内存地址映射的认识

合集下载

内存映射原理

内存映射原理

内存映射原理
内存映射是一种将磁盘文件映射到内存的操作。

在内存中建立一个虚拟地址空间,该空间与磁盘文件相对应,使得我们可以像访问内存一样访问磁盘文件的内容。

内存映射的原理是通过将磁盘文件的内容映射到内存的一段连续地址空间中。

在内存中指定一个缓冲区,当对这个缓冲区进行读写操作时,实际上是在对磁盘文件进行读写操作。

读取该内存区域的数据时,由于数据已经在内存中,所以读取速度非常快。

内存映射的过程主要包括以下几个步骤:
1. 打开文件:使用文件操作相关的API函数打开需要映射到内存的文件。

2. 创建映射区域:使用内存映射相关的API函数,创建一个映射区域。

将文件的某个区域映射到内存。

3. 访问映射区域:获得映射到内存中的虚拟地址,可以直接对其进行读写操作,就像操作内存一样。

4. 保存修改:如果对映射区域进行了修改,需要使用相关的API函数将修改的内容保存回磁盘文件。

通过内存映射,可以实现大文件的快速读写,提高文件的访问速度。

此外,多个进程可以通过映射同一个文件,实现共享内
存的功能,简化进程间通信的实现。

但需要注意的是,对于大文件的内存映射可能会消耗大量的系统内存,需要进行适当的调优和管理。

存储管理课程设计

存储管理课程设计

存储管理课程设计一、教学目标本节课的教学目标是让学生掌握存储管理的基本概念、原理和操作方法。

具体包括:1.知识目标:–了解存储管理的定义、作用和重要性;–掌握存储管理的基本原理,如地址映射、内存分配、存储保护等;–熟悉常见的存储管理技术,如分页、分段、虚拟存储等。

2.技能目标:–能够运用存储管理原理分析和解决实际问题;–能够使用相关工具和软件进行存储管理的操作和优化。

3.情感态度价值观目标:–培养学生的创新意识和团队协作精神,提高问题解决能力;–使学生认识到存储管理在计算机系统中的重要性,增强学习的兴趣和动力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.存储管理的基本概念:介绍存储管理的定义、作用和重要性,让学生了解存储管理在计算机系统中的地位。

2.存储管理的基本原理:讲解地址映射、内存分配、存储保护等基本原理,让学生掌握存储管理的核心知识。

3.存储管理技术:介绍常见的存储管理技术,如分页、分段、虚拟存储等,让学生了解各种技术的特点和应用。

4.存储管理工具和软件:讲解如何使用相关工具和软件进行存储管理的操作和优化,提高学生的实际操作能力。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用以下教学方法:1.讲授法:教师讲解存储管理的基本概念、原理和操作方法,让学生掌握基本知识。

2.案例分析法:分析实际案例,让学生了解存储管理在计算机系统中的应用和重要性。

3.实验法:引导学生动手实践,使用相关工具和软件进行存储管理的操作和优化。

4.讨论法:学生进行小组讨论,分享学习心得和经验,提高团队协作能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的教材,如《计算机操作系统》、《计算机组成原理》等。

2.参考书:提供相关的参考书籍,如《存储管理技术手册》、《虚拟存储技术》等。

3.多媒体资料:制作精美的PPT、教学视频、动画等,帮助学生形象地理解存储管理的原理和操作。

内存映射文件的作用功能介绍

内存映射文件的作用功能介绍

内存映射文件的作用功能介绍内存映射文件的主要用途:1.操作大文件 2.进程间大量数据共享,下面分别介绍如下:VC++中使用内存映射文件处理大文件引言文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile()、WriteFile()、ReadFile()和MFC提供的CFile类等。

一般来说,以上这些函数可以满足大多数场合的要求,但是对于某些特殊应用领域所需要的动辄几十GB、几百GB、乃至几TB的海量存储,再以通常的文件处理方法进行处理显然是行不通的。

目前,对于上述这种大文件的操作一般是以内存映射文件的方式来加以处理的,本文下面将针对这种Windows核心编程技术展开讨论。

内存映射文件内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。

由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。

另外,实际工程中的系统往往需要在多个进程之间共享数据,如果数据量小,处理方法是灵活多变的,如果共享数据容量巨大,那么就需要借助于内存映射文件来进行。

实际上,内存映射文件正是解决本地多个进程间数据共享的最有效方法。

内存映射文件并不是简单的文件I/O操作,实际用到了Windows的核心编程技术--内存管理。

所以,如果想对内存映射文件有更深刻的认识,必须对Windows操作系统的内存管理机制有清楚的认识,内存管理的相关知识非常复杂,超出了本文的讨论范畴,在此就不再赘述,感兴趣的读者可以参阅其他相关书籍。

Linux_Memory_Address_Mapping

Linux_Memory_Address_Mapping

Linux内存地址映射 目 录1概述 (3)2IA-32体系结构内存地址映射 (4)2.1CPU相关寄存器 (4)2.1.1系统寄存器 (5)2.1.2内存管理寄存器 (5)2.2保护模式的内存管理 (7)2.332位时页面机制地址映射 (9)2.3.1逻辑地址到线性地址的映射 (9)2.3.2线性地址到物理地址的映射 (11)2.4PAE页面机制地址映射过程 (12)2.4.1PDPTE寄存器 (12)2.4.2逻辑地址到线性地址的映射 (13)2.4.3线性地址到物理地址的映射 (13)3Linux内核的地址映射过程 (15)3.1段式映射过程 (15)3.2页式映射过程 (17)4Linux地址映射实验 (19)4.1gdtr和cr3寄存器值的获取 (20)4.2读取物理内存上的数据 (21)4.3地址映射过程实验 (21)4.3.1段式映射过程 (23)4.3.2页式映射过程 (24)4.4PAE机制下地址映射过程实验 (26)4.4.1段式映射过程 (26)4.4.2页式映射过程 (27)5常见问题及解答 (28)1 概述在分析Linux内存地址映射前,先来看一段简单的C程序代码在32位和64位系统上运行结果:#include <stdio.h>int main(){unsigned long tmp;tmp = 0x12345678;printf("tmp variable address:0x%08lX\n", &tmp);return 0;}[root@RHEL6 C]# ./addrtmp variable address:0xBFF42DEC[root@RHEL6 C]#[root@RHEL6-x64-1 C]# ./addrtmp variable address:0x7FFF138E0888上面的程序功能非常简单,就是打印出临时变量tmp的地址。

计算机考研常见操作系统名词解释

计算机考研常见操作系统名词解释

计算机考研常见操作系统名词解释计算机考研常见操作系统名词翻译【进程控制块(pcb)】系统为了管理进程设置的一个专门的数据结构,用它来记录进程的外部特征,描述进程的运动变化过程。

系统利用pcb来控制和管理进程,所以pcb是系统感知进程存在的唯一标志。

进程与pcb是一一对应的。

【文件控制块(fcb)】文件控制块是操作系统为管理文件而设置的数据结构,存放了为管理文件所需的所有有关信息。

文件控制块是文件存在的标志。

【作业步】一般情况下,一个作业可划分成若干个部分,每个部分称为一个作业步。

在作业运行期间,各作业步之间存在着相互联系,往往上一个作业步的结果作为下一个作业步的输入。

【字符流文件】构成文件的基本单位是字符,文件是有逻辑意义的、无结构的一串字符的集合。

【死锁】一组进程中,每个进程都无限等待被该组进程中另一进程所占有的资源,因而永远无法得到的资源,这种现象称为进程死锁,这一组进程就称为死锁进程。

【当前目录】为了提高文件检索速度,文件系统向用户提供了一个当前正在使用的目录,称为当前目录。

【快表】介于内存与寄存器之间的存储机制,它又叫快表。

【作业调度】根据一定的原则,从输入井的后备作业队列中选择适当的作业,为它分配内存等资源,并将其调入内存投入运行。

又称高级调度,远程调度。

【地址映射】为了保证cpu执行指令时可正确访问存储单元,需将用户程序中的逻辑地址转换为运行时由机器直接寻址的物理地址,这一过程称为地址映射。

【死锁避免】在系统运行过程中,对进程发出的每一个系统能够满足的资源申请进行动态检查,并根据检查结果决定是否分配资源,若分配后系统可能发生死锁,则不予分配,否则予以分配。

【作业控制块】os向用户提供一组作业控制语言,用户用这种语言书写作业说明书,然后将程序、数据和作业说明书一齐交给系统操作员。

【虚存】把内存与外存有机的结合起来使用,从而得到一个容量很大的“内存”,这就是虚存。

【中断】cpu对系统发生的某个事件作出的一种反应:cpu暂停正在执行的程序,保留现场后自动转去执行相应事件的处理程序,处理完成后返回断点,继续执行被打断的程序。

计算机四级操作系统-7-IO设备管理

计算机四级操作系统-7-IO设备管理

计算机四级操作系统-7-IO设备管理第7章I/O设备管理设备管理是操作系统的主要功能之⼀,它负责管理所有输⼈输出设备以完成期望的数据传设备管理可能是操作系统设计中最凌乱的部分,这主要是由于计算机系统中存在着⼤量的输⼊/输出设备,其性能和应⽤特点可能完全不同。

所以要建⽴⼀个通⽤的、⼀致的设备访问接⼝,使⽤户和应⽤程序开发⼈员能够⽅便地使⽤输⼊/输出设备,⽽⽆须关⼼每种设备各⾃的特性,这正是设备管理的主要⽬的。

本章⾸先讲述设备管理的基本概念,然后讨论I/O硬件组成、I/O软件结构、设备管理的相关技术,最后阐述I/O性能问题及解决⽅案。

7.1设备与设备分类输⼊/输出设备(I/O设备)也称为外部设备(Peripheral Device),有时简称为设备或外设,包括计算机系统中除CPU和内存储器以外的所有的设备和装置,还包括所有外部存储设备。

在不同的上下⽂中,I/O设备⼀词有⼴义和狭义两种含义,⼴义的I/O设备即上述定义,狭义的I/O设备不包括外存设备。

可见,计算机系统中外部设备⾮常多,并且这些设备在功能、速度和控制⽅式等⽅⾯都有较⼤的差异,本节将讨论这些问题。

7.1.1设备管理的重要性为了理解操作系统中设备管理的重要性,⾸先要了解I/O设备在计算机系统中所起的作⽤。

如果说处理器和内存是计算机系统的⼤脑部分的话,那么I/O设备就是计算机系统的五官和四肢。

各种需要处理的信息和操作⼈员对计算机系统的操作命令,都要通过输⼊设备进⼊计算机系统,处理后的信息和结果也要通过输出设备从计算机系统输出。

计算机系统中的I/O设备种类繁多,从简单的键盘到⿏标、打印机、图形显⽰终端、磁盘驱动器以⾄于⽹络设备,变化万千,造就计算机应⽤的多样性和普及性。

可以说没有I/O设备,就没有计算机的应⽤。

然⽽,正如⼈们已经认识到的,操作系统复杂和庞⼤的主要原因是它所管理的资源的庞杂和并发技术的采⽤,⽽I/o设备的庞杂正是操作系统所管理的资源庞杂的主要原因,I/O设备的速度远低于处理器的速度正是导致并发技术产⽣的直接原因。

操作系统学习常见疑惑问与答

操作系统学习常见疑惑问与答
光盘和USB盘的启动过程没有研究过,希望有研究的朋友指点^_^.
2、问:显卡有自己的显存,内存ram中也有一块叫显存,比如A0000开始的那一段,我想问一下这两个显存是一码事吗?
答:要弄清楚这个问题,首先要知道什么是地址映射,为什么平时我们说内存地址空间,而不是说内存空间。因为实模式下,20根地址线,最多可以寻址1M内存,也就是我们有1M的地址资源,这1M的地址我们除了用来寻址物理内存外,还要用它来寻址访问bios rom,还有各种外设的rom(因为计算机体系中并没有提供其他的手段来访问这些rom).这样,1M的地址并不是所有都对应到了物理内存上,有的地址对应到了BIOS的rom,有的则对应到了显卡的显存里。比如A0000开始的一段地址范围被用来寻址图形模式的显存,而B8000开始的一段地址范围用来寻址字符模式的显存。当你用这些范围的地址进行读写“内存”的时候,实际上并没有访问到物理内存,而是被定位到显卡的显存上去了,也就是说在当前这种状况下,这些地址对应的物理内存单元就没用了,因为访问被重定向了,所以永远不可能被访问到。由此也解释了为什么要用“地址空间”这个术语,而不是用内存空间,在这里,我们能用连续的地址,但这些地址并不是都到物理内存上去寻址,而是被各个外设的rom和物理内存瓜分了。所以问题中“内存ram中也有一块叫显存”本身就是错误的说法,这个时候的地址已经不对应着内存了。以下附上PC系统启动时的地址映射安排:
[attach]497[/attach]
3、DPL,RPL,CPL 之间的联系和区别是什么?RPL和CPL是必须相同吗?如果相同,为什么要釆用两个而不改用一个呢?
答:特权级是保护模式下一个重要的概念,CPL,RPL和DPL是其中的核心概念,查阅资料无数,总结如下:
简单解释:

第四章存储器管理

第四章存储器管理

考点一内存管理概念一、单项选择题在下面关于存储功能的论述中正确的是()A.即使在多道程序管理下用户也可以编制用物理地址直接访问内存的程序。

B.内存分配的基本任务是为每道程序分配内存空间,其追求的目的则是提高内存的利用率。

C.为提高内存保护的灵活性,内存保护通常由软件完成。

D.地址映射是指将程序物理地址转变为内存的逻辑地址二、综合应用题1.请列举出逻辑地址和物理地址的两个不同之处。

2.一个进程被换出内存,它就失去了使用CPU的机会。

除了换出内存这种情形,请列举出其它一种情形,进程虽然失去了使用CPU的机会,但它并没有被换出内存。

3.存储管理的主要研究内容是什么?4.什么是动态链接?用何种内存分配方法可以实现这种链接技术?5.某系统把任一程序都分成代码和数据两部分。

CPU知道什么时候要指令(如取指令周期),什么时候要数据(如取数据周期或存数据周期)。

所以,需要两种寄存器(基地址寄存器、界限寄存器),一组用于指令,一组用于数据。

用于指令的是只读的,以便于用户的共享。

请分析这种策略的优缺点。

6.什么是地址的重定位?有哪几种常用的地址重定位的方法?7.在现代计算机系统中,存储器是十分重要的资源,能否合理有效的使用存储器,在很大程度上反映了操作系统的性能,并直接影响到计算机系统作用的发挥。

请问:(1)主存利用率不高主要体现为哪几种形式?(2)可以通过哪些途径来提高主存利用率8.内存保护是否可以完全由软件来实现?为什么?考点二交换与覆盖一、单项选择题1.存储管理方案中,()可采用覆盖技术。

A.单一连续存储管理B.可变分区存储管理C.段式存储管理D.段页式存储管理2.在存储系统管理中,采用覆盖技术与交换技术的目的是( )。

A.节省主存空间B.物理上扩充主存容量C.提高CPU利用率D.实现主存共存二、综合应用题1.在存储管理中,覆盖和对换技术所以解决的是什么问题?各有什么特点?2请写出你对交换过程和覆盖过程的认识,它们的主要区别有哪些?考点三连续分配管理方式一、单项选择题1.在可变式分区分配方案中,某一作业完成后,系统收回其主存空间并与相邻空闲区合并,为此需要修改空闲区表,造成空闲区域减1的情况是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内存地址映射的认识(memory map)
内存物理地址为A,即地址A
而物理地址A得地址代码又需要内存来存放,我们设地址A存的地址为地址B
所谓映射就是把存地址A代码的地址B由地址C来来指向地址B,也就是说通过C来间接的指向实际地址A
这就好比一个储藏库为A,地址代码为1111,我把这个地址代码放到B处(B里面放上A的地址代码1111),而B的地址为10000,我在把B的地址10000放到C中(01010),这样C就是对B的映射!
地址映射为了保证CPU执行指令时可正确访问存储单元,需将用户程序中的逻辑地址转换为运行时由机器直接寻址的物理地址,这一过程称为地址映射地址映射原理及实现:
1、地址映射结构
在Tornado\target\h\vmLib.h文件中
typedef struct phys_mem_desc
{
void *virtualAddr;
void *physicalAddr;
UINT len;
UINT initialStateMask; /* mask parameter to vmStateSet */
UINT initialState; /* state parameter to vmStateSet */
} PHYS_MEM_DESC;
virtualAddr:你要映射的虚拟地址
physicalAddr:硬件设计时定义的实际物理地址
len;要进行映射的地址长度
initialStateMask:可以初始化的地址状态:
有如下状态:
#define VM_STATE_MASK_VALID 0x03
#define VM_STATE_MASK_WRITABLE 0x0c
#define VM_STATE_MASK_CACHEABLE 0x30
#define VM_STATE_MASK_MEM_COHERENCY 0x40
#define VM_STATE_MASK_GUARDED 0x80
不同的CPU芯片类型还有其特殊状态
initialState:实际初始化的地址状态:
有如下状态:
#define VM_STATE_VALID 0x01
#define VM_STATE_VALID_NOT 0x00
#define VM_STATE_WRITABLE 0x04
#define VM_STATE_WRITABLE_NOT 0x00
#define VM_STATE_CACHEABLE 0x10
#define VM_STATE_CACHEABLE_NOT 0x00
同样不同的CPU芯片类型还有其特殊状态
2、初始化结构
在 Tornado\target\config\ads860\sysLib.c 文件中:
PHYS_MEM_DESC sysPhysMemDesc [] =
{
{
(void *) LOCAL_MEM_LOCAL_ADRS,
(void *) LOCAL_MEM_LOCAL_ADRS,
LOCAL_MEM_SIZE ,
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE
},
{
(void *) BCSR0,
(void *) BCSR0,
0x00001000, /* 4 k - Board Control and Status */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_GUARDED,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT | VM_STATE_GUARDED
},
……
{
(void *) INTERNAL_MEM_MAP_ADDR,
(void *) INTERNAL_MEM_MAP_ADDR,
INTERNAL_MEM_MAP_SIZE, /* 64 k - Internal Memory Map */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_GUARDED,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT | VM_STATE_GUARDED
},
{
(void *) ROM_BASE_ADRS,
(void *) ROM_BASE_ADRS,
ROM_SIZE, /* Flach memory */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE ,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT }
};
上面结构中是缺省地址映射。

3、地址初始化
在Tornado\target\src\config\ usrMmuInit.c 文件中
通过函数usrMmuInit使地址映射生效
4、实现映射:
如你定义flash地址为0x04000000开始的8Mbyte地址,则可以如下进行地址映射
{
(void *) 0x04000000,
(void *) 0x04000000,
0x00800000, /* 8 m - Flash window 1 */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE,
VM_STATE_VALID | VM_STATE_WRITABLE
},
5、注意
地址映射最小单位为1页,4K大小,所以len值最小为:0x00001000。

内存地址是一个专业计算机术语;通俗地讲就是指内存条中,每一组数值(8位/16位等)的存放位置;打个比方说,就像你把几本书放在书架上,A放在第一排第二格内存地址就是0102; B放在第五排第三格内存地址就是0503。

内存地址映射表示复制一份地址,然后以其他形式表现出来,就像你照镜子。

在8086的实模式下,把某一段寄存器左移4位,然后与地址ADDR相加后被直接送到内存总线上,这个相加后的地址就是内存单元的物理地址,而程序中的这个地址就叫逻辑地址(或叫虚地址)也就是内存地址吧
物理地址:
也就是内存单元的实际地址,用于芯片级内存单元寻址。

物理地址也由32位无符号整数表示。

MMU是一种硬件电路,它包含两个部件,一个是分段部件,一个是分页部件,在本书中,我们把它们分别叫做分段机制和分页机制,以利于从逻辑的角度来理解硬件的实现机制。

分段机制把一个逻辑地址转换为线性地址;接着,分页机制把一个线性地址转换为物理地址。

VA有很多意思在这里应该是指虚拟地址(virtual address)
API是应用程序接口(Application Programming Interface)
RVA是记录声音通知(Recorded Vioce Announcement)
系统 ram 中的特定位置,通常以十六进制的数字表示。

在80386的保护模式下,这个逻辑地址不是被直接送到内存总线,而是被送到内存管理单元(MMU)。

MMU由一个或一组芯片组成,其功能是把逻辑地址映射为物理地址,即进行地址转换。

当使用80386时,我们必须区分以下三种不同的地址:逻辑地址: 机器语言指令仍用这种地址指定一个操作数的地址或一条指令的地址。

这种寻址方式在Intel的分段结构中表现得尤为具体,它使得MS-DOS或Windows程序员把程序分为若干段。

每个逻辑地址都由一个段和偏移量组成。

线性地址:
线性地址是一个32位的无符号整数,可以表达高达232(4GB)的地址。

通常用16进制表示线性地址,其取值范围为0x00000000~0xffffffff。

相关文档
最新文档