita 西塔Ι ι iota iota 约塔Κ κ kappa kappa 卡帕∧ λ lambda lambda 兰姆达Μ μ mu miu 缪Ν ν nu niu 纽Ξ ξ xi ksi 可塞Ο ο omicro n omikron 奥密可戎∏ π pi pai 派Ρ ρ rho rou 柔∑ σ sigma sigma 西格马Τ τ tau tau 套Υ υ upsilon jupsilon 衣普西隆Φ φ phi fai 斐Χ χ chi khai 喜Ψ ψ psi psai 普西Ω ω omega omiga 欧米符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同 a^xlogba 以b为底a的对数; blogba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos xcsc x 余割函数的值,其值等于 1/sin xasin x y,正弦函数反函数在x处的值,即 x = sin yacos x y,余弦函数反函数在x处的值,即 x = cos yatan x y,正切函数反函数在x处的值,即 x = tan yacot x y,余切函数反函数在x处的值,即 x = cot yasec x y,正割函数反函数在x处的值,即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b) a、b向量的点积|v| 向量v的模|x| 数x的绝对值Σ 表示求和,通常是某项指数。

数学理里面的公式符号读法

数学理里面的公式符号读法

数学理里面的公式符号读法数学理里面的公式符号读法物理公式符号:Α α:阿尔法 AlphaΒ β:贝塔 BetaΓ γ:伽玛 GammaΓ δ:德尔塔 DelteΔ ε:艾普西龙 EpsilonΕ δ :捷塔 ZetaΔ ε:依塔 EtaΘ ζ:西塔 ThetaΙ η:艾欧塔 IotaΚ θ:喀帕 Kappa∧ ι:拉姆达 LambdaΜ κ:缪 MuΝ λ:拗 NuΞ μ:克西 XiΟ ν:欧麦克轮 Omicron∏ π:派 PiΡ ξ:柔 Rho∑ ζ:西格玛 SigmaΤ η:套 TauΥ υ:宇普西龙 UpsilonΦ θ:fai PhiΦ χ:器 ChiΧ ψ:普赛 PsiΨ ω:欧米伽 Omega数学公式符号:(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率∏。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用数学符号及数学表达式的读法
Item Read as
1/2 A half / one half
1/3 A third / one third
2/3 Two thirds
1/4 A quarter / one quarter / a fourth / one fourth
1/10 A tenth / one tenth
1/100 A [one] hundredth
1/1000 A [one] thousandth
1/1234 One over a thousand two hundred and thirty-four
3/4 Three fourths / three quarters
4/5 Four fifths / four over five
113/300 One hundred and thirteen over three hundred
2½Two and a half
7
Two and seven over eight / two and seven eighths
2
8
1
Three and one eighth
3
8
1
Four and a third
4
3
125 A [one] hundred twenty-five and three fourths [quarters] 3
4
0.1 [ .1] Zero point one / nought point one
0.01 [.01] Zero point zero one / nought point nough one
0.25 [.25] Nought point two five
0.045 Decimal [point] nought four five
2.35 Two point three five
Four point nine recurring
49.
Three point nought three two six, two six recurring
30326
.
45.67 Four five [forty-five] point six seven
38.72 Three eight point seven two / thirty-eight decimal seven two
+ Plus ; positive
- Minus; negative
±Plus or minus
×[•] Multiplied by / times
÷Divided by
= Is equal to / equals
≡Is identically equal to
≈≒≌
Is approximately equal to / approximately equals ∵
Because ∴
therefore →
Maps into π
pi ∑
Sigma / summation of x n The n th power of x / x to the power n
log n x Log x to the base n
10log x Log x to the base 10 / common logarithm log e x Log x to the base e / natural logarithm |x | The absolute value of x
x The mean value of x
b ’ b prime
b ’’ b double prime
b ’’’ b triple prime
b 1 b sub one
b m b sub m
x x dot
x x two dots
''m x b double prime sub m
()
y F x =
y is a function of x dy dx
The first derivative of y with respect to x 22d y d x
The second derivative of y with respect to x n n d y d x The n th derivative of y with respect to x
y x
∂∂ The partial derivative of y with respect to x , where y is a function of x and another variables ()F'x The first derivative of function F of x with respect to x

integral
b
a ⎰ Integral between limits a and b
F Vector F
x +y x plus y
a =
b a is equal to b / a equals to b / a is b a ≠b a is not equal to b / a is not b a ±b a plus or minus b
a ≈
b a is approximately equal to b a >b a is greater than b
a »
b a is much greater than b a< b a is less than b
a «
b a is much less than b
7+3 > 8 7 plus 3 is greater than 8 12 < 5+8 12 is less than 5 plus 8
a ⊥
b a is perpendicular to b
a //
b a is parallel to b
∠A Angle A
s=vt s equals v times t
s=v /t s equals v over t
1 :
2 The ratio of one to two
x 2 x square
y 3
y cube t V V a t -=
a equals V su
b t minus V over t。

相关文档
最新文档