植物抗旱机理研究进展
作物抗旱基因工程研究进展

作物抗旱基因工程研究进展摘要:主要就植物的抗旱基因包括渗透调节、保护酶体系、抗旱基因及遗传特性等方面对植物抗旱机理的研究进行了综述。研究植物的抗旱性基因,有助于了解植物的抗旱机制,以期为我国节水抗旱农业的研究提供一些新的思路和手段。关键词:作物;抗旱机理;水分胁迫;基因工程干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的1/3以上,干旱对植物的影响在诸多自然逆境因素中占首位。国外已经开始有转抗旱基因植物的研究,已有数十种植物被转化获得了抗旱转基因植株,并已在水稻上成功地进行了转抗旱基因水稻品系的培育。本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于更好的进行抗旱工作。1 渗透调节物质对旱害的调控1.1 植物体内脯氨酸的合成1.1.1 脯氨酸合成酶研究现状编码脯氨酸合成酶基因的研究较为深入,至今已从水稻、黑麦、绿豆、大豆、拟南芥、蒺藜、苜蓿、榆钱、菠菜等植物中克隆出了多个与脯氨酸合成酶相关的基因,其中包括P5CS、PSCR、OAT和Pro。鸟氨酸循环中6~OAT基因已在大豆、苜蓿、拟南芥等中得到克隆。转运蛋白ProT基因在拟南芥、番茄、水稻、大麦等中得到克隆。WU研究发现,在拟南芥中P5CS是由2个不同调节基因编码的。该基因有19个内含子和20个外显子定位于2号染色体78.5位置上的AtP5CSl基因可以在大多数植物器官中表达,但在分裂细胞中沉默:定位于3号染色体101.3位置上的AtP5CS2基因转录产物,占植物组织中P5CSm-RNA总量的20~40%,并在分裂细胞中负责合成P5CSutRNA,AtPSCS转录产物的积累具有组织特异性。同样在番茄的核基因组中,也发现有2个脯氨酸基因座(10ci):一个是特异性双功能tom Pro2基因座:另一个基因座为torn Pro1,该基因座编码一个多顺反子mRNA,指导7-GK和GSADH 2种多肽的合成。P5CS基因广泛存在于单子叶和双子叶植物中;P5CR基因有7个外显子,6个内含子,其位于拟南芥的5号染色体上:6-OAT基因有10个外显子,9个内含子,该基因定位于拟南芥的5号染色体上:脯氨酸转运蛋白的基因有8个外显子,7个内含子,该基因定位于水稻的3号染色体上,在拟南芥中脯氨酸转运蛋白是2个不同调节基因编码的,该基因有7个内含子6个外显子,定位于2、3号染色体上。1.1.2 脯氨酸在转基因植物中的表现将PSCS和6-OAT分别转入烟草植株中发现,在转基因烟草(Nicotianatabacum)中脯氨酸含量明显提高且与对照相比,耐盐性也有所提高,转入其他植物也得到同样的结论。将从乌头叶豇豆中克隆的P5CS基因与CoMV35S启动子连接后转人烟草中。发现转基因烟草的脯氨酸含量比对照高10~18倍。在干旱胁迫下转基因烟草落叶少且迟。将拟南芥的6-OAT基因导人烟草,使脯氨酸累积增加2倍,转基因的幼苗可在200mmol·LNaCl中正常生长:将此基因导人烟草,使脯氨酸累积增加2倍,转基因的幼苗可在200mmol·L-1NaCl中正常生长。杨成民从豇豆中分离到的P5CS为目的基因,通过基因枪与选择标记bar基因共转化获得转基因黑麦草再生植株,Kishor等将P5CS 基因导人烟草,转基因植株脯氨酸含量比对照高10~18倍:在盐胁迫条件下,与对照相比转基因植株根的长度和干重增加,植株生物产量提高花发育得更好,果荚数目和每荚的种子数也增加,李燕等在皂角苗木对干旱胁迫的生理生化反应的研究中发现,在干旱胁迫下,皂角的脯氨酸含量先增后减,Bajin等发现滨藜中脯氨酸含量的增加在叶中较显著,对根没有显著影响。也有研究发现,根的脯氨酸增加的幅度比茎叶中都大。1.2 其他调节物质1.2.1 果聚糖合成酶基因有证据表明被子植物演化过程中果聚糖积累与一些植物耐旱(寒)能力相关,其中果聚糖蔗糖酶基因soeB)是较早克隆的基因。张慧等1998年将ssacB转入烟草,经卡那霉素筛选的抗性芽能在含1%NaCl的MS培养基上正常生根,而未转化的芽则不能生根或根生长缓慢。转基因小苗移栽后用含1%NaCl的营养液浇灌17d后,一些转基因植株生长良好,而未转化苗出现明显萎蔫,表明sacB基因能提高烟草的耐盐性。1.2.2 甜菜碱合成有关的酶基因甜菜碱是一种重要的植物渗透调节物质,特别是藜科和禾本科植物,在受到水分胁迫时积累大量甜菜碱。甜菜碱在植物中以胆碱为底物经两步合成,即胆碱加单氧酶(CMO)催化胆碱氧化成甜菜碱醛,然后,甜菜碱醛脱氢酶(BADH)催化甜菜碱醛形成甜菜碱。1.2.3 甘露醇合成的相关基因植物抗性生理研究结果证实,糖醇与植物的抗旱耐盐能力有关,甘露醇是生物体内包含细菌、藻类、真菌和100多种高等植物中广泛分布的一种糖醇,在甘露醇合成过程中起关键作用的酶,在细菌中是甘露醇-1-磷酸脱氢酶,其编码基因为mtlD。2 保护酶体系保护酶体系包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(ASP)等。SOD可分为Cu/Zn-SOD、Mn-SOD和Fe-SOD 3种类型,Cu-SOD主要在叶绿体和细胞质中,Mn-SOD主要存在于线粒体中,Fe-SOD 则主要存在于叶绿体中,将烟草的Mn-SODcDNA导人苜蓿后,转基因苜蓿的抗旱性得到了提高,将Mn-SOD基因定位到烟草的叶绿体和线粒体上,发现也能表达其基因。进一步研究发现,在叶绿体中Mn-SOD的过量表达使烟草受干旱所引起的氧化伤害程度比对照明显减轻,但线粒体中增加的Mn-SOD活性对烟草耐氧化胁迫能力没多大影响,另外,表达拟南芥Fe-SOD的转基因烟草、表达番茄Cu/Zn-SOD 的转基因烟草、过量表达豌豆Cu/Zn-SOD的转基因烟草均能增强抵抗干旱引起的氧化胁迫能力。3 植物抗旱基因与遗传3.1 保护生物大分子及膜结构的蛋白质3.1.1 水通道蛋白(aquapofin) 水通道蛋白是指作为跨膜通道的主嵌入蛋白(MIP)家族中具有运输水分功能的一类蛋白质,能够促进和调节水分跨膜的被动交换,包括植物体内的跨细胞和胞内水分流动,是水分跨膜运输的重要途径之一。3.1.2 调渗蛋白在高盐浓度下,培养的烟草细胞中多种蛋白质的含量发生了变化。其中一种分子量为26KD的蛋白质的增加尤为显著,高达细胞总蛋白量的12%以上。该蛋白的积累则要求氯化钠或低水势的存在。除烟草外其他一些植物西红柿、马铃薯、胡萝卜、棉花、小米和大豆的培养细胞经ABA处理后也出现了同OSM起免疫交叉反应且分子量约为26KD的蛋白质。这表明OSM可能是一种普遍存在于高等植物的蛋白质。目前已得到由农杆菌介导将OSM的启动子和B-葡萄糖苷醛酶(GUS)报告基因嵌合在一起的转基因烟草。3.1.3 胚胎后期发生丰富蛋白(LEA蛋白) 在种子后期发育过程当中,LEA蛋白随种子的脱水成熟其含量增加。在胁迫条件下LEA蛋白在植物细胞中起保护作用,这种保护作用对于植物在极端压力条件下是必要的。根据LEA的结构推测LEA蛋白可能有以下三方面的作用:①作为脱水保护剂,由于LEA蛋白在结构上富含不带电荷的亲水氨基酸,它们既能像脯氨酸那样,通过与细胞内的其他蛋白发生相互作用,使其结构保持稳定,又可能给细胞内的束缚水提供了一个结合的衬质,从而使细胞结构在脱水中不致遭受更大的破坏。②作为一种调节蛋白而参与植物渗透调节。③通过与核酸结合而调节细胞内其它基因的表达。3.2 编码抗旱转录因子的调节基因DREB是目前研究较多的抗非生物胁迫的转录因子。Xiong利用差示显示法从干旱处理的拟南芥中克隆了一批受干旱诱导的rd基因,对rd29A基因启动子进行分析揭示了一个与干旱、高盐及低温胁迫应答基因有关的DRE顺式作用元件,并克隆了3个与DRE元件结合的转录因子,用干旱或高盐处理10min,DREB2A和DREB2B被快速强烈诱导,并且不受外源ABA的诱导。Hara利用CaMV35S启动子和逆境诱导特异启动子rd29A,将DREBIA的cDNA导入拟南芥,DREBlA的过量表达激活许多耐逆境功能基因的表达如rd29A、Kinl、Con5a、Cor6和P5CS等转基因植株耐旱性、耐盐性和耐冻性提高。4 展望我国北方地区土壤干旱、盐渍化是影响农牧生产的重要因素。通过筛选与植物的抗旱性、抗盐碱性相关的基因,研究其功能,揭示其相关因子的信号转导途径,采用现代生物技术手段进行转基因育种、获得耐旱和耐盐碱能力强的新品种已成为解决我国中西部干旱、半干旱地区农牧业发展种质资源矛盾的有效手段之一。4.1 目前利用基因工程技术培育抗旱品种主要有两种策略1、增加植物渗透性代谢产物的合成能力,使植物在水分胁迫下能合成更多的渗透调节物质如脯氨酸,甘露醇、甜菜碱、海藻糖等,以提高植物的渗透调节能力,从而增强植物的抗旱性。2)增强植物对活性氧自由基的清除能力,使植物在水分胁迫下过量表达一些酶(如SOD,POD,CAT等),以有效地排除有害的活性氧自由基,从而提高细胞耐脱水的能力。4.2 在通过基因工程方法进行抗旱分子育种的过程中发现存在一些问题由于人们对植物抗旱的分子机制缺乏了解,抗旱分子育种还有很大的盲目性:采用单基因策略提高植物的抗旱性对有的基因和植物有效,对有的基因和植物却无效:利用35S启动子与抗旱基因组合在提高植物抗旱性的同时也造成植物畸形发育;外源基因表达水平不稳定。尽管目前抗旱分子育种面临不少的问题,但随着抗旱分子生物学研究的深人和生物技术的进步,相信不久的将来会有大量的抗旱基因作物应用到生产实践中来。。
植物抗旱机制中信号转导通路研究

植物抗旱机制中信号转导通路研究植物是地球上最重要的生物之一,作为生态环境中的重要成员,植物在自身繁衍生息的同时,也承担着稳定和改善生态环境的重要职责。
然而,随着气候变化和环境污染的加剧,植物生长和发育遭受着越来越大的威胁。
其中,干旱的影响尤为严重,不仅会导致植物受到水分限制,而且还会直接影响植物的存活和繁衍。
因此,了解植物如何对抗干旱,寻找植物抗旱的机制,对保护生态环境和维护人类的生存环境至关重要。
在植物抗旱机制中,信号转导通路是非常关键的一环,这也是植物如何适应干旱环境的关键所在。
因此,本文将介绍植物抗旱机制中信号转导通路的研究现状和进展。
一、植物抗旱机制植物为了适应干旱环境,在生长和发育的各个环节都有一系列的适应性调节。
其中,根系、茎叶、花器官等都有一系列的生理、生化响应适应干旱。
一般来说,植物抗旱机制主要有以下几个方面:(1)根系适应干旱,提高水分利用效率。
干旱条件下,植物会产生更多的细小须根和根毛,增加根系的表面积,从而增强水分吸收能力。
同时,在干旱条件下,植物还会调节根系和叶片的比例、形态和分布,提高水分的利用效率。
(2)茎叶适应干旱,减少水分损失。
植物的茎叶可以通过调整气孔大小和数量、裂隙和开口的大小以及表皮的密度和结构等途径来减少水分损失。
此外,植物还可以通过调控茎叶中的可溶性糖、叶绿素、角质素等物质来适应干旱。
(3)维持基础代谢和调节生长发育。
干旱条件下,植物会减缓生长速率,保持基础代谢和维持生理平衡。
同时,植物还会通过调节生长激素和转录因子等信号通路来适应干旱。
二、信号转导通路信号转导通路是植物在适应干旱环境时的关键机制之一。
它可以将外部干旱的刺激转化为细胞内的生理反应,从而调节植物在干旱条件下的生长和发育。
目前已经发现了许多植物在适应干旱环境中所涉及的信号转导通路,比如ABA信号、Ca2+信号、ROS信号、酶信号等。
(1)ABA信号通路ABA(abscisic acid)是植物抗旱的一个重要激素,它可以调节干旱条件下植物的水分利用和茎叶的水分损失。
水稻抗旱机制及相关基因研究进展

水稻抗旱机制及相关基因研究进展前言水稻作为世界上最主要的粮食作物之一,其产量和质量对于全球人类的生存和发展至关重要。
然而,气候变化等因素对水稻的生长和生产带来了巨大的挑战。
在这种背景下,如何提高水稻对抗干旱能力成为了多方研究的重点。
水稻抗旱机制水稻具有一系列抗旱适应机制,包括形态、生理、生化和分子水平。
在形态上,水稻可以通过调整根系架构,增加根长和分布范围来寻找深层土壤水分。
在生理上,它可以通过控制蒸腾速率、调节叶片形态等方式减少水分蒸散。
在生化和分子水平上,水稻可以通过增加有机胁迫物质含量、活性氧清除酶活性等方式增强细胞膜稳定性,防止细胞膜损伤。
水稻抗旱相关基因研究进展水稻抗旱机制的研究离不开相关基因的发现和研究。
在过去几年中,研究人员已经鉴定出了一系列参与水稻抗旱过程的基因。
以下是其中一些重要的基因:OsNAC5OsNAC5属于NAC转录因子家族成员,具有参与不同胁迫反应的能力。
研究表明,OsNAC5可以通过调控ABA生物合成和反应途径的基因表达水平,从而增强水稻抗旱能力。
OsSIZ1OsSIZ1是一个负调节因子,它在保持植物水分平衡中发挥重要作用。
该基因的研究发现,当水稻受到严重干旱胁迫时,OsSIZ1可以通过抑制一个水分通道编码基因的表达,从而降低水分的流失,提高抗旱能力。
OsbHLH148该基因编码一个转录因子,可以参与水稻的生长和发育。
在应对干旱胁迫时,OsBHLH148可以促进水稻内源激素生产和积累,从而增强植物对抗干旱的能力。
OsLG3bOsLG3b是一个铁离子转运蛋白,它在水稻的根和茎部中高度表达。
研究表明,该基因可以实现根系深入土壤寻找水分,从而提高干旱条件下水稻的生长和产量。
结论水稻抗旱机制的研究一直是一个重要的研究领域,相关的基因研究也发挥了关键作用。
未来,研究人员可以通过对抗旱有关基因的发掘和功能解析,应用于新品种的选育和现代农业生产中,从而为水稻产业的发展做出更大贡献。
植物抗旱机理及抗旱性鉴定方法研究进展

植物抗旱机理及抗旱性鉴定方法研究进展植物的抗旱机理是指植物在干旱环境中如何调节水分平衡,以维持正常的生长和发育。
随着全球气候变暖,干旱问题日益严重,研究植物的抗旱机理和鉴定抗旱性的方法对于农业生产和生态恢复具有重要意义。
本文将介绍植物抗旱机理的研究进展和抗旱性鉴定方法。
植物的抗旱机理主要包括:减少蒸腾损失、增加水分吸收能力、调节植物生长和发育等方面。
在减少蒸腾损失方面,植物通过改变气孔的开闭来控制蒸腾速率。
一些植物能够在干旱条件下调节其气孔的开合,降低蒸腾速率,减少水分流失。
同时,植物根系的生长和分布也对抗旱起着重要作用。
植物根系的发达程度和分布范围影响着植物吸收水分和养分的能力,从而影响植物的抗旱性。
另外,植物还通过产生一些抗旱物质来调节自身的生理代谢,如抗氧化物质、谷胱甘肽等,以抵抗干旱引起的氧化应激。
目前,研究人员采用了多种方法来鉴定植物的抗旱性。
一种常用的方法是通过测定植物的生理指标来评估其抗旱性。
例如,测定植物的相对水分含量、叶绿素含量、脯氨酸含量等指标,可以反映植物在干旱条件下的水分状态和生理代谢水平。
另外,测定植物的根系性状也是评估抗旱性的重要指标。
根系的发育程度和分布范围可以反映植物的水分吸收能力和适应干旱的能力。
此外,还可以通过评估植物的生长和发育状况来判断其抗旱性。
例如,测定植物的生物量、叶面积指数、根冠比等指标,可以反映植物在干旱条件下的生长状况。
近年来,研究人员还采用了分子生物学和基因工程等方法来研究植物的抗旱机理和鉴定抗旱性。
例如,通过研究与植物抗旱相关的基因,可以揭示植物在干旱条件下的分子调控机制。
同时,通过转基因技术来提高植物的抗旱性也是研究的热点之一、通过引入抗旱相关基因或调控植物内源基因的表达,可以提高植物的抗旱能力,从而增加农作物的产量和耐旱性。
综上所述,植物的抗旱机理及抗旱性鉴定方法研究已经取得了一些进展。
随着研究的深入和技术的进步,相信将会有更多的抗旱机理被揭示,也将有更多的有效方法用于评估和提高植物的抗旱性。
植物对干旱胁迫的响应研究进展

植物对干旱胁迫的响应研究进展一、本文概述干旱胁迫是全球气候变化背景下植物经常面临的一种环境压力,它不仅影响植物的生长和发育,还可能对植物的生存造成威胁。
因此,深入了解植物对干旱胁迫的响应机制,对于提高植物的抗逆性、优化农业生产和保护生态环境具有重要意义。
本文旨在综述近年来植物对干旱胁迫响应的研究进展,包括植物在干旱胁迫下的生理生化变化、分子生物学机制以及抗旱性改良等方面的研究成果,以期为未来的植物抗旱性研究提供参考和借鉴。
本文将概述干旱胁迫对植物生长发育的影响,包括水分亏缺对植物形态结构、生理功能和代谢过程的影响。
我们将重点介绍植物在干旱胁迫下的响应机制,包括植物激素、转录因子、基因表达调控以及信号转导等方面的研究进展。
我们还将综述植物抗旱性改良的研究现状,包括传统育种、基因工程和组学技术在抗旱性改良中的应用。
我们将对植物抗旱性研究的前景进行展望,探讨未来研究方向和挑战。
通过本文的综述,我们期望能够为读者提供一个全面的视角,以了解植物对干旱胁迫响应的研究现状和发展趋势,为植物抗旱性研究和实践提供有益的参考和启示。
二、植物干旱胁迫的生理生态响应植物在面对干旱胁迫时,会表现出一系列的生理生态响应。
这些响应旨在最大限度地减少水分损失,提高水分利用效率,以及维持生命活动的正常进行。
在形态学方面,植物会通过减少叶片数量和大小,降低叶面积指数,以及增加叶片厚度和角质层等方式,来减少水分蒸发和蒸腾作用。
根系也会发生适应性变化,如增加根长、根表面积和根毛数量,以扩大水分吸收的范围和效率。
在生理方面,植物会通过调整气孔开闭,降低蒸腾拉力,以减少水分流失。
同时,植物还会提高叶片细胞液的浓度,如增加脯氨酸等溶质的含量,以降低渗透势,增强保水能力。
植物还会通过调节光合作用的速率和途径,以及调整呼吸作用等,以适应干旱环境下的能量代谢需求。
在分子层面,植物会表达一系列与干旱胁迫相关的基因,编码如转录因子、蛋白激酶、水解酶等抗旱相关蛋白,以调节和响应干旱胁迫。
植物抗旱抗旱机理及其相关基因研究进展

植物抗旱抗旱机理及其相关基因研究进展植物抗旱是指植物在干旱等恶劣环境下,能够通过一系列适应性生理和生化机制来维持生长和发育的能力。
植物抗旱机理主要涉及到水分利用效率提高、减少蒸腾速率、促进根系发育和增强细胞膜的稳定性等方面。
近年来,随着基因测序技术的快速发展,植物抗旱相关基因的研究进展迅速。
植物的抗旱机制主要包括避免脱水、渐进脱水耐受和耐旱维持三个阶段。
避免脱水是指植物通过调节气孔的开闭来减少水分蒸腾,防止脱水。
渐进脱水耐受是指植物在长期干旱时,通过一系列适应性调节,逐渐适应干旱环境并维持正常生长和发育。
耐旱维持是指植物在长时间干旱条件下,能够维持细胞内水分平衡,避免细胞脱水,保持生长和发育活力。
植物抗旱的分子机制涉及到多个基因家族的调控。
其中,ABRE (Abscisic Acid-responsive Element)、DRE(Drought-responsive Element)和LEA(Late Embryogenesis Abundant)等基因家族被广泛研究。
ABRE基因家族与植物在胁迫条件下的ABA合成与信号传导过程中发挥重要作用,参与调控植物抗旱能力的提高。
DRE基因家族是植物耐旱途径基础基因,参与调控植物在水分胁迫下的抗逆应答。
LEA基因家族的蛋白质在干旱逆境下的活化与折叠起到了关键作用,参与细胞质和叶绿体中蛋白质合成抗旱蛋白并降低脱水损伤。
除了以上基因家族,研究还发现其他抗旱相关基因,如水通道蛋白基因、抗旱酶基因、氮代谢酶基因等。
水通道蛋白基因能够调节植物细胞水分传输,提高植物的抗旱能力。
抗旱酶基因参与植物在干旱逆境下的生理代谢过程,保护细胞膜的完整性和功能。
氮代谢酶基因在植物受到干旱胁迫时能够促进植物根系的发育,增加植物对水分的吸收能力。
基因研究的进展有助于提高植物的抗旱能力,并为植物育种和遗传改良提供了理论基础。
通过转基因技术,研究者可以将抗旱相关基因导入非耐旱植物中,提高其抗旱能力。
植物抗旱性鉴定评价方法及抗旱机制研究进展

四、应用前景及建议
植物抗旱性鉴定评价方法和抗旱机制研究进展在农业生产、生态修复等领域具 有广泛的应用前景。未来的研究应以下几个方面:
1、鉴定方法优化:进一步探索和优化植物抗旱性的鉴定物物种的需求。
2、机制深入研究:加强植物抗旱机制的深入研究,特别是不同植物物种间抗 旱机制的差异及其原因,为抗旱性育种提供理论依据。
3、抗氧化防御系统:植物在干旱条件下会面临氧化胁迫,通过激活抗氧化酶 体系、积累抗氧化剂来抵抗氧化损伤。
4、信号转导:植物在干旱条件下会通过感知环境信号、产生并传递信号来调 节基因表达、代谢途径和细胞结构,从而应对干旱环境。
这些机制的研究为植物抗旱性育种提供了理论基础,有助于提高植物抗旱性的 效果。然而,现有研究主要集中在模式植物上,对不同植物物种间抗旱机制差 异的研究还不够深入。因此,未来研究需要加强不同植物物种间抗旱机制的比 较和分析,从而为抗旱性育种提供更多有效的资源。
谢谢观看
植物抗旱性鉴定评价方法及抗旱机制研 究进展
目录
01 一、植物抗旱性鉴定 的背景
03
三、植物抗旱机制研 究进展
02
二、植物抗旱性鉴定 评价方法
04 四、应用前景及建议
植物抗旱性是指植物在干旱条件下能够正常生长和发育的能力。由于全球气候 变化和人口增长带来的水资源短缺问题,植物抗旱性研究已成为农业科学领域 的重要课题。本次演示将介绍植物抗旱性的鉴定评价方法和抗旱机制研究进展, 并探讨其应用前景。
3、基因编辑技术应用:利用基因编辑技术对植物进行抗旱性改良,培育具有 优良抗旱性能的新品种,提高农业生产力和生态环境的稳定性。
4、综合应用:将植物抗旱性鉴定评价方法、抗旱机制研究和实际应用相结合, 实现理论和实践的相互促进,推动植物抗旱性的研究发展。
植物抗旱性生理生化机制的研究进展

植物抗旱性研究及应对摘要:本文通过对植物的干旱类型、抗旱类型和特征以及在干旱逆境条件下的生理、生化上的变化进行总结,并对其研究前景进行了展望,以期为选育植物抗逆品种的研究提供参考,旨在促进植物抗旱机理方面的研究工作。
关键词:抗旱机理前景引言:干旱、低温、高温、盐渍等不良环境是影响植物生长的重要因子,其作用于植物会引起植物体内一系列生理、生化和分子生物学上的变化,主要包括生物膜结构与组成的改变,许多特异性蛋白、糖、渗透调节物质(甜菜碱和脯氨酸等)的增加,和一些酶活性的变化等[1-2]。
植物体表现为生长和代谢受到抑制,严重时甚至引起不可逆伤害,最终导致植株死亡[3-4]。
在全世界,干旱和半干旱地区的总面积约占陆地面积的30%以上。
在中国,干旱和半干旱地区约占国土面积的50%左右,大部分分布在北方和西北地区[5]。
1 植物的旱害及抗旱性1.1 干旱的类型及其危害干旱是一种因长期无雨或少雨使土壤水分缺乏、空气干燥的气候现象。
干旱在气象学上有两种含义:一是干旱气候,即干旱和半干旱地区气候的基本情况;二是气候异常,某段时间降水量大大少于多年平均值。
作物的水分状况取决于吸收和蒸腾两个方面,吸水减少或蒸腾过多都可引起水分亏缺。
因此,在抗旱生理研究中,根据干旱发生的场所和产生的原因,可分为三种:土壤干旱、大气干旱以及生理干旱[10]。
1.1.1 土壤干旱土壤干旱是指土壤可利用水缺乏。
当土壤干旱时,根系吸水满足不了叶片蒸腾失水的需要,植物发生水分亏缺,不能维持正常的生理活动,而受到伤害。
土壤干旱时将引起植物的永久萎蔫。
永久萎蔫指由于土壤水分缺乏引起的萎蔫,这种萎蔫,经过夜晩(停止蒸腾)也不能解除。
要解除萎蔫,必须给土壤补充水分。
1.1.2 大气干旱大气干旱指大气湿度过低、空气干燥。
大气干旱往往伴随着高温,使蒸腾过快,大大超过植物的吸水速率,破坏水分平衡,发生水分亏缺,对植物产生伤害。
大气干旱往往引起植物的暂时萎蔫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物抗旱机理研究进展水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。
干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。
在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万hm2。
在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。
现将植物特殊生理结构功能综述如下。
1植物形态结构特征对其耐旱机制的影响1.1根系植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。
纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。
对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。
此外,根水势能也能反映根系的吸收功能。
根水势低,吸水能力强。
据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。
一般认为抗旱性强的植物,根水势低,利于水分吸收。
1.2叶片作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。
主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。
厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的栅栏组织,分布于叶的背腹两面,可使干旱缺水植物萎蔫时减少机械损伤。
而小的表面积/体积比,可以最大程度减少水分丧失。
韦梅琴的4种委陵菜属植物解剖研究,也证实了这一点。
2渗透调节水分胁迫条件下会积累有机分子相溶性溶质或渗压剂,有效地提高植物的渗透调节能力、增强植物的抗逆性。
2.1脱落酸与植物抗旱性脱落酸(Abscisicacid,ABA)是植物五大类激素之一,大量的试验表明:当植物处于干旱、低温、盐碱、环境污染等不利环境下,植物体内脱落酸大量增加。
脱落酸的增加,使植物对不利环境产生抗性。
尤其是脱落酸的增加和气孔的关闭一致,这对植物抗旱是非常有利的。
脱落酸除能调节气孔开闭外,还能促进根系对水和离子的吸收。
20世纪80年代初人们就广泛承认,缺水时叶片合成的脱落酸通过韧皮部运到根部,促进根对水和离子的透性。
番茄变种实验证明,脱落酸含量低于正常番茄的变种的根对水的吸收有较强的阻力,而这种阻力可因外施脱落酸而减少。
另外,脱落酸能促进芽的休眠,使生长速度下降,促进同化物质的积累,这些都可以减少蒸腾,提高植物保水能力,对植物抗旱是十分有利的。
2.2脯氨酸与植物抗旱性脯氨酸积累是植物为了对抗干旱胁迫而采取的一种保护性措施。
Irigoyen(1992)发现,轻度水分胁迫,苜蓿根瘤组织积累较多的脯氨酸,并认为脯氨酸可保护蛋白质在水分胁迫下的不变性.脯氢酸亲水基与蛋白质亲水基相互作用使蛋白质稳定性提高,乃至严重水分胁迫下苜蓿根瘤代谢酶和结构蛋白质可能会受积累的脯氨酸的保护,减轻严重干旱对组织的危害程度。
在正常情况下,植物中游离的脯氨酸含量仅为O.2~0.6 mg·g-1干重,占总游离氨基酸的百分之几,而在干旱条件下,脯氨酸可成10倍地增加,占总游离氨基酸的30%。
水分胁迫下脯氨酸的积累一方面增强了植物的渗透调节作用,使组织的抗脱水力加大;另一方面脯氨酸的偶极性保护丁膜蛋白结构的完整性,同时增强了膜的柔韧性。
脯氨酸可能是一有用的干旱伤害传感器(Droughtinjurysensor。
同时,脯氨酸还有作为自由基清除剂,调节细胞质PH值,防止酶变性,防止细胞质酸化的作用。
2.3甜菜碱与植物抗旱性近年研究结果指出,甜菜碱可能是作为植物的主要渗透调节物质之一而对植物的抗旱性起作用。
其依据是渗透胁迫条件下,植物体内的甜菜碱醛脱氧酶(BADH)和胆碱单氧化酶(CMO)活性升高,这两种酶在高等植物中,具有将胆碱氧化为甜菜碱的作用,并在细胞质中积累甜菜碱,甜菜碱的积累能够保持细胞与外界环境的渗透平衡和稳定复合蛋白四级结构,从而提高植物对干旱胁迫的适应性。
因此,Nomura等(1998)认为:在受到干旱胁迫的细胞中,甜菜碱似乎是起到一种低分子量分子伴侣的作用,稳定RuBP羧化酶的构象并使其处于功能状态,部分抵消了干旱的胁迫。
甜菜碱在叶绿体中合成,作为一种渗透调节物质,在植物受到环境胁迫时在细胞内积累降低渗透势,还能作为一种保护物质具有极为重要的“非渗透调节”功能,维持生物大分子的结构和完整性,维持其正常的生理功能,解除高浓度盐对酶活性的毒害和保护呼吸酶及能量代谢过程。
还能影响细胞内离子的分布。
2.4水孔蛋白与植物抗旱性水孔蛋白是植物体中水分跨膜运输的主要途径。
是作为跨膜通道的主嵌人蛋白(MIP)家族中有运输水分功能的一类蛋白质。
水孔蛋白可分为3类:TIP(Tonoplast Intrinsic Protein,液泡膜水通道蛋白)、MIP(Major Intrinsic Protein,主体水通道蛋白)及NLM(Nodulin-6-like Major Intrinsic Protein与Nodulin-6类主体水通道蛋白)。
水孔蛋白、H+/ATPase和Na+/H+反向运输蛋白在调节细胞水势和胞内盐离子分布中起信号导作用。
植物体可以通过调控水孔蛋白等膜蛋白以加强细胞与环境的信息交流和物质交换,改变膜对水分的通透性,实现渗透调节,以增强植物的抗旱、耐盐能力。
3活性氧清除植物受到水分、盐分胁迫时,产生活性氧,对细胞造成损伤,具体表现在4个方面:①活性氧能与酶的巯基或色氨酸残基反应,导致酶失活;②活性氧会破坏核酸结构,攻击核酸碱基,使嘌呤碱和嘧啶碱结构变化,导致变异出现或变异的积累;③DNA是蛋白质合成的信息,由于活性氧对DNA复制过程的损伤,从而妨碍蛋白质合成;④启动膜脂过氧化反应,使维持细胞区域化的膜系统受损或瓦解。
大量的研究实验表明,植物体内广泛存在的抗氧化酶系统(超氧化物歧化酶SOD)、过氧化氢酶CAT、过氧化物酶POD等)能有效清除活性氧,保证细胞正常的生理功能,维持其对干旱胁迫的抗性。
有研究表明,耐旱植物在逆境条件下能使保护酶活力维持在一个较高水平,有利于清除自由基,降低膜脂过氧化水平,从而减轻膜伤害程度。
4LEA蛋白与植物抗旱性LEA蛋白(Late Embryogenesis Abundant protein)是指胚胎发生后期种子中大量积累的一系列蛋白质。
LEA蛋白广泛存在于高等植物中。
在植物个体发育的其他阶段,也能因ABA 或脱水诱导而在其他组织中高水平表达。
一般认为,LEA蛋白在植物细胞中具有保护生物大分子,维持特定细胞结构,缓解干旱、盐、寒等环境胁迫的作用。
LEA蛋白大多是高度亲水的。
高度亲水性有利于LEA蛋白在植物受到干旱而失水时,能够部分替代水分子,蛋白质的多羟基能保持细胞液处于溶解状态,从而避免细胞结构的塌陷,稳定细胞结构,尤其是膜结构。
在干旱脱水过程中细胞液的离子浓度会迅速升高,高强度的离子浓度会造成细胞的不可逆伤害。
在第3组LEA蛋白的基元序列所构成的兼性α-螺旋结构中,亲水和疏水氨基酸分别处于螺旋的特定位置,形成分子内螺旋束,其表面具有束缚阴离子和阳离子的能力,因此,也能控制高盐、缺水伤害。
5植物抗旱相关基因的研究了解植物适应干旱胁迫的分子机理有利于开展抗旱基因工程研究,对提高植物抗旱能力,促进农业生产的发展具有非常重要的意义。
5.1编码植物抗旱关键基因的克隆1)与脯氨酸合成酶相关的基因,即脯氨酸合成酶基因族。
其中包括了吡咯啉-5-羧酸合成酶基因P5CS及PVAB2,吡咯琳-5-羧酸还原酶基因P5CR及PproC1,榆钱菠菜脯氨酸转运蛋白基因Ah-ProT1,编码s-腺甘甲硫氨酸合成酶基因SAM1和SAM3硫醇蛋白酶的rd19A、rd21A基因等。
将脯氨酸合成途径中的第1个酶——P5CS基因转入烟草和水稻后,转基因植株中P5CS mRNA的含量明显提高,转化植株的耐旱能力也比对照有所增加。
此外,大量研究也表明,在干旱胁迫条件下,P5CS水平提高,胁迫解除,P5CS基因表达水平下降,乙酰胆碱由胆碱单加氧酶(Choline Monooxygenase,CMO)或胆碱脱氢酶(Betaine Aldehyde Dehydrogenase CDH)、甜菜碱醛脱氢酶(Betain Aldehyde Dehydragenase,BADH)两步催化合成甜菜碱。
现已在菠菜、甜菜、山菠菜中成功克隆出CMO基因,从烟草中克隆出CDH基因,从甜菜、菠菜、山菠菜、大麦、水稻及木本植物海榄雌中克隆出BADH基因。
此外,乙酰胆碱氧化酶(Choline Oxidase,COD)因为可以把乙酰胆碱一步合成甜菜碱而日益受到人们的关注。
目前,codA基因已从水稻、拟南芥中成功克隆。
Sakamoto等(1998)用编码codA 基因转化水稻,获得两种分别在细胞的两个不同部位表达的乙酰胆碱氧化酶转化株,这两种转化株的耐盐、抗旱以及耐低温的能力均有所增强。
2)LEA基因、水孔蛋白基因及脱水素基因。
Xu等(1996)用来自大麦的一种LEA蛋白基因HVA1转化水稻,使其在水稻中过量表达,结果发现水稻的耐旱能力明显提高,且提高幅度与LEA蛋白的表达量一致,为LEA蛋白在植物耐旱、抗盐过程中的作用提供了直接证据。
棉花11个LEA相关基因,分别是D19、B19.1、D11、rab、16A-D、HVA1、D113、le2、D29和D34,以及拟南芥CORl5a、pRABA T1两个基因已经成功分离。
拟南芥中有30个基因编码水孔蛋白得到克隆,其中,12种属于TIP,12种属于MIP,6种属于NLM。
已经得到克隆的编码Na+/H+反向运输蛋白的基因包括:拟南芥中的AtN HX1、SOS1(Salt Overly Sensitive),小麦的TαN HX1 和水稻的OsN HX1基因。
脱水素是一种广泛存在于高等植物中的干旱诱导蛋白,具有很强的亲水性和热稳定性。
具有保护植物细胞的大分子在脱水过程中不受伤害的功能。
由于脱水素是在种子成熟时发挥作用,因此也把它归于LEA蛋白。
脱水素基因是一个大的基因家族,目前已有多个脱水素基因或相关基因被克隆及定位,如大麦中dhn1、dhn11,玉米中的dhn1/rabl7和dhn2以及拟南芥中的dhnX、cor47、rab18 等。