植物抗旱研究进展

合集下载

植物抗旱性鉴定指标的研究现状与进展

植物抗旱性鉴定指标的研究现状与进展
2222大气干旱法大气干旱法通过干燥的空气给植株施加干早胁迫以测定作物抗早性强弱或给作物叶面施通过干燥的空气给植株施加干早胁迫以测定作物抗早性强弱或给作物叶面施化学干燥剂化学干燥剂通过作物对干旱的反应来测定作物的抗旱性通过作物对干旱的反应来测定作物的抗旱性高渗溶液法高渗溶液法先用沙培法或水培法培养一定苗龄的植株先用沙培法或水培法培养一定苗龄的植株然后转入高渗溶液中进行干旱处理然后转入高渗溶液中进行干旱处理结合测定一些指标来反映作物苗期的抗旱性结合测定一些指标来反映作物苗期的抗旱性endthankyousuccess202020203366可编辑可编辑
4 综合指标
综上所述的关于植物抗旱性鉴定的方 法中基本上都是从单项指标(因素)上进行 鉴定,而植物的抗旱性是由多种因素相互 作用构成的一个较为复杂的综合性状,其 中每一因素与抗旱性之间存在着一定的 联系,为弥补这些缺陷,近年来较多采用综 合的指标,如:抗旱总级别法,模糊数学中 的隶属函数法,聚类分析法等多种综合 评价方法。
目前,在大豆、棉花、小麦、燕麦等作物的 抗旱鉴定上,测定株高、叶数、叶面积、幼苗 干重并与对照相比较,由此测定供试品种的抗 旱性。 在草坪上常将叶取向、叶垂直扩展率、叶鞘 长度、茎的分支量、叶面积指数、根长、根密 度、根冠比、叶片萎蔫指数、茎干重、根干重、 土壤内各层根量、气孔开闭、植株相对生长率、 根毛量等作为草坪草抗旱性研究的形态指标。
脱落酸:当土壤干旱时,植物能在根系中形成大量ABA,浓度成倍
增加,引起气孔开度减小,实现植物水分利用最优化控制。干旱条件下, 植物叶片的ABA含量能增加数十倍,而且抗旱品种比不抗旱品种积累 更多的ABA,这在小麦、玉米等作物上得到证实。
酶活力:干旱条件下,可影响植物体内多种酶活力。试验研究表明,

植物抗旱机制中信号转导通路研究

植物抗旱机制中信号转导通路研究

植物抗旱机制中信号转导通路研究植物是地球上最重要的生物之一,作为生态环境中的重要成员,植物在自身繁衍生息的同时,也承担着稳定和改善生态环境的重要职责。

然而,随着气候变化和环境污染的加剧,植物生长和发育遭受着越来越大的威胁。

其中,干旱的影响尤为严重,不仅会导致植物受到水分限制,而且还会直接影响植物的存活和繁衍。

因此,了解植物如何对抗干旱,寻找植物抗旱的机制,对保护生态环境和维护人类的生存环境至关重要。

在植物抗旱机制中,信号转导通路是非常关键的一环,这也是植物如何适应干旱环境的关键所在。

因此,本文将介绍植物抗旱机制中信号转导通路的研究现状和进展。

一、植物抗旱机制植物为了适应干旱环境,在生长和发育的各个环节都有一系列的适应性调节。

其中,根系、茎叶、花器官等都有一系列的生理、生化响应适应干旱。

一般来说,植物抗旱机制主要有以下几个方面:(1)根系适应干旱,提高水分利用效率。

干旱条件下,植物会产生更多的细小须根和根毛,增加根系的表面积,从而增强水分吸收能力。

同时,在干旱条件下,植物还会调节根系和叶片的比例、形态和分布,提高水分的利用效率。

(2)茎叶适应干旱,减少水分损失。

植物的茎叶可以通过调整气孔大小和数量、裂隙和开口的大小以及表皮的密度和结构等途径来减少水分损失。

此外,植物还可以通过调控茎叶中的可溶性糖、叶绿素、角质素等物质来适应干旱。

(3)维持基础代谢和调节生长发育。

干旱条件下,植物会减缓生长速率,保持基础代谢和维持生理平衡。

同时,植物还会通过调节生长激素和转录因子等信号通路来适应干旱。

二、信号转导通路信号转导通路是植物在适应干旱环境时的关键机制之一。

它可以将外部干旱的刺激转化为细胞内的生理反应,从而调节植物在干旱条件下的生长和发育。

目前已经发现了许多植物在适应干旱环境中所涉及的信号转导通路,比如ABA信号、Ca2+信号、ROS信号、酶信号等。

(1)ABA信号通路ABA(abscisic acid)是植物抗旱的一个重要激素,它可以调节干旱条件下植物的水分利用和茎叶的水分损失。

植物抗旱机理及抗旱性鉴定方法研究进展

植物抗旱机理及抗旱性鉴定方法研究进展

植物抗旱机理及抗旱性鉴定方法研究进展植物的抗旱机理是指植物在干旱环境中如何调节水分平衡,以维持正常的生长和发育。

随着全球气候变暖,干旱问题日益严重,研究植物的抗旱机理和鉴定抗旱性的方法对于农业生产和生态恢复具有重要意义。

本文将介绍植物抗旱机理的研究进展和抗旱性鉴定方法。

植物的抗旱机理主要包括:减少蒸腾损失、增加水分吸收能力、调节植物生长和发育等方面。

在减少蒸腾损失方面,植物通过改变气孔的开闭来控制蒸腾速率。

一些植物能够在干旱条件下调节其气孔的开合,降低蒸腾速率,减少水分流失。

同时,植物根系的生长和分布也对抗旱起着重要作用。

植物根系的发达程度和分布范围影响着植物吸收水分和养分的能力,从而影响植物的抗旱性。

另外,植物还通过产生一些抗旱物质来调节自身的生理代谢,如抗氧化物质、谷胱甘肽等,以抵抗干旱引起的氧化应激。

目前,研究人员采用了多种方法来鉴定植物的抗旱性。

一种常用的方法是通过测定植物的生理指标来评估其抗旱性。

例如,测定植物的相对水分含量、叶绿素含量、脯氨酸含量等指标,可以反映植物在干旱条件下的水分状态和生理代谢水平。

另外,测定植物的根系性状也是评估抗旱性的重要指标。

根系的发育程度和分布范围可以反映植物的水分吸收能力和适应干旱的能力。

此外,还可以通过评估植物的生长和发育状况来判断其抗旱性。

例如,测定植物的生物量、叶面积指数、根冠比等指标,可以反映植物在干旱条件下的生长状况。

近年来,研究人员还采用了分子生物学和基因工程等方法来研究植物的抗旱机理和鉴定抗旱性。

例如,通过研究与植物抗旱相关的基因,可以揭示植物在干旱条件下的分子调控机制。

同时,通过转基因技术来提高植物的抗旱性也是研究的热点之一、通过引入抗旱相关基因或调控植物内源基因的表达,可以提高植物的抗旱能力,从而增加农作物的产量和耐旱性。

综上所述,植物的抗旱机理及抗旱性鉴定方法研究已经取得了一些进展。

随着研究的深入和技术的进步,相信将会有更多的抗旱机理被揭示,也将有更多的有效方法用于评估和提高植物的抗旱性。

植物对干旱胁迫的响应研究进展

植物对干旱胁迫的响应研究进展

植物对干旱胁迫的响应研究进展一、本文概述干旱胁迫是全球气候变化背景下植物经常面临的一种环境压力,它不仅影响植物的生长和发育,还可能对植物的生存造成威胁。

因此,深入了解植物对干旱胁迫的响应机制,对于提高植物的抗逆性、优化农业生产和保护生态环境具有重要意义。

本文旨在综述近年来植物对干旱胁迫响应的研究进展,包括植物在干旱胁迫下的生理生化变化、分子生物学机制以及抗旱性改良等方面的研究成果,以期为未来的植物抗旱性研究提供参考和借鉴。

本文将概述干旱胁迫对植物生长发育的影响,包括水分亏缺对植物形态结构、生理功能和代谢过程的影响。

我们将重点介绍植物在干旱胁迫下的响应机制,包括植物激素、转录因子、基因表达调控以及信号转导等方面的研究进展。

我们还将综述植物抗旱性改良的研究现状,包括传统育种、基因工程和组学技术在抗旱性改良中的应用。

我们将对植物抗旱性研究的前景进行展望,探讨未来研究方向和挑战。

通过本文的综述,我们期望能够为读者提供一个全面的视角,以了解植物对干旱胁迫响应的研究现状和发展趋势,为植物抗旱性研究和实践提供有益的参考和启示。

二、植物干旱胁迫的生理生态响应植物在面对干旱胁迫时,会表现出一系列的生理生态响应。

这些响应旨在最大限度地减少水分损失,提高水分利用效率,以及维持生命活动的正常进行。

在形态学方面,植物会通过减少叶片数量和大小,降低叶面积指数,以及增加叶片厚度和角质层等方式,来减少水分蒸发和蒸腾作用。

根系也会发生适应性变化,如增加根长、根表面积和根毛数量,以扩大水分吸收的范围和效率。

在生理方面,植物会通过调整气孔开闭,降低蒸腾拉力,以减少水分流失。

同时,植物还会提高叶片细胞液的浓度,如增加脯氨酸等溶质的含量,以降低渗透势,增强保水能力。

植物还会通过调节光合作用的速率和途径,以及调整呼吸作用等,以适应干旱环境下的能量代谢需求。

在分子层面,植物会表达一系列与干旱胁迫相关的基因,编码如转录因子、蛋白激酶、水解酶等抗旱相关蛋白,以调节和响应干旱胁迫。

植物抗旱基因工程的研究进展1

植物抗旱基因工程的研究进展1

来稿日期:20080831 基金项目:邯郸学院硕士博士启动基金(S2006002) 作者简介:葛水莲(19802),女,河北保定人,邯郸学院生物科学系教师,硕士.植物抗旱基因工程的研究进展葛水莲1,薛晶晶1,陈建中2(11邯郸学院生物科学系,河北邯郸056005;21邯郸市植物研究所,河北邯郸056005) 摘要:就植物的抗旱基因包括渗透调节,保护酶体系,抗旱基因及遗传特性等方面对植物抗旱机理的研究进行了综述.研究植物的抗旱性基因,有助于了解植物的抗旱机制,为中国节水抗旱农业的研究提供一些新的思路和新的手段.关键词:抗旱机理;水分胁迫;基因工程中图分类号:S 33214 文献标识码:A文章编号:167321492(2008)0620028204 干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中占首位.显然,对植物抗旱机理的研究显得尤为重要.在长期的进化过程中,高等植物通过一系列生理变化来响应环境的水分胁迫.这些变化体现在渗透调节,保护酶体系,抗旱基因与遗传特性等方面.随着现代分子生物学与生物技术的发展,植物如何通过细胞感受逆境信号、传导逆境刺激、激活一系列分子途径并调控相关基因表达和生理反应以适应逆境,已成为科学家研究的热点[1].本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于我们更好的进行抗旱工作.1 渗透调节中脯氨酸的调节111 植物体内脯氨酸的合成脯氨酸是一种小分子的渗透物质,是水溶性最大的氨基酸,许多植物受到盐渍时积累高水平的脯氨酸.植物的脯氨酸合成、累积及代谢是一个受非生物胁迫细胞内脯氨酸浓度调控的生理生化过程[2].脯氨酸积累可能是植物受到胁迫的一种信号.遭受胁迫的植物细胞内大量积累脯氨酸,已证明植物体内存在2条脯氨酸合成途径,根据起始氨基酸命名为Glu 途径和Orn 途径[3].胁迫导致水分亏缺时植物体内脯氨酸积累主要依靠Glu 途径,谷氨酸途径发生在胞质中,但脯氨酸降解为吡咯琳252羧酸(P5C )却发生在线粒体中,由脯氨酸脱氢酶(ProD H )催化,这种代谢的区室化分布避免了物质的无效循环.在正常情况下,脯氨酸作为一种反馈调节物质抑制了P5CS 的基因表达而诱导了ProD H 的基因表达.在胁迫条件下,P5CS 基因的表达活性超强,而ProD H 基因的表达活性却受到抑制.植物体内另一条脯氨酸合成途径为Orn 途径.鸟氨酸是在鸟氨酸6-氨基转移酶(62OA T )的作用下,生成谷氨酸半醛(GSA ),后通过Glu 途径生成脯氨酸[4].两条途径因植物和生长时期不同而各自起着重要的作用.从整体来说,在个体发育的早期阶段,异养型营养占优势,Orn -Pro 途径在脯氨酸合成中起重要作用,而谷氨酸作为脯氨酸合成的起始底物显然存在于个体发育的整个阶段,具体来说脯氨酸合成过程究竟是哪条途径居于主导地位有待研究.Roo sens [5]等研究表明,在盐胁迫和正常条件下,幼小植株的62OA T 活性和mRNA 都稍微高于较老植株,且该基因的表达与盐胁迫和脯氨酸产物密切相关.在拟南芥幼小植株中,游离脯氨酸含量、62OA T 活性以及62OA TmRNA 都受到盐胁迫处理而增加,这些结果表明对于拟南芥植物来说,在渗透胁迫过程中鸟氨酸途径和谷氨酸途径一样在脯氨酸的累积中发挥着重要的作用.另一方面4周龄的拟南芥植物虽然游离氨基酸的水平在盐胁迫条件下有所增加,但62OA T mRNA 的表达却没有检测到,相反P5CS mRNA 表达却达到较高水平.因此对于成年植株来说,游离脯氨酸的增加似乎只・82・第24卷第6期2008年12月 (自然科学版)Journal of Hebei North University (Natural Science Edition ) Vol 124No 16Dec.2008是由于谷氨酸途径的酶活性引起的.112 脯氨酸合成酶系分子生物学研究现状11211 脯氨酸合成酶研究现状 脯氨酸合成酶属于一个基因家族,在植物体内脯氨酸的合成由谷氨酸或鸟氨酸开始.在谷氨酸途径P5CS是一个双功能酶,具有谷氨酸激酶(72GK)和谷氨酰272半醛脱氨酶(GSAD H)活性,催化脯氨酸合成过程中的前2步反应,它是脯氨酸合成的限速酶;在鸟氨酸途径中,通过r2谷氨酰磷酸,GSA和P5C形成脯氨酸,62OA T是其限速酶.植物利用外源脯氨酸时Pro T起主要作用.与脯氨酸积累有关的酶主要有3类:谷氨酸途径中的P5CS和吡咯琳252羧酸还原酶(P5CR)、OA T、PSCR和Pro T.11212 脯氨酸合成酶基因分子生物学研究 编码脯氨酸合成酶基因的研究较为深入,至今已从水稻、黑麦、绿豆、大豆、拟南芥、蒺藜、苜蓿、榆钱、菠菜等植物中克隆出了多个与脯氨酸合成酶相关的基因,其中包括P5CS、PSCR、OA T和Pro T[627].鸟氨酸循环中62OA T基因已在大豆、苜蓿、拟南芥等中得到克隆.转运蛋白Pro T基因在拟南芥、番茄、水稻、大麦等中得到克隆. WU[8]研究发现,在拟南芥中P5CS是由2个不同调节基因编码的.该基因有l9个内含子和20个外显子定位于2号染色体7815位置上的At P5CS1基因可以在大多数植物器官中表达,但在分裂细胞中沉默;定位于3号染色体l0113位置上的At P5CS2基因转录产物,占植物组织中P5CSmRNA总量的20%~40%,并在分裂细胞中负责合成P5CSut RNA,At P5CS转录产物的积累具有组织特异性.同样在番茄的核基因组中,也发现有2个脯氨酸基因座(1oci):一个是特异性双功能tom Pro2基因座;另一个基因座为tom Prol,该基因座编码一个多顺反子mRNA,指导72GK和GSAD H2种多肽的合成[9].P5CS基因广泛存在于单子叶和双子叶植物中;P5CR基因有7个外显子,6个内含子,用探针将其定位于拟南芥的5号染色体上;62OA T基因有l0个外显子,9个内含子,该基因定位于拟南芥的5号染色体上;脯氨酸转运蛋白的基因有8个外显子,7个内含子,该基因定位于水稻的3号染色体上,在拟南芥中脯氨酸转运蛋白是2个不同调节基因编码的,该基因有7个内含子6个外显子,定位于2、3号染色体上. 11213 脯氨酸在转基因植物中的表现 将P5CS 和62OA T分别转入烟草植株中,发现在转基因烟草(N icoti ana t abacum)中脯氨酸含量明显提高且与对照相比,耐盐性也有所提高,转入其他植物也得到同样的结论.将从乌头叶豇豆中克隆的P5cs基因与CaMV35S启动子连接后转入烟草中,发现转基因烟草的脯氨酸含量比对照高10~18倍.在干旱胁迫下转基因烟草落叶少且迟.将拟南芥的62OA T基因导入烟草,使脯氨酸累积增加2倍,转基因的幼苗可在200mmol/L NaC1中正常生长;将此基因导人烟草,使脯氨酸累积增加2倍,转基因的幼苗可在200mmol/L NaC1中正常生长.杨成民[10]从豇豆中分离到的P5CS为目的基因,通过基因枪与选择标记bar基因共转化获得转基因黑麦草再生植株.K ishor[11]等将P5CS基因导入烟草,转基因植株脯氨酸含量比对照高10~18倍;在盐胁迫条件下,与对照相比转基因植株根的长度和干重增加,植株生物产量提高花发育得更好,果荚数目和每荚的种子数也增加.干旱条件下植物体内脯氨酸积累是否有利于植株抗旱,目前存在相当大的争议.尽管对于许多植物来说,脯氨酸的积累在逆境中的生理机制还未完全清楚,但普遍认为在干旱胁迫下脯氨酸的升高有利于植物对干旱胁迫的抵抗,耐旱植物(品种)通比不耐旱植物(品种)具有较强的脯氨酸积累能力,这些积累的脯氨酸通过质量作用定律进行渗透调节,从而增强植株保水能力.李燕等[12]在皂角苗木对干旱胁迫的生理生化反应的研究中发现,在干旱胁迫下,皂角的脯氨酸含量先增后减,这种变化趋势在一定程度上反映了脯氨酸在干旱胁迫下对植物体内氨积累所造成的毒害发挥消除作用.在干旱条件下植物各器官脯氨酸的积累存在差异.Bajji等发现滨藜中脯氨酸含量的增加在叶中较显著,对根没有显著影响.也有研究发现,根的脯氨酸增加的幅度比茎叶中都大[13].2 保护酶体系保护酶体系包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CA T)和抗坏血酸过氧化物酶(AsP)等,它们协同抵抗干旱胁迫诱导的氧化伤害.其中SOD酶可以催化O22,发生歧化作用起着清除O22的解毒作用,而CA T, POD,ASP能够清除歧化作用产生的H2O2造成的伤害.在整个防御系统中SOD是所有植物在氧・92・2008年12月葛水莲等:植物抗旱基因工程的研究进展第6期化作用中起重要作用的抗氧化酶.根据其结合的金属离子的不同.SOD 可分为Cu/Zn 2SOD 、Mn 2SOD 和Fe 2SOD 三种类型.Cu 2SOD 主要在叶绿体和细胞质中,Mn 2SOD 主要存在于线粒体中,Fe 2SOD 则主要存在于叶绿体中.将烟草的Mn 2SOD 2cDNA 导入苜蓿后,转基因苜蓿的抗旱性得到了提高,将Mn 2SOD 基因定位到烟草的叶绿体和线粒体上,发现也能表达其基因.进一步研究发现,在叶绿体中Mn 2SOD 的过量表达使烟草受干旱所引起的氧化伤害程度比对照明显减轻,但线粒体中增加的Mn 2SOD 活性对烟草耐氧化胁迫能力没多大影响.另外,表达拟南芥Fe 2SOD 的转基因烟草、表达番茄Cu/Zn 2SOD 的转基因烟草、过量表达豌豆Cu/Zn 2SOD 的转基因烟草均能增强抵抗干旱引起的氧化胁迫能力.3 植物抗旱基因与遗传的研究311 保护生物大分子及膜结构的蛋白质31111 水通道蛋白(aquapofin ) 水通道蛋白是指作为跨膜通道的主嵌入蛋白(M IP )家族中具有运输水分功能的一类蛋白质,能够促进和调节水分跨膜的被动交换,包括植物体内的跨细胞和胞内水分流动,是水分跨膜运输的重要途径之一.水通道蛋白属于主要内在蛋白家族成员,最早在哺乳动物的某些特殊的细胞类型里发现的如红细胞肾小管细胞等.在植物体内,水通道蛋白分布于液泡膜上的液泡膜嵌入蛋白(TIP ),分布于细胞质膜上的胞质膜嵌入蛋白(PIP )和根瘤细胞中.大多数水通道蛋白在维管组织和幼嫩组织的细胞中表达显著.目前对于水桶道蛋白基因的研究还有待于进一步发展.31112 调渗蛋白 在高盐浓度下,培养的烟草细胞中多种蛋白质的含量发生了变化.其中一种分子量为26KD 的蛋白质的增加尤为显著.高达细胞总蛋白量的12%以上.该蛋白的积累则要求氯化钠或低水势的存在[14].除烟草外其它一些植物西红柿、马铃薯、胡萝卜、棉花、小米和大豆的培养细胞经ABA 处理后也出现了同OSM 起免疫交叉反应且分子量约为26KD 的蛋白质.这表明OSM 可能是一种普遍存在于高等植物的蛋白质.目前已得到由农杆菌介导将OSM 的启动子和B 2葡萄糖苷醛酶(GU S )报告基因嵌合在一起的转基因烟草.31113 胚胎后期发生丰富蛋白(L EA 蛋白) 在种子后期发育过程当中,L EA 蛋白随种子的脱水成熟其含量增加.在胁迫条件下L EA 蛋白在植物细胞中起保护作用,这种保护作用对于植物在极端压力条件下是必要的.根据L EA 的结构[15]推测L EA 蛋白可能有以下三方面的作用:1)作为脱水保护剂.由于L EA 蛋白在结构上富含不带电荷的亲水氨基酸,它们既能像脯氨酸那样,通过与细胞内的其它蛋白发生相互作用,使其结构保持稳定,又可能给细胞内的束缚水提供了一个结合的衬质,从而使细胞结构在脱水中不致遭受更大的破坏.2)作为一种调节蛋白而参与植物渗透调节.3)通过与核酸结合而调节细胞内其它基因的表达.312 编码抗旱转录因子的调节基因由于在逆境条件下与逆境相关的转录因子能跟调节功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因同时表达,因此可提高植物的耐旱性.DREB 是目前研究较多的抗非生物胁迫的转录因子.Xiong [16217]利用差示显示法从干旱处理的拟南芥中克隆了一批受干旱诱导的基因rd 基因,对rd29A 基因启动子进行分析揭示了一个与干旱、高盐及低温胁迫应答基因有关的DRE 顺式作用元件,并克隆了3个与DRE 元件结合的转录因子,用干旱或高盐处理10min ,DREB2A 和DREB2B 被快速强烈诱导,并且不受外源ABA 的诱导.Hara [18]利用CaMV35S 启动子和逆境诱导特异启动子rd29A ,将DREB1A 的cD 2NA 导入拟南芥,DREB1A 的过量表达激活许多耐逆境功能基因的表达如rd29A 、K inl 、Con5a 、Cor6和P5CS 等转基因植株耐旱性、耐盐性和耐冻性提高.4 展 望近年来植物抗旱、耐盐碱基因工程的研究受到了越来越广泛的关注和重视.中国北方地区土壤干旱、盐渍化是影响农牧生产的重要因素.通过筛选与植物的抗旱性、抗盐碱性相关的基因,研究其功能,揭示其相关因子的信号转导途径,采用现代生物技术手段进行转基因育种、获得耐早和耐盐碱能力强的新品种已成为解决我国中西部干旱、半干旱地区农牧业发展种质资源矛盾的有效手段之一.目前利用基因工程技术培育抗旱品种主要有两种策略:1)增加植物渗透性代谢产物的合成能力,使植物在水分胁迫下能合成更多的渗透调节物质如脯・03・2008年12月 河北北方学院学报(自然科学版) 第6期氨酸,甘露醇、甜菜碱、海藻糖等,以提高植物的渗透调节能力,从而增强植物的抗旱性;2)增强植物对活性氧自由基的清除能力,使植物在水分胁迫下过量表达一些酶(如SOD,POD,CA T等),以有效地排除有害的活性氧自由基,从而提高细胞耐脱水的能力[19220].在通过基因工程方法进行抗旱分子育种的过程中发现存在一些问题:1)由于人们对植物抗旱的分子机制缺乏了解,抗旱分子育种还有很大的盲目性;2)采用单基因策略提高植物的抗旱性对有的基因和植物有效,对有的基因和植物却无效;3)利用35S启动子与抗旱基因组合在提高植物抗旱性的同时也造成植物畸形发育;4)外源基因表达水平不稳定.尽管目前抗旱分子育种面临不少的问题,但随着抗旱分子生物学研究的深入和生物技术的进步,相信不久的将来会有大量的抗旱基因作物应用到生产实践中来.参考文献:[1]Blum A.Drought resistance,water2use efficiency,andyield potential2are they compatible,dissonant,or mutu2 ally exclusive[J].Austral J Agricult Research,2005,56(11):115921168[2]段德玉,刘小京,李存桢,等.N素营养对NaCI胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报,2005,14(01):63268[3]Hu H,Dai M,Yao J,et al.Overexpressing NAM,A T2A F,and CUC(NAC)transcription factor enhancesdrought resistance and salt tolerance in rice[J].Proceed Nation Acad Sci,2006,103(35):12987[4]Song S Q,Lei Y B,Tian X R.Proline MetabolismandCross2Tolerance to salinity and heat stress in germina2 ting wheat seeds[J].Russ J Plant Physiol,2005,52(06):7932800[5]Roosens N H,Bitar F A,Loenders K,et al.Overexpres2sion of ornithine2δ2aminotransferase increases proline bi2 osynthesis and confers osmotolerance in transgenic plants[J].Molec Breed,2002,9(02):73280[6]Yu S W,Li R T,Zhang R D.Fluore scence in situ Hy2bridization of Pyrroline252carboxylate Synthetase(P5CS)G ene on Rice Chromosome[J].J Huazhong AgricultUniv,2002.21(01):124[7]季孔庶,孙志勇,方彦.林木抗旱性研究进展[J].南京林业大学学报:自然科学版,2006,30(06):1232128[8]Wu Q,Xia R.Effects of arbuscular mycorrhizal f ungi onleaf solutes and root absorption areas of trifoliate orangeseedlings under water stress conditions[J].Front For2 estry in China,2006,(03):3122317[9]Yang W L,Hu Z A,Wang H X,et al.The protectiverole of xanthophyll cycle in resurrection angiosperm boea hygrometrica during dehydration and rehydration [J].Acta Botanica Sinica,2003,45(03):3072310 [10]杨成民,王宏芝,孙振元,等.利用基因枪共转化法获得转bar与P5CS基因黑麦草[J].草地学报,2005,13(01):34238[11]K ishor P B K,Sangam S,Amrutha R N,et al.Regula2tion of proline biosynthesis,degradation,uptake and transport in higher plants:its implications in plantgrowth and abiotic stress tolerance[J].Curr Sci,2005, 88:4242438[12]李燕,孙明高,孔艳菊,等.皂角苗木对干旱胁迫的生理生化反应[J].华南农业大学学报,2006,27(03):66269 [13]Bajji M,L utts S,K inet J.Water deficit effects on solutecontribution to osmotic adjustment as a f unction of leaf ageing in three durum wheat(Triticum durum Desf.)cultivars performing differently in arid conditions[J].Plant Sci,2001,160(04):6692681[14]李燕,薛立,吴敏.树木抗旱机理研究进展[J].生态学杂志2007,26(11):195721966[15]张林生,赵文明.L EA蛋白与植物的抗旱性[J].植物生理学通讯,2003,39(01):61266[16]Xiong L,Wang R G,Mao G,et al.Identification ofdrought tolerance determinants by genetic analysis ofroot response to drought stress and abscisic acid[J].Plant Physiol,2006,142:106521074[17]Fujita Y,Fujita M,Satoh R,et al.AREB1is a tran2scription activator of novel ABRE2dependent ABA sig2naling that enhances drought stress tolerance in Arabi2dop sis[J].Plant Cell,2005,17:347023488[18]Lizana C,Wentworth M,Martinez J P,et al.Differenti2al adaptation of two varieties of common bean to abiotic stress I.Effects of drought on yield and photosynthesis [J].J Experim Botany,2006,57,(03):6852697 [19]Hara M,Fujinaga M,Kuboi T.Radical scavenging ac2tivity and oxidative modification of citrus dehydrin[J].Plant Physiol Biochem,2004,42:6572662[20]张成军,解恒才,郭佳秋,等.干旱对4种木本植物幼苗脯氨酸含量的影响[J].南京林业大学学报:自然科学版,2005,29(05):33236[责任编辑:刘守义]・13・2008年12月葛水莲等:植物抗旱基因工程的研究进展第6期。

植物抗旱抗旱机理及其相关基因研究进展

植物抗旱抗旱机理及其相关基因研究进展

植物抗旱抗旱机理及其相关基因研究进展植物抗旱是指植物在干旱等恶劣环境下,能够通过一系列适应性生理和生化机制来维持生长和发育的能力。

植物抗旱机理主要涉及到水分利用效率提高、减少蒸腾速率、促进根系发育和增强细胞膜的稳定性等方面。

近年来,随着基因测序技术的快速发展,植物抗旱相关基因的研究进展迅速。

植物的抗旱机制主要包括避免脱水、渐进脱水耐受和耐旱维持三个阶段。

避免脱水是指植物通过调节气孔的开闭来减少水分蒸腾,防止脱水。

渐进脱水耐受是指植物在长期干旱时,通过一系列适应性调节,逐渐适应干旱环境并维持正常生长和发育。

耐旱维持是指植物在长时间干旱条件下,能够维持细胞内水分平衡,避免细胞脱水,保持生长和发育活力。

植物抗旱的分子机制涉及到多个基因家族的调控。

其中,ABRE (Abscisic Acid-responsive Element)、DRE(Drought-responsive Element)和LEA(Late Embryogenesis Abundant)等基因家族被广泛研究。

ABRE基因家族与植物在胁迫条件下的ABA合成与信号传导过程中发挥重要作用,参与调控植物抗旱能力的提高。

DRE基因家族是植物耐旱途径基础基因,参与调控植物在水分胁迫下的抗逆应答。

LEA基因家族的蛋白质在干旱逆境下的活化与折叠起到了关键作用,参与细胞质和叶绿体中蛋白质合成抗旱蛋白并降低脱水损伤。

除了以上基因家族,研究还发现其他抗旱相关基因,如水通道蛋白基因、抗旱酶基因、氮代谢酶基因等。

水通道蛋白基因能够调节植物细胞水分传输,提高植物的抗旱能力。

抗旱酶基因参与植物在干旱逆境下的生理代谢过程,保护细胞膜的完整性和功能。

氮代谢酶基因在植物受到干旱胁迫时能够促进植物根系的发育,增加植物对水分的吸收能力。

基因研究的进展有助于提高植物的抗旱能力,并为植物育种和遗传改良提供了理论基础。

通过转基因技术,研究者可以将抗旱相关基因导入非耐旱植物中,提高其抗旱能力。

高粱抗旱性研究进展

高粱抗旱性研究进展

㊀山东农业科学㊀2024ꎬ56(1):164~173ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2024.01.022收稿日期:2023-03-27基金项目:国家重点研发计划项目(2022YFD1500602-1)ꎻ国家现代农业产业技术体系项目(CARS-06-14.5-B16)作者简介:王晓东(1996 )ꎬ男ꎬ研究实习员ꎬ主要从事高粱栽培与育种工作ꎮE-mail:1009124737@qq.com通信作者:肖继兵(1976 )ꎬ男ꎬ研究员ꎬ主要从事旱作农业研究ꎮE-mail:xiaojb2004@126.com高粱抗旱性研究进展王晓东ꎬ李俊志ꎬ窦爽ꎬ肖继兵ꎬ辛宗绪ꎬ吴宏生ꎬ朱晓东(辽宁省旱地农林研究所ꎬ辽宁朝阳㊀122000)㊀㊀摘要:干旱是限制植物生产力和威胁粮食安全的重要因素之一ꎮ高粱(SorghumbicolorL.Moench)是全球主粮和饲料作物ꎬ因其具有较强的抗旱性和能够在恶劣的环境条件下生存而广泛种植于干旱半干旱地区ꎬ在作物抗旱领域中具有重要的研究价值ꎮ深入解析干旱胁迫下高粱的形态和生理特性㊁鉴定和筛选抗旱品种㊁挖掘相关抗旱基因ꎬ对推动高粱抗旱育种进程㊁提高品种抗旱性㊁提高产量具有重要意义ꎮ本文从干旱胁迫对高粱生长的影响㊁高粱对干旱胁迫的生理响应㊁高粱耐旱性鉴定方法和鉴定指标㊁高粱抗旱性分子生物学和提高高粱抗旱性方法5个方面对高粱抗旱性研究进展进行综述ꎬ并对高粱抗旱性研究方向进行展望ꎬ以期为进一步研究高粱抗旱的形态㊁生理特性及分子机制奠定基础ꎮ关键词:高粱ꎻ干旱胁迫ꎻ生理响应ꎻ分子生物学ꎻ鉴定ꎻ抗旱性中图分类号:S514㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2024)01-0164-10ResearchProgressonDroughtResistanceofSorghumWangXiaodongꎬLiJunzhiꎬDouShuangꎬXiaoJibingꎬXinZongxuꎬWuHongshengꎬZhuXiaodong(LiaoningInstituteofAgriculture&ForestryinAridAreasꎬChaoyang122000ꎬChina)Abstract㊀Droughtisoneoftheimportantfactorsthatlimitplantproductivityandthreatenfoodsecurity.Asaglobalstaplefoodandforagecropꎬsorghum(SorghumbicolorL.Moench)hasgoodcharacteristicsindroughtresistancealongwithabilitiestosurviveinharshenvironmentsꎬandiswidelyplantedinaridandsemi ̄aridareasꎬwhichgiveitimportantresearchvaluesinthefieldofcropdroughtresistance.Itisofgreatsignifi ̄canceinacceleratingbreedingprocessofdrought ̄resistantvarietiesandincreasingdroughtresistanceandyieldofsorghumtofurtheranalyzethemorphologicalandphysiologicalcharacteristicsunderdroughtstressꎬidentifyandscreentheexcellentdrought ̄resistantvarietiesꎬanddigoutdrought ̄resistantgenes.Inthispaperꎬthere ̄searchprogressindroughtresistanceofsorghumwasreviewedfrominfluencesofdroughtstressonsorghumgrowthꎬphysiologicalresponsesofsorghumtodroughtstressꎬidentificationmethodsandindexesꎬmolecularbiologyꎬandimprovementmethodsꎬandtheprospectofresearchdirectionofdroughtresistanceinsorghumwasproposedꎬinordertolayafoundationforfurtherstudyofthemorphologicalandphysiologicalcharacteris ̄ticsandmolecularmechanismsofdroughtresistanceinsorghum.Keywords㊀SorghumꎻDroughtstressꎻPhysiologicalresponseꎻMolecularbiologyꎻIdentificationꎻDroughtresistance㊀㊀干旱是限制作物生产发展的最重要因素之一ꎬ有发生范围广㊁频次高㊁持续时间长等特点[1-2]ꎮ目前ꎬ世界上有三分之一以上总陆地面积的干旱和半干旱地区ꎬ我国现有干旱㊁半干旱和亚湿润干旱区近300万km2ꎬ占国土总面积近四成[3]ꎮ其中ꎬ绝大部分是因为缺乏灌溉条件而以雨养农业为主ꎬ其作物产量占全国总产量的比重较小ꎮ选育耐旱性强的作物品种是保证干旱地区高产稳产的重要举措ꎮ干旱可能会发生在作物生长发育的各个阶段ꎮ然而ꎬ在干旱和半干旱地区ꎬ作物生长季开始和结束时发生干旱的可能性较高ꎮ生长季节开始时的干旱胁迫严重影响植物的生长发育ꎮ如果干旱发生在作物开花期或灌浆期ꎬ可能会导致产量严重下降或歉收[4]ꎮ高粱(SorghumbicolorL.Moench)是禾本科一年生草本植物ꎬ主要种植于热带㊁亚热带和温带的干旱半干旱区ꎬ也是我国主要的杂粮作物之一ꎬ是重要的酿用㊁食用㊁饲用㊁帚用作物ꎬ同时也是全球仅次于水稻㊁玉米㊁小麦㊁大豆种植面积的第五大粮食作物ꎮ高粱具有很强的抗旱㊁耐涝㊁耐盐碱㊁耐瘠薄㊁耐高温等抗逆特性[5]ꎮ高粱不同品种间抗旱能力存在较大差异ꎮ近些年从多个方面开展了高粱抗旱性遗传和抗旱品种选育相关研究[6-7]ꎮ本文综述干旱胁迫对高粱生长的影响㊁高粱耐旱性鉴定方法和鉴定指标ꎬ以及高粱对干旱的生理响应ꎬ并从转录组分析㊁抗旱QTL定位和全基因组关联分析方面进行梳理和整合ꎬ并对高粱抗旱性的分子调控机制㊁鉴定体系及抗旱性品种选育进行展望ꎬ以期为后人开展相关研究提供理论参考ꎮ1㊀干旱胁迫对高粱生长的影响1.1㊀干旱胁迫对高粱种子萌发和幼苗生长的影响水分缺乏使植物发育迟缓ꎬ干旱胁迫达到一定阈值时ꎬ会显著抑制种子萌发和幼苗生长[8]ꎮ王志恒等[9]研究了高粱萌发阶段受干旱胁迫的响应特性ꎬ发现随着干旱胁迫程度的增加ꎬ高粱种子的发芽率㊁发芽势等显著降低ꎬ种子残留干重逐渐增加ꎬ干物质转移㊁转化效率逐渐下降ꎬ根冠比逐渐增大ꎬ比根重逐渐减小ꎮ长期干旱胁迫降低幼苗的苗高㊁叶长ꎬ幼苗地上部和根的鲜重不同程度的下降[10]ꎮ1.2㊀高粱萌发期及苗期的抗旱性研究大多数农作物在种子萌发㊁幼苗形成和开花阶段对干旱胁迫较为敏感ꎬ干旱胁迫下萌发期和苗期表现出耐旱性是作物生长发育的前提ꎮ对高粱萌发期和苗期耐旱性的研究发现ꎬ高粱萌发期和苗期的耐旱性是不一致的ꎮ张笑笑[11]对73份高粱品种进行萌发期和苗期耐旱性鉴定ꎬ初筛结果发现萌发期和苗期都抗旱的品种5份ꎬ苗期抗旱品种10份ꎬ田间和室内采用多重表型分析最终得到苗期抗旱品种1份ꎮ郝培彤等[12]在20%PEG干旱胁迫下评价21份饲草高粱材料的耐旱性ꎬ筛选出萌发期耐旱和苗期耐旱材料各3份ꎬ萌发期和苗期共同耐旱材料1份ꎮ由此可见ꎬ高粱品种萌发期和苗期耐旱性是不同的ꎬ萌发期耐旱品种苗期不一定耐旱ꎬ苗期耐旱品种萌发期也可能不耐旱ꎮ针对高粱萌发期和苗期耐旱性ꎬ许多学者是分开进行研究的ꎬ而在大田干旱生产条件下ꎬ种子从萌发阶段就已经受到干旱胁迫的影响ꎮ因此研究植物的耐旱性ꎬ应该从种子萌发到苗期进行不间断的干旱胁迫处理ꎬ这样可以更加全面地反映出植物在萌发期和苗期对干旱胁迫的各种反应ꎮ1.3㊀干旱胁迫对高粱光合作用的影响Zhang等[13]研究发现ꎬ在干旱胁迫处理后ꎬ高粱叶片叶绿素总含量及叶绿素a㊁叶绿素b含量降低ꎬ且叶绿素a的降低幅度显著大于叶绿素bꎮ干旱胁迫下叶绿素含量降低主要是由于叶绿素生物合成下降ꎬ从而导致叶绿素加速分解ꎮ植物进行光合作用时ꎬ要保证充足的光照ꎬ然而光照过强ꎬ会造成叶片吸收的光能超出同化所需ꎬ进而造成光抑制或者光破坏[14]ꎮ因此植物会通过植物激素㊁外源物质等来减缓由于光能过多引起的光抑制ꎬ促进光合活性ꎬ避免PSⅡ系统受到破坏[15]ꎮ张姣等[16]的研究表明ꎬ干旱胁迫下ꎬ高粱叶片的净光合速率(Pn)㊁气孔导度(Gs)㊁最大光化学效率(Fv/Fm)㊁光化学淬灭系数(qP)㊁电子传递速率(ETR)出现不同程度的下降ꎬ初始荧光(Fo)与对照组相比有所升高ꎬZhang等[13]也得出相同的结论ꎮ说明干旱胁迫会使光合相关酶活性丧失ꎬ导致光能过剩而产生积累ꎬ通过热耗散等途径消耗多余的光能ꎬ可以让作物适应干旱胁迫环境ꎮ干旱胁迫导致光合作用能力下降主要原因是非气孔限制[17]ꎮ王祁等[18]的研究还发现ꎬ在轻度干旱胁迫下ꎬ高粱叶片PSⅡ系统结构和功能损伤较小ꎬ然而在重度胁迫下ꎬ叶片PSⅡ系统遭到破坏ꎬ进而发生光抑制现象ꎮ光合作用的强弱可以直接反映出植物抵御干旱胁迫的能力ꎬ保证叶绿素含量的稳定㊁保护光合相关酶活性ꎬ可抵561㊀第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王晓东ꎬ等:高粱抗旱性研究进展御干旱胁迫对其光合作用的影响ꎮ2㊀高粱对干旱胁迫的生理响应2.1㊀有机渗透调节干旱胁迫下ꎬ植物细胞通过调节可溶性物质的浓度来维持细胞内外渗透压平衡ꎬ进而应对干旱胁迫带来的影响ꎮ参与渗透调节的物质可分为两类ꎬ第一类是外界环境提供的无机离子ꎬ第二类是胞内合成的有机溶质ꎮ第二类渗透调节物质主要包括甜菜碱㊁脯氨酸㊁糖和糖醇等有机化合物[19]ꎮ近些年来ꎬ可溶性蛋白㊁可溶性糖㊁脯氨酸等渗透调节物质被广泛研究ꎮ脯氨酸的积累可以使许多植物应对渗透胁迫反应ꎬ作为一种相容的渗透剂ꎬ其可以提高细胞或组织的保水能力ꎬ同时可以作为碳水化合物的来源ꎻ作为一种酶的保护剂ꎬ也可以减轻蛋白质变性ꎬ具有很强的抗氧化能力ꎮ张玉霞等[20]用聚乙二醇溶液模拟干旱胁迫ꎬ结果表明饲用高粱品种脯氨酸含量与对照组相比显著升高ꎮ王艳秋等[21]研究发现ꎬ干旱胁迫下高粱叶片的脯氨酸含量显著增加ꎬ且其显著性较大ꎬ是高粱调节适应干旱胁迫的重要指标ꎮ可见ꎬ脯氨酸在干旱胁迫下至关重要ꎬ但是也有不同观点:董喜存等[22]的研究发现ꎬ在不同程度干旱胁迫下ꎬ甜高粱品种叶片脯氨酸含量变化趋势并不一致ꎮ因此认为ꎬ单纯测定脯氨酸含量不能准确反映抗旱性ꎬ可以将其作为一种抗旱胁迫下的保护性反应ꎮ可溶性糖主要包括葡萄糖㊁蔗糖㊁果糖和半乳糖ꎮ可溶性糖既可以为植物生长发育提供能量ꎬ并且具有信号功能ꎬ又是植物生长发育的重要调节因子[23]ꎮ何玮等[24]研究不同干旱胁迫下甜高粱叶片可溶性糖含量的变化时发现ꎬ轻度干旱胁迫下可溶性糖含量先下降然后突然升高ꎬ再下降之后突然升到最高ꎻ在重度干旱胁迫下ꎬ可溶性糖含量先下降ꎬ然后升到最高ꎬ再下降ꎮ总体表明ꎬ在受到干旱胁迫时ꎬ高粱叶片可溶性糖含量整体呈升高趋势ꎮGill等[25]研究不同非生物胁迫下高粱可溶性糖含量变化的结果表明ꎬ干旱胁迫下总的可溶性糖含量呈升高趋势且高于对照ꎬ其中果糖含量始终高于葡萄糖和蔗糖ꎮ此外ꎬ在干旱胁迫下ꎬ可溶性糖还可以作为蛋白质渗透保护剂而发挥作用ꎮ可溶性蛋白含量的变化可以直接反映植物渗透调节能力的大小ꎬ它不仅可以提高细胞的保水能力ꎬ而且可以有效地保护生物膜以及细胞的生命物质ꎮ荣少英等[26]研究不同高粱品种在不同干旱条件下可溶性蛋白的变化时发现ꎬ甜高粱㊁普通高粱和对照相比可溶性蛋白含量随着干旱胁迫的加剧呈上升趋势ꎮ有研究[27-28]表明ꎬ在逆境胁迫下ꎬ膜质过氧化产物丙二醛抑制蛋白质的生物合成ꎻ长时间重度干旱使植物体内分解代谢加剧ꎬ导致大量可溶性蛋白分解ꎮ2.2㊀抗氧化防御系统活性氧具有很强的氧化能力ꎮ植物在进行有氧代谢的过程中会产生活性氧ꎬ低浓度的活性氧可以作为信号分子参与调控植物非生物胁迫反应[29-30]ꎮ抗氧化防御系统具有维持植物体内活性氧平衡的功能[31]ꎮ该系统包括两大类ꎬ一类是非酶促抗氧化物质ꎬ其中最为重要的是水溶性抗坏血酸(Asc)ꎬ其次是谷胱甘肽(GSH)ꎬ还有脂溶性生育酚㊁类胡萝卜素等ꎻ另一类是酶促抗氧化剂ꎬ包括超氧化物歧化酶(SOD)㊁过氧化物酶(POD)和过氧化氢酶(CAT)[32]ꎮ植物抗氧化调控系统中ꎬ提高酶活性和抗氧化物的表达量是作物抵御逆境胁迫的关键因素ꎮ陈敏菊等[33]研究发现ꎬ高粱幼苗叶片SOD和CAT活性因干旱胁迫的强度不同而存在差异ꎬ土壤含水量在55%~60%时SOD活性逐渐升高ꎬ随着干旱程度加剧ꎬSOD活性逐渐下降ꎻCAT活性在土壤含水量为40%~60%时高于对照ꎬ随着干旱加剧活性逐渐降低ꎻPOD活性的变化规律和SOD一致ꎮ这表明轻度干旱胁迫可以提高高粱幼苗叶片抗氧化酶活性ꎮ卢峰等[34]研究高粱幼苗不同生长阶段受到干旱胁迫时酶活性的变化情况表明ꎬ胁迫6㊁8㊁12㊁24d时SOD活性显著高于对照ꎬ干旱胁迫12d时酶活性达到峰值ꎬPOD活性的变化和SOD基本一致ꎮ说明高粱幼苗在受到干旱胁迫时ꎬ通过提高叶片保护酶活性来抵御其危害ꎮ2.3㊀激素调节植物激素参与干旱胁迫调节ꎮ通过外源激素来提高作物的抗旱性是现阶段重要的科学途径之一[35-36]ꎮ细胞分裂素通过促进细胞分裂ꎬ延缓植物叶片中叶绿素的降解来提高植物的抗旱性[37]ꎮ661山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀生长素可以正向调控四种抗氧化酶(SOD㊁CAT㊁POD㊁GR)活性来降低干旱胁迫对植株的抑制作用ꎻ同时生长素可以通过调节根生物量㊁增加根的分支来提高水分吸收效率进而提高抗旱性[38]ꎮ脱落酸(ABA)对植物在逆境胁迫下的应答起着关键作用ꎬ其参与气孔的开关ꎬ保卫细胞的通道活动ꎬ调节转录钙调蛋白的表达ꎬ诱导相关基因的表达[39]ꎮ植物在受到干旱胁迫时ꎬ也可以通过减少赤霉素的方式来适应胁迫环境[40]ꎮ关于干旱胁迫下植物激素调节机制ꎬ国内外对水稻㊁小麦等作物的报道较多ꎬ逆境胁迫下高粱中植物激素的作用机制还需进一步探讨和研究ꎮ高粱的抗旱性在生理上涉及到三个方面:第一是干旱胁迫下需要维持高的含水量ꎬ维持高粱水分平衡ꎬ通过增加脯氨酸㊁可溶性糖㊁可溶性蛋白质等物质含量提高渗透调节能力ꎬ维持细胞或者组织持水ꎬ进而维持膨压ꎻ第二是干旱胁迫下保证其基本的生理功能ꎬ通过激素调节㊁酶活性提高等来维持高粱正常的生理功能ꎻ第三是干旱胁迫解除时高粱含水量和生理功能的恢复能力ꎮ做好以上三点ꎬ可以有效地抵御干旱胁迫带来的负面影响ꎮ3㊀高粱耐旱性鉴定方法及鉴定指标因为各个时期的耐旱机制不同ꎬ一般将高粱耐旱性鉴定分为萌发期㊁苗期和全生育期鉴定ꎮ萌发期是作物在干旱胁迫条件下能否完成生长周期的关键时期[41]ꎬ对高粱群体结构和数量起着决定性作用ꎮ高粱萌发期抗旱性鉴定多采用聚乙二醇(PEG)㊁葡萄糖溶液等模拟干旱胁迫环境进行ꎬ通过种子发芽率㊁萌发抗旱指数等反映高粱的抗旱性ꎮ其中PEG-6000是目前被广泛应用的鉴定萌发期抗旱性较为理想的溶液ꎮ陈冰嬬等[41]使用15份保持系㊁18份恢复系和8份杂交种ꎬ通过PEG-6000水溶液模拟干旱胁迫环境ꎬ筛选出1份恢复系和1份保持系萌发期抗旱性亲本材料ꎻ通过抗旱性因子分析ꎬ认为萌发抗旱指数㊁根长和剩余干物质量可以作为高粱萌发期抗旱性筛选的鉴定指标ꎮ候文慧等[42]利用15%的聚乙二醇溶液进行干旱胁迫处理ꎬ采用隶属函数分析方法对8个饲用高粱萌发期抗旱性进行排序ꎬ得出SU9002为抗旱性最强的材料ꎬBJ0602为抗旱性最为敏感的材料ꎻ并利用主成分和聚类分析方法ꎬ对萌发期5个抗旱指标进行分析ꎬ结果表明ꎬ发芽指数和发芽率可以作为饲用高粱萌发期抗旱性评价的指标ꎮ采用聚乙二醇等高渗溶液不仅方法简单ꎬ而且排除了外界环境的干扰ꎬ可以获得更加准确的数据ꎬ有效地缩短了鉴定周期ꎬ提高鉴定效率ꎮ苗期是高粱整个生长发育阶段的关键时期之一ꎬ其生长好与坏直接影响着最终的产量和品质ꎬ因此ꎬ苗期抗旱性鉴定尤为重要ꎮ高粱苗期抗旱性鉴定方法可以分为三种ꎮ第一种较为常见的是使用PEG-6000溶液模拟干旱胁迫环境ꎮ赵晓倩[43]采用25%PEG-6000对259份高粱品种进行干旱胁迫处理ꎬ筛选出极抗旱品种14份㊁极敏感品种33份ꎬ并通过主成分分析方法对9个指标进行分析ꎬ结果表明ꎬ苗高㊁成活率㊁根冠比㊁根长和根鲜重可以作为评价高粱苗期抗旱性的指标ꎮ第二种是干旱复水法ꎬ是指在干旱胁迫后进行复水处理ꎬ用复水后的恢复能力指标评价高粱抗旱性ꎮ刘婷婷等[44]利用盆栽控水法对8个高粱品种幼苗进行干旱复水处理ꎬ通过研究生物量㊁水势㊁渗透式㊁光合参数等生理指标的变化情况来分析不同高粱品种的抗旱能力以及干旱适应能力和旱后复水恢复能力的关系ꎬ分析鉴定出了一份抗旱性强的品种辽杂21和旱后复水能力强的品种Moench.cv.Gadambaliaꎮ干旱胁迫时维持较高的叶片净光合速率和相对含水量有助于其提高干旱复水能力ꎬ因此ꎬ叶片净光合速率和相对含水量可以作为筛选高粱苗期抗旱性的生理指标ꎮ第三种是反复干旱法ꎬ是指通过高粱苗期连续两次干旱胁迫控水ꎬ以材料存活率为评价指标的一种鉴定方法ꎬ适用于大批量的品种鉴定ꎮ李舒凡[45]通过反复干旱法ꎬ对200份高粱品种进行苗期耐旱性鉴定ꎬ将叶片与根系的长势作为抗旱性的评价指标ꎬ能够从存活的质量上区别品种的抗旱性差异ꎬ进一步提高了筛选抗旱性品种的准确性ꎮ对高粱苗期抗旱性的鉴定只能反映出营养生长阶段的情况ꎬ需要结合生殖生长阶段的抗旱性ꎬ对不同品种抗旱能力进行综合评价ꎮ作物全生育期抗旱性鉴定对于抗旱新品种的选育㊁抗旱机制的研究以及抗旱基因的挖掘有着重要意义ꎬ共有两种鉴定方式ꎮ一种是通过人工761㊀第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王晓东ꎬ等:高粱抗旱性研究进展控制水分和环境ꎬ通过干旱棚㊁人工气候箱等模拟干旱环境ꎬ研究各个生育期干旱胁迫对籽粒产量和品质的影响ꎮ汪灿等[46]通过在干旱棚内设置两个处理对50份酒用高粱材料进行成株期抗旱性鉴定ꎬ测定了成株期8个农艺性状ꎬ筛选出两个成株期酒用高粱抗旱性强的品种粱丰141-3和粱丰247-3ꎻ通过主成分㊁灰色关联度分析ꎬ认为分蘖数㊁穗粒数和单株粒重可作为酒用糯高粱资源成株期抗旱性评价指标ꎮ另一种是自然环境法ꎬ设置干旱和水地两个处理ꎬ操作简便ꎬ没有设备的要求ꎬ测定的结果更具说服力ꎬ但受环境因素影响较大ꎬ需要多年的试验数据进行支撑ꎮ袁闯等[47]采用自然环境法ꎬ设置灌水和干旱两个处理ꎬ通过测定高粱成熟期株高㊁穗重㊁千粒重㊁产量等10个性状ꎬ对22份不同品系的甜高粱进行成熟期耐旱性鉴定ꎬ筛选出3份抗旱品种和2份抗旱敏感性品种ꎻ通过主成分分析和逐步线性回归分析ꎬ认为千粒重㊁单株粒重㊁穗粒数和穗茎粗可以作为甜高粱成熟期抗旱性的评价指标ꎮ现阶段ꎬ高粱各抗旱指标评价鉴定基本都是局限于某一个时期ꎬ因此ꎬ需要综合高粱生长发育每个时期的指标来进行综合分析ꎬ建立综合指标评价体系ꎬ以提高高粱品种抗旱性鉴定的可靠性和真实性ꎮ4㊀高粱抗旱性分子生物学研究现阶段ꎬ国内外对于高粱抗旱性鉴定㊁抗旱生理生化以及干旱对农艺性状影响的研究已趋于完善ꎬ并且对于以基因为基础的转基因和分子标记技术也广泛应用到抗旱性分子遗传研究领域ꎬ通过转录组分析㊁QTL定位和全基因组关联分析(GWAS)构建分子遗传图谱ꎬ挖掘抗旱相关基因是高粱抗旱性分子遗传研究的发展方向ꎮ4.1㊀转录组分析转录组分析对于研究未知基因功能和特定调节基因的作用机制起着关键作用[48]ꎮ近年来新一代的转录组测序技术(RNA-seq)应运而生ꎬ它可以研究作物在干旱胁迫下的基因表达模式㊁分析抗旱分子机制㊁确定候选基因并进行功能注释[49]ꎮDugas等[50]通过渗透胁迫和脱落酸对高粱植物的转录组进行了分析ꎬ利用转录组测序技术揭示高粱的抗旱机制和基因筛选ꎮZhang等[51]使用转录组测序方法对干旱胁迫下高粱的叶和根进行转录组分析ꎬ鉴定出了差异表达基因ꎬ通过富集(GO)分析出耐旱性相关转录因子ꎮ王志恒等[52]用PEG-6000对甜高粱进行干旱胁迫ꎬ对高粱幼苗进行转录组测序分析并建立包含cDNA的文库ꎬ对差异表达基因进行GO富集分析和KEGG分析ꎬ发现有两个代谢通路与干旱胁迫响应相关ꎬ这两个通路都属于遗传信息代谢通路ꎮ表明甜高粱通过激活与干旱胁迫相关的蛋白表达和与碳水化合物相关的基因表达而增强渗透调节能力来响应干旱胁迫ꎮXu等[53]对两个抗旱性不同的高粱品种进行转录组分析ꎬ运用转录组测序技术确定了候选基因并进行了基因功能注释ꎬ分析了代谢通路ꎮ转录组测序技术促进了基因功能和表达水平的研究ꎬ通过分析干旱胁迫下基因的表达网络和富集通路ꎬ挖掘相关的新基因ꎬ可为今后进一步揭示干旱胁迫调节机制提供理论支撑ꎮ4.2㊀抗旱基因QTL定位植物的抗旱性是受多基因控制的数量性状ꎬ遗传复杂ꎮ干旱对作物的影响程度变化较大ꎬ常规育种方法费时㊁费力ꎬ难以选育优质的抗旱品种ꎮ随着分子生物学的发展ꎬQTL分析被广泛应用到分子遗传领域ꎮ赵辉[54]利用籽粒高粱654和甜高粱LTR108组成244个RIL群体ꎬ并构建了分子遗传连锁图谱ꎬ利用QTL定位分析耐旱性相关性状ꎬ分别在1㊁4㊁6㊁7染色体上检测出3㊁1㊁1㊁3个与抗旱系数相关的QTLs位点ꎬ并且在LG-1㊁LG-6㊁LG-7上定位到5个影响株高的QTLsꎮHaussmann等[55]用IS9830和N13与E36-1分别构建226个RIL群体ꎬ通过构建遗传图谱ꎬ发现标记分别位于10个连锁群和12连锁群中ꎬ利用复合区间作图检测到的3个性状的QTL数量在5个到8个之间ꎬ解释了31%和42%的遗传变异ꎮSakhi等[56]对107份孕穗期的高粱材料进行干旱胁迫处理ꎬ使用10条染色体上98个SSR标记位点的基因型数据对23对性状进行关联分析ꎬ鉴定出9个QTL与8个抗旱性状相关ꎮ持绿性是高粱干旱胁迫耐受性的一个组成部分ꎮSukumaran等[57]对Tx436(非持绿性)和00MN7645(持绿性)构建重组自交系进行遗传定位ꎬ利用全基因组单标记扫描和复合区间影射互补方法ꎬ检测到了15个与抗旱性状相关的QTLꎻ在1号染色体上发现了籽粒产量QTLꎬ解释了8%~16%的表型变异ꎬ861山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第56卷㊀在第2㊁6㊁9号染色体上发现了开花时间QTLꎬ解释了6%~11%的表型变异ꎬ在3㊁4号染色体上发现了持绿性QTLꎬ解释了8%~24%的表型变异ꎮ有关高粱QTL定位的研究可为后续高粱抗旱基因的精细定位㊁挖掘抗旱性相关基因和分析抗旱性机理奠定基础ꎮ4.3㊀全基因组关联分析(GWAS)GWAS是对多个个体在全基因组范围内进行遗传标记多态性检测ꎬ将基因型和表型进行关联并应用到寻找遗传图谱和挖掘性状相关候选基因的一种方法ꎮ近年来ꎬ为解析高粱抗旱性的遗传基础ꎬXin等[58]研究354份甜高粱在两种不同干旱处理下的株高性状ꎬ并将基于株高的平均生产力㊁干旱指数和胁迫耐受指数作为表型数据ꎬ结合甜高粱再测序获得的6186个SNPsꎬ使用三种不同的数量性状遗传模型进行GWAS分析ꎬ结果表明ꎬ在GLM㊁MLM和FarmCPU下分别检测到49㊁5个和25个耐旱相关的遗传位点ꎬ发现2个耐干旱的候选基因ꎬ其中ꎬSb08g019720.1基因与Athali ̄anaEFMTF基因同源ꎬ而Sb01g037050.1基因与玉米bZIPTF基因同源ꎮ高奇[59]用401份甜高粱材料进行干旱胁迫处理ꎬ并通过三个与干旱相关的性状筛选出耐旱评价指标并作为表型数据ꎬ利用高粱全基因组SNP标记ꎬ对三个性状耐旱指数进行全基因组关联分析ꎬ检测到两个株高性状基因可能是耐旱候选基因ꎮ赵晓倩[43]对259份高粱的7个苗期耐旱性相关性状进行全基因组关联分析ꎬ检测到102个显著的SNP位点ꎬ筛选出7个抗旱候选基因ꎮ通过全基因组关联分析揭示耐旱候选基因可为后续基因功能验证和高粱耐旱分子机制研究奠定基础ꎮ5㊀提高高粱抗旱性的方法5.1㊀传统育种方法传统的育种方法包括杂交育种㊁回交育种㊁系统选育㊁混合选育等ꎬ其中较为常见的是杂交育种ꎮ杨伟等[60]通过母本不育系7501A和父本恢复系RHMC386进行组配杂交ꎬ选育出优质抗旱高粱新品种潞杂9号ꎮ杨婷婷等[61]研究发现ꎬ以不育系SX605A为母本㊁以恢复系SX870为父本杂交育成高粱品种晋杂31号ꎮ其选育过程中ꎬ亲本都是通过杂交再连续多代自交得到的稳定品种ꎬ都具有很强的抗旱性ꎬ通过该方法可以提高选育品种的抗旱性ꎮ李继洪等[62]同样用不育系亲凡A为母本㊁以恢复系苏丹草黑壳3号为父本杂交选育出抗性强的品种吉草3号ꎮ由此可见ꎬ选育抗旱性强的不育系和恢复系是提高高粱杂交种耐旱性的重要途径ꎮ5.2㊀施加外源物质通过对高粱施加外源营养元素㊁生长调节剂以及进行种子引发等都可以提高其抗旱性ꎮAhmed等[63]发现硅营养对高粱的生长和生理参数有显著影响ꎬ通过在干旱胁迫条件下对高粱进行施加硅营养处理ꎬ可以提高耐旱基因型品种(系)的叶片水势㊁叶面积指数㊁蒸腾速率和SPAD值ꎬ同时在硅处理下净同化和相对生长量表现出最大值ꎮ张瑞栋等[64]分别用聚乙二醇(PEG)㊁KCl㊁CaCl2和水杨酸(SA)对高粱种子进行引发处理ꎬ显示其可以促进干旱胁迫下种子萌发率ꎬ促进胚根和胚芽的伸长ꎮ其原因可能是引发处理提高了胚芽内抗氧化酶活性ꎬ同时促进糖代谢ꎬ增加脯氨酸含量ꎬ解决了干旱胁迫下发芽率低㊁胚根胚芽生长受抑制的问题ꎬ进而提高高粱萌发期的抗旱性ꎮTounekti等[65]的研究也得到一致的结果ꎮKamali等[66]研究发现ꎬ使用固氮菌和丛枝菌根真菌(AMF)的高粱比不使用的受干旱胁迫程度较轻ꎬ固氮菌和丛枝菌根真菌可以减少高粱电解质渗漏和丙二醛含量ꎬ通过提高花青素㊁类胡萝卜素㊁黄酮㊁生长素(IAA)等物质含量和抗氧化酶活性来缓解干旱胁迫的影响ꎮKamali等[67]同时也发现细菌和丛枝菌根真菌也可以通过增加光合色素㊁可溶性蛋白等物质含量提高高粱渗透调节能力ꎬ继而应对干旱胁迫环境ꎮShehab等[68]研究发现ꎬ脱落酸(ABA)和茉莉酸甲酯(MeJA)可以减轻干旱胁迫引起的负面效应ꎬ降低干旱胁迫下高粱中氰化氢(HCN)的含量ꎮ植物生长调节剂(PGRs)改善高粱抗旱性归因于可溶性蛋白㊁丙二醛㊁活性氧㊁过氧化氢等的积累减少ꎬ光合参数的改善以及抗氧化酶活性的变化ꎬ进而提高其抗旱能力ꎬ特别在甜高粱中尤为明显ꎮ5.3㊀转基因方法植物抗旱性是受多基因控制的数量性状ꎬ其中包括参与调控植物活性氧㊁可溶性糖㊁抗氧化酶㊁叶绿素和ABA信号转导等生理生化过程的基961㊀第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀王晓东ꎬ等:高粱抗旱性研究进展。

植物抗旱与保护机制的研究

植物抗旱与保护机制的研究

植物抗旱与保护机制的研究由于全球持续的气候变化和水资源短缺,植物面临着越来越大的干旱压力。

因此,研究植物抗旱机制是非常重要的。

在过去的几十年里,科学家们通过对植物的生理、分子和遗传学特征进行研究,已经取得了一些关于植物抗旱机制的发现。

本文将探讨植物抗旱的基本原理和一些最新的研究成果。

植物抗旱的基本原理植物对抗旱的基本原理是为了避免或减轻水分亏缺时对其生长发育的影响。

植物会通过一系列的调控途径来达到这个目的。

这些途径包括:控制水分流失、减少蒸腾、调节根系吸收水分、增加植物自身水分利用效率等。

控制水分流失:植物通过调节其表面的日光反射、切断水分渗透径和减少根部表面水分蒸发等方式来控制水分流失。

对于某些植物来说,在水分亏缺时,其表皮细胞会产生粘液,特别是在土壤水分表面上形成的粘液膜,能够有效地阻止水分的流失。

减少蒸腾:植物通过多种途径来控制蒸腾,包括减少叶缝开放程度、增加气孔密度、加厚叶片或者降低叶面积等。

此外,一些植物可以通过特化的C4农艺等方式来适应低水条件。

调节根系吸收水分:植物通过调节根系的形态和结构、根长和分布等来提高根系对水分的吸收能力。

根系吸收水分的效率可以通过多种方法进行调整,如增加根毛的分布密度、增加毛根的数量等。

增加植物自身水分利用效率:植物可以通过多种机制来提高自身的水分利用效率,如调节光合作用效率、提高水分利用效率、调节叶面积等。

其中,维生素B6在增强植物水分利用效率方面发挥了重要作用。

植物抗旱机制的研究进展最近,科学家在分子和基因水平上通过使用现代遗传学和组学技术,使我们对植物抗旱机制有了更深入的了解。

下面是一些最新的研究成果:利用基因重组技术来提高植物的抗旱性:科学家们利用基因重组技术将一个叫做“AtDREB1A”基因的抗旱基因导入到某些作物变种中。

这种抗旱基因能够调节植物中的许多蛋白质的表达,从而使植物更耐旱。

这项技术可以应用于多种重要的作物,如水稻、小麦、玉米等。

利用分子调控技术来提高植物的抗旱性:研究人员对一种植物叫做拟南芥进行了研究,发现它能够通过激活一种叫做“18:3”脂肪酸的信号通路来增加植物的抗旱性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植物抗旱性研究进展摘要:本文主要总结了一些与植物抗旱相关的因素,比如叶片结构、小分子代谢物、激素以及抗旱相关的基因等,探讨植物抗旱研究的进展、存在问题及发展趋势。

关键词:抗旱叶片小分子代谢物植物激素抗旱基因Abstract:This article mainly talks about the factors of drought-resistant, such as leaf structure, small molecule metabolites, phytohormone, and other drought-related genes and exploring the progress of the study, existing problems and developing trends.Key words: drought-resistant leaf small molecule metabolitesphytohormone drought-related genes干旱是一个长期存在的世界性难题,全球干旱半干旱地区约占陆地面积的35%,遍及世界60多个国家和地区。

我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52. 5%,其中干旱地区占30.8%,半干旱地区占21.7%。

而干旱胁迫造成农作物减产,给农业生产带来极大的经济损失。

因而对植物抗旱性的研究就显得尤为重要。

1. 植物叶片与抗旱性植物吸收的水分主要是通过叶片蒸腾作用散失到体外,因此叶片的结构以及生理特征对植物的抗旱有着重要的作用。

不同的植物筛选出的抗旱性评价指标不尽相同,通常认为,叶片的角质层越厚,表皮层越发达,栅栏组织越厚且排列紧密,气孔密度大,栅栏组织/海绵组织厚度比值较大,叶片组织结构紧密,上表皮细胞较小者抗旱性较强[1][2]。

肖冰雪等[3]对牧草叶片解剖结构与抗旱性关系研究中表明,“阿坝”硬秆仲彬草、“阿坝”垂穗披碱草旱生结构特点明显:角质层厚、气孔下陷、维管束导管发达,具有较强的抗旱能力。

刘红茹等[4]对延安城区10种阔叶园林植物叶片结构及其抗旱性研究中表明10种植物叶片均具备抵抗干旱环境的解剖结构,表皮、角质层、栅栏组织、叶脉、维管束等较为发达,气孔主要分布在下表皮。

另外,叶片的一些其它结构也与抗旱相关,比如泡状细胞在植物缺水时,发生萎蔫,叶片内卷成筒状以减少水分蒸腾作用[5],发达的叶脉促进植物吸水率从而有利于植物贮藏水分[6]。

2.小分子代谢物与抗旱性植物干旱胁迫过程中会产生一些小分子代谢物,它们对植物动物抗旱性起着重要的作用。

脯氨酸是一种小分子的渗透物质,是水溶性最大的氨基酸,这表明它具有易于水合的趋势或具有较强的水合能力。

在植物受旱时它的增加有助于细胞或组织的持水作用, 防止脱水[7]。

当植物处于干旱条件下时,为了保护植物对干旱逆境的反应,脯氨酸质量分数呈急剧上升的趋势。

蔡能等[8]测定3个金银花新品种脯氨酸含量等指标,结果表明:干旱胁迫下,脯氨酸含量先升高后降低,抗旱性最强的品种脯氨酸含量最高。

丁玉梅等[9]通过分析干旱胁迫条件下不同马铃薯品种叶片游离脯氨酸含量的变化及其与相应品种提拉抗性系数和产量系数的相关性表明:马铃薯品种叶片游离脯氨酸相对值和相应品种的提拉抗性系数、产量系数均呈极显著正相关,马铃薯游离脯氨酸相对值可以作为品种耐旱性评价的生理生化指标[9]。

此外,甜菜碱在植物抗旱中也有重要的作用,它可以有效抑制叶绿素和可溶性蛋白含量的下降,协同增加脯氨酸和可溶性糖的含量,抗氧化酶活性也显著增强,膜脂过氧化程度减弱,丙二醛含量下降[10][11][12]。

3.植物激素与抗旱性植物激素是在植物体内合成的,对生长发育产生显著作用的微量有机物质。

植物内源激素主要包括生长素( IAA) 、赤霉素( GA) 、细胞分裂素( CTK) 、乙烯( ETH) 和脱落酸( ABA)等。

在这几大类激素中,ABA与植物的抗旱性关系最为密切。

干旱及干旱加外施ABA 的条件下,内源ABA 合成水平上升,但干旱加ABA 处理增幅更显著,叶内的脯氨酸(Pro)、H2O2、丙二醛(MDA)含量增加,而ABA 处理能缓解MDA 的积累,使其含量处于低水平,ABA 处理能防止叶绿素降解并对干旱引起的最大光能转化效率(Fv/Fm)、PSII 实际量子效率(ΦPSII)下降有明显的缓解作用。

干旱条件下,H2O2的积累伴随着抗氧化作用的酶CAT、GPX、GR 和APX 的活性提高,而ABA 处理能进一步提高这些相关酶的活性而逐渐降低H2O2的含量,表明干旱条件下,外施ABA 能增强甘蔗的抗氧化防护系统,提高抗旱性[13]。

此外,在干旱条件下ABA含量上升,诱导气孔关闭,减少水分散失,从而起到抗旱的作用[14]。

刘长海等[15]以抗旱性差异显著的两种苹果砧木楸子和平邑甜茶为材料,研究了干旱胁迫对两种砧木根和叶中脱落酸( ABA) 、生长素( IAA) 、赤霉素( GAs) 和玉米素核苷( ZR) 含量的影响。

结果表明:干旱胁迫下,与非抗旱砧木平邑甜茶相比,抗旱砧木楸子中抑制生长并作为信号物质的ABA含量在第7和14天具有较高的上升水平,而促进生长的IAA 下降幅度大,且含量相对较低,同时,干旱胁迫后多数时间点上抗旱砧木楸子中GAs和ZR含量高于非抗旱砧木平邑甜茶,说明内源激素含量及变化差异在一定程度上影响苹果砧木的抗旱性。

在干旱条件下,类胡萝卜素缺失突变体的ABA和IAA合成受阻,与野生型相比突变体气孔开度更大,而且更早的发生萎蔫[16]。

4.抗旱基因与抗旱性前人的许多研究表明,在植物中存在许多与抗旱性相关的基因,这些研究对植物的转基因以及抗旱研究有着重要的作用。

裴金玲等[17]将紫杆柽柳晚期胚胎发生丰富蛋白(LEA DQ663481)基因导入新疆早熟棉新陆早18号,结果显示,干旱胁迫之后,转LEA 基因棉花基因表达量显著增加;丙二醛生成量显著降低;游离脯氨酸、可溶性糖、可溶性蛋白的生成量显著增加;棉花表型分析也证明了转LEA 基因棉花抗旱性有提高。

杨梅等[18]通过对小麦转TaEBP基因株系抗旱特性分析表内明,转基因株系G9- X1129和G9-X1139具有较好的耐水分胁迫特性,具有优于受体对照的抗旱性能,能更好地抵抗土壤水分胁迫。

在杨希文等[19]的研究中,通过半定量RT- PCR 表达模式分析表明,在谷子幼苗干旱胁迫过程中,谷子SiDREB2基因在正常生长情况下有低水平的表达, 在干旱胁迫期间诱导上调表达, 说明谷子SiDREB 2基因的表达受干旱胁迫诱导, 可能是谷子抗旱节水的关键基因。

除了直接参与抗旱的基因外,编码转录因子的基因可进行基因表达的调控,从而参与植物的抗旱调节[20]。

5.展望前人对于植物抗旱生理生态的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。

但这些研究都具有一定的局限性,如大部分研究的是在理论水平得出一些与抗旱相关的因素,而应用到实际生产或改善生态环境方面的比较少,因此,今后的研究可以往应用方面发展,推出一些能抗旱的作物。

另外,理论方面的某些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径、方式和机理, 或进行耐旱性评价都难以反映植物的真实情况, 甚至会使某些最关键的问题被忽略。

因此,今后对于植物抗旱生理生态的研究应该更为全面, 加强系统综合的比较研究。

参考文献[1] 赵延霞, 骆有庆, 宗世祥等. 不同沙棘品种雌雄株叶片解剖结构及抗旱性比较[J]. 北京林业大学学报, 2012, 34(006): 34-41.[2] 何士敏, 汪建华, 秦家顺. 几种沙棘叶片组织结构特点和抗旱性比较[J]. 林业科技开发,2009, 23(1): 16-19.[3] 肖冰雪, 杨满业, 陈琴等. 川西北高寒草地5 种牧草叶片解剖结构与抗旱性关系研究[J].草业与畜牧, 2013 (4): 1-5.[4] 刘红茹, 冯永忠, 王得祥等. 延安城区10 种阔叶园林植物叶片结构及其抗旱性评价[J].西北植物学报, 2012, 32(10): 2053-2060.[5] 蔡凡隆, 黎治福, 岳鹏. 川西北地区沙化土地现状, 变化趋势及成因分析[J]. 科技信息,2007 (22): 294-295.[6] 雍国玮, 石承苍, 邱鹏飞. 川西北高原若尔盖草地沙化及湿地萎缩动态遥感监测[J]. 山地学报, 2003, 21(6): 758-762.[7] 朱虹, 祖元刚, 王文杰等. 逆境胁迫条件脯氨酸对植物生长的影响[J]. 东北林业大学学报, 2009, 37(4): 86-89.[8] 蔡能, 王晓明, 曾慧杰等. 3个金银花新品种逆境条件下脯氨酸含量初步分析[J]. 中南林业科技大学学报, 2012, 32(5): 161-165.[9] 丁玉梅, 马龙海, 周晓罡等. 干旱胁迫下马铃薯叶片脯氨酸, 丙二醛含量变化及与耐旱性的相关性分析[J]. 西南农业学报, 2013, 26(1): 106-110.[10] 高雁, 李春, 娄恺. 干旱胁迫条件下加工番茄对喷施甜菜碱的生理响应[J]. 植物营养与肥料学报, 2012, 18(2): 426-432.[11] 魏树伟, 王宏伟, 张勇等. 干旱胁迫下甜菜碱对梨树生理指标的影响[J]. 山东农业科学,2012, 44(6): 50-52.[12] 梁太波, 张景玲, 田雷等. 干旱胁迫下外源甜菜碱和脯氨酸对烤烟抗氧化代谢的影响[J].烟草科技, 2013 (2): 68-71.[13] 李长宁, 农倩, 李杨瑞. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J]. 作物学报, 2010, 36(5): 863-870.[14]Mahouachi J, Fernández-Galván D, Gómez-Cadenas A. Abscisic acid, indole-3-acetic acidand mineral–nutrient changes induced by drought and salinity in longan (Dimocarpus longan Lour.) plants[J]. Acta Physiologiae Plantarum, 2013, 35(11): 3137-3146.[15] 刘长海, 周莎莎, 邹养军等. 干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J]. 干旱地区农业研究, 2012,30(5): 94-98.[16]Du H, Wu N, Chang Y, et al. Carotenoid deficiency impairs ABA and IAA biosynthesis anddifferentially affects drought and cold tolerance in rice[J]. Plant molecular biology, 2013, 83(4-5): 475-488.[17] 裴金玲, 杨红兰, 李春平等. 转晚期胚胎发生丰富蛋白(LEA) 基因棉花及抗旱性分析[J]. 分子植物育种, 2012, 10(3): 331-337.[18] 杨梅, 马有志, 闵东红等. 小麦转TaEBP基因株系抗旱特性分析[J]. 干旱地区农业研究,2012, 30(2): 62-67.[19] 杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析[J]. 干旱地区农业研究, 2011, 29(5): 69-74.[20]Kang G, Ma H, Liu G, et al. Silencing of TaBTF3 gene impairs tolerance to freezing anddrought stresses in wheat[J]. Molecular Genetics and Genomics, 2013, 288(11): 591-599.。

相关文档
最新文档