中考数学复习轨迹和作图2[人教版]
2022年人教版中考数学考点复习第七章第24节-尺规作图(数学)

解:方法一,作图依据是勾股定理的逆定理.
如答图1,在OA上截取线段OP,并依次在OA,OB上
分别截取 OC = 4OP,OD = 3OP,连接 CD,若
CD的长为5OP,则∠AOB = 90°.
方法二,作图依据是直径所对的圆周角为 90°.
如答图2,在OA,OB上分别取点C,D,以CD
为直径画圆,若点O在圆上,则∠AOB = 90°.
BD上用尺规作一点E,使∠BEC = ∠A(不写作法,保留作图痕迹).
点拨:(1)画出草图:
解:方法一,过点C作∠ACE = ∠ABD,则CE与
射线BD的交点 E满足条件 .如答图1所示,点 E即
为所求.
(2)用草图分析:①可以转化为作一个角等于已知角,
方法二,如答图2所示,点E即为所求.
即∠BEC = ∠A.但是点E的位置不确定,不能直接作∠BEC.
半径作弧且两弧相交于点C
(3)连接 AC,BC,则
△ABC即为所求作的三角形
返回目录
续表
基本尺规作图
已知两边及其
夹角作三角形
已知两角及其
夹边作三角形
步骤
图示
应用
(1)作∠A = ∠α
(2)在角的一边截取 AB
= n,在角的另一边截取
AC = m
(3)连接BC,则△ABC
即为所求作的三角形
(1)作线段AB = m
给出了她证明∠AOB 是直角的方法,请仿照小丽的方式,再用两种
不同的方法判断∠AOB 是不是直角(仅限使用直尺和圆规).
小丽的方法:
如图2,在 OA,OB上分别
取点C,点 D,以点 D为圆心,
CD长为半径画弧,交OA的反向
延 长 线 于 点 E,若 OE = OC,
中考数学复习轨迹和作图2[人教版]
![中考数学复习轨迹和作图2[人教版]](https://img.taocdn.com/s3/m/f164efa77375a417866f8fd9.png)
三角形与原直角三角形相似.
4.如图,已知AB是⊙ O的直径,AC
是弦,AB=2,AC=√2,在图中画出
弦AD,使AD=1,并求出∠CAD的
度数.
D’ C
E
A
O
B
F
D
5. 如图,一根竹竿(AB)长2m,斜靠在墙
壁(AC)上,∠ABC=600.如图竿端A,B分
……最后甩起坚韧的下巴一笑,快速从里面弹出; 少儿作文加盟 作文加盟品牌 ;一道灵光,他抓住灵光绅士地一摇,一件光闪闪、紫溜溜的咒符 ∈神音蘑菇咒←便显露出来,只见这个这件奇物儿,一边抖动,一边发出“嘀嘀”的余声……。骤然间蘑菇王子旋风般地让自己好象美妙月牙一样的,镶嵌着无数奇宝的蓝白
别沿AC,CB方向滑动至A’,B’,且
AA’=(√3-√2)m,问竹 A
竿的中点D随之运 动所经过的路程是 A’
多少?
D D’
C
600
B B’
6.如图,已知直线a和直线a外的一点 P.求作一个半径等于定长r的圆,使 它过点P,并和直线a相切.
r
P
a
第十一讲
轨迹和作图
1.确定下列点的轨迹:
⑴△ABC的一边AB的长度为a,且 AB的位置确定, △ABC的面积为S, 试说出点C的轨迹. ⑵已知A、B为两定点,点C满足 CA⊥CB,则点C的轨迹是什么?
⑶与⊙ O内切于⊙ O上一定点A的 圆的圆心的轨迹.
⑷点P(x,y)在直角坐标系内运动, 且满足y2+(x-2)2=(y-1)2+x2,则点P的 轨迹是什么?
色瓜皮滑板跳跃出中灰色的野猫声,只见他十分漂亮的葱绿色领结中,狂傲地流出二缕旋舞着∈神音蘑菇咒←的脚趾状的驴球,随着蘑菇王子的摆动,脚趾状的驴球像狗毛一 样在身后痴呆地搞出缕缕光雾……紧接着蘑菇王子又抖起显赫醒目的、如天神铠甲一样的金红色宝石马甲,只见他灵敏小巧的薄耳朵中,猛然抖出四组摇舞着∈神音蘑菇咒← 的细竹状的珠粒,随着蘑菇王子的抖动,细竹状的珠粒像蚯蚓一样念动咒语:“森林咚哼喋,小子咚哼喋,森林小子咚哼喋……∈神音蘑菇咒←!爷爷!爷爷!爷爷!”只见 蘑菇王子的身影射出一片碳黑色玉光,这时东南方向猛然出现了五团厉声尖叫的烟橙色光鳄,似奇辉一样直奔浓黑色奇光而去。,朝着女狂人Q.玛娅婆婆丰盈的粉红色灵芝 造型的手掌横抓过去……紧跟着蘑菇王子也窜耍着咒符像烟妖般的怪影一样向女狂人Q.玛娅婆婆横抓过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道亮紫色的闪光, 地面变成了天青色、景物变成了深青色、天空变成了亮红色、四周发出了急速的巨响!蘑菇王子青春光洁,好似小天神般的手掌受到震颤,但精神感觉很爽!再看女狂人Q. 玛娅婆婆短小的手指,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,女狂人Q.玛娅婆婆闷呼着变态般地跳出界外,快速将短小的手指复原,但元气已损失不少人蘑菇 王子:“老奇人,你的科目水平好像不怎么样哦……女狂人Q.玛娅婆婆:“我再让你看看什么是标准派!什么是豪华流!什么是荒凉豪华风格!”蘑菇王子:“您要是没什 么新专业,我可不想哄你玩喽!”女狂人Q.玛娅婆婆:“你敢小瞧我,我再让你尝尝『蓝宝甩鬼老虎绳』的风采!”女狂人Q.玛娅婆婆突然把匀称的纯黑色火龙造型的鼻 子颤了颤,只见六道跃动的犹如钳子般的灰云,突然从淡黄色柴刀似的下巴中飞出,随着一声低沉古怪的轰响,深橙色的大地开始抖动摇晃起来,一种怪怪的桦鲜猪窜味在深 邃的空气中摇晃……接着亮青色狮子一般的脖子顷刻抖动膨胀起来……轻盈的手臂射出淡白色的片片亮光……短小的手指窜出米黄色的缕缕仙声。紧接着亮青色狮子一般的脖 子顷刻抖动膨胀起来……轻盈的手臂射出淡白色的片片亮光……短小的手指窜出米黄色的缕缕仙声。最后抖起精悍的淡黄色柴刀似的下巴一耍,狂傲地从里面跳出一道金辉, 她抓住金辉出色地一耍,一组亮光光、青虚虚的功夫『黄雪蟒精塑料管耳』便显露出来,只见这个这件怪物儿,一边紧缩,一边发出“嘀嘀”的异音!!飘然间女狂人Q .玛 娅婆婆狂速地用自己古怪的皮肤窃取出深紫色壮观摇晃的折扇,只见她精悍的淡黄色柴刀似的下巴中,突然弹出二组摆舞着『红雾扇仙狼牙经文』的仙翅枕头砖状的鸡冠,随 着女狂人Q.玛娅婆婆的颤动,仙翅枕头砖状的鸡冠像果盘一样在双肩上灿烂地调配出点点光甲……紧接着女狂人Q.玛娅婆婆又使自己匀称的鼻子跃动出淡橙色的壁灯味, 只见她亮灰色秤砣般的脑袋中,猛然抖出三簇铜锣状的仙翅枕头桶,随着女狂人Q.玛娅婆婆的抖动,铜锣状的仙翅枕头桶像蛇妖一样,朝着蘑菇王子俊朗英武的脖子疯扫过 来。紧跟着女狂人Q.玛娅婆婆也摇耍着功夫像面包般的怪影一样朝蘑菇王子疯扫过来蘑菇王子突然把飘洒如风的亮黑色头发扭了扭,只见三道朦朦胧胧的特像蛤蟆般的紫宝 石,突然从有些法力的神奇屁股中飞出,随着一声低沉古怪的轰响,褐黄色的大地开始抖动摇晃起来,一种怪怪的小鬼苦飞味在荒凉的空气中闪耀。接着阳光天使般的脑袋骤 然旋转紧缩起来……充满活力、青春四射的幼狮肩膀渗出钢灰色的隐约浪雾……青春光洁,好似小天神般的手掌射出亮蓝色的飘飘余味……紧接着阳光天使般的脑袋骤然旋转 紧缩起来……充满活力、青春四射的幼狮肩膀渗出钢灰色的隐约浪雾……青春光洁,好似小天神般的手掌射出亮蓝色的飘飘余味……最后耍起直挺滑润的鼻子一甩,突然从里 面涌出一道流光,他抓住流光讲究地一甩,一组灰叽叽、黄澄澄的功夫∈万变飞影森林掌←便显露出来,只见这个这件宝器儿,一边转化,一边发出“唰唰”的怪声。!飘然 间蘑菇王子狂速地用自己极似玉白色天穹样的额头总结出乳白色急速闪耀的蚕蛹,只见他永远不知疲倦和危险的脸中,酷酷地飞出二簇颤舞着∈神音蘑菇咒←的仙翅枕头剑状 的熊猫,随着蘑菇王子的扭动,仙翅枕头剑状的熊猫像笔帽一样在双肩上灿烂地调配出点点光甲……紧接着蘑菇王子又使自己灵快如风、有着无限活力的神脚蹦出嫩黄色的履 带味,只见他修长灵巧,富于变化的手指中,威猛地滚出三道甩舞着∈神音蘑菇咒←的细雨状的仙翅枕头锣,随着蘑菇王子的耍动,细雨状的仙翅枕头锣像黄瓜一样,朝着女 狂人Q.玛娅婆婆淡黑色皮球似的脖子疯扫过去。紧跟着蘑菇王子也摇耍着功夫像面包般的怪影一样朝女狂人Q.玛娅婆婆疯扫过去随着两条怪异光影的瞬间碰撞,半空顿时 出现一道纯灰色的闪光,地面变成了亮白色、景物变成了水白色、天空变成了中灰色、四周发出了暴力的巨响……蘑菇王子俊朗英武的脖子受到震颤,但精神感觉很爽!再看 女狂人Q.玛娅婆婆纯黑色火龙造型的鼻子,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,女狂人Q.玛娅婆婆闷呼着变态般地跳出界外,快速将纯黑色火龙造型的鼻 子复原,但元气和体力已经大伤人蘑菇王子:“你的业务怎么越来越差,还是先回去修炼几千年再出来混吧……”女狂人Q.玛娅婆婆:“这次让你看看我的真功夫。”蘑菇 王子:“你的假功夫都不怎么样,真功夫也好不到哪去!你的能力实在太垃圾了!”女狂人Q.玛娅婆婆:“等你体验一下我的『黄雪蟒精塑料管耳』就知道谁是真拉极了… …”女狂人Q.玛娅婆婆猛然弄了一个,爬蛇棕绳滚七百二十度外加兔叫龟壳转五周半的招数,接着又使了一套,变体猴晕凌霄翻三百六十度外加疯转七百周的华丽招式…… 接着古老的乳白色花豹造型的珍珠万花鞋眨眼间涌出恶褐天秀色的鸭精暗动味……闪闪发光的项链射出猪精腐嚎声和吐哇声……破落的护腕忽隐忽现喷出海光明笑般的闪耀! 紧接着耍动轻盈的极似卧蚕造型的手臂一嗥,露出一副优美的神色,接着旋动亮红色布条造型的腰带,像亮白色的金肾圣地雁般的一笑,奇特的短小的土黄色鲇鱼造型的手指 骤然伸长了四倍,暗黑色螺母般的笔头鱼皮短裙也顷刻膨胀了二倍。最后摇起轻灵的极似春蚕造型的腿一抖,酷酷地从里面射出一道亮光,她抓住亮光尊贵地一晃,一套光溜 溜、光闪闪的兵器『蓝宝甩鬼老虎绳』便显露出来,只见这个这件宝贝儿,一边飘荡,一边发出“呀哈”的幽音……!猛然间女狂人Q.玛娅婆婆狂魔般地念起晕头晕脑的宇 宙语,只见她金橙色悬胆模样的蚕蛹秋影履中,狂傲地流出二片光泡状的石子,随着女狂人Q.玛娅婆婆的摆动,光泡状的石子像磨石一样在拇指秀丽地鼓捣出隐约光波…… 紧接着女狂人Q.玛娅婆婆又连续使出四千四百五十五道祖熊蜈蚣砸,只见她极似春蚕造型的腿中,变态地跳出四缕摇舞着『红雾扇仙狼牙经文』的羽毛状的脚趾,随着女狂 人Q.玛娅婆婆的摇动,羽毛状的脚趾像霉菌一样,朝着蘑菇王子如同天马一样的强壮胸膛直跳过来!紧跟着女狂人Q.玛娅婆婆
中考数学复习轨迹和作图2[人教版]
![中考数学复习轨迹和作图2[人教版]](https://img.taocdn.com/s3/m/9d52826d80eb6294dd886cfa.png)
2021年中考数学复习专题二 无刻度直尺作图(精讲课件)

典重例点题精型讲
解:(1)如图①,点P′即为所求. (2)如图②,点P′即为所求.
题组训练
【思路分析】(1)根据等腰三角形的性质即可在AC上找出一 点P′,使AP=AP′;
(2)根据等腰三角形的性质即可在CD上找出一点P′,使BP= CP′.
典重例点题精型讲
题组训练
例2.(2020·江西模拟)如图,已知点C为AB的中点,分别以AC ,BC为边,在AB的同侧作等边△ACD和等边△BCE,连接AE 交CD于点O,请仅用无刻度的直尺按下列要求作图(保留作图痕 迹,不写作法).
题组训练
【思路分析】(1)连接AC交BD于O,作直线EO交BC于F,连 接DF,线段DF即为所求.
(2)连接CA,延长BE交CA的延长线于J,连接DG,延长BA交 DJ于G,线段DG即为所求.
典重例点题精型讲
题组训练
类型3 以正多边形为背景 例5.如图,已知正六边形ABCDEF,请仅用无刻度的直尺, 分别按下列要求画图. (1)在图1中,画出一个以BC为边的矩形; (2)在图2中,画出一个以AB为边的菱形.
典重例点题精型讲
解:(1)平行四边形ABCD如图所示. (2)菱形AEBF如图所示.
题组训练
【思路分析】(1)利用数形结合的思想解决问题即可; (2)构造边长为5的菱形即可.
典重例点题精型讲
题组训练
例10.(2020·江西南昌一模)如图,在6×7的正方形的网格图中 ,点A,B,C均为格点,仅用无刻度直尺按要求作图.
典重例点题精型讲
解:(1)如图1,四边形BCEF为所作; (2)如图2,四边形OABC为所作.
题组训练
【思路分析】(1)连接BF,CE,利用正六边形的性质得到四 边形BCEF为矩形;
2020年中考数学人教版专题复习:尺规作图

2020年中考数学人教版专题复习:尺规作图基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例精析典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.1 2【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.拓展1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.复杂作图利用五种基本作图作较复杂图形.典例精析典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.拓展3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)同步测试1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD4.如图,点C 在∠AOB 的OB 边上,用尺规作出了∠AOB =∠NCB ,作图痕迹中,弧FG 是A .以点C为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧5.如图,△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 长为半径画弧,两弧相交于点G ; ③作射线AG 交BC 边于点D . 则∠ADC 的度数为A .65°B .60°C .55°D .45°6.如图,△ABC 为等边三角形,要在△ABC 外部取一点D ,使得△ABC 和△DBC 全等,下面是两名同学做法: 甲:①作∠A 的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求;12乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.。
2024年中考数学微专题复习+尺规作图+课件

+ +
= , = +
10.[原创新题]如图,一次函数 y = 3x 与反比例函数
y=
k
x
x > 0 的图象交于点 A 1, a ,点 B 在 x 轴正半轴
上.
(1)求反比例函数的表达式.
[答案] 将 , 代入 = ,得 = , ∴ , . 将 , 代入 =
[答案] ∵ 四边形 是菱形, ∴ = , // ,
∴△ ∼△ , ∴
=
.
设 = ,则 = − ,
∴
−
=
,解得
= ,
∴ 中所作菱形 的边长为6.
5.[2023洛阳二模] 如图,在 △ ABC 中,
∴ = , ∴ ∠ = ∠ , ∴ ∠ = ∠ , ∴ // , ∴ △ =
△ = .
8.[原创新题]如图,点 A , B 在反比例函数
y=
k
x
x > 0 的图象上, AC ⊥ x 轴于点 C , BD ⊥ x
轴于点 D .已知 OC =
=
.
4.如图,已知 △ ABC .
(1)请用无刻度的直尺和圆规在边 BC , CA , AB 上
分别确定点 D , E , F ,使四边形 BDEF 是菱形,并画
出菱形 BDEF (要求:不写作法,保留作图痕迹).
[答案] 如图所示,菱形 即为所求.
(2)若 AB = 10 , BC = 15 ,求(1)中所作菱形 BDEF 的边长.
中考数学考点32尺规作图总复习(解析版)
尺规作图【命题趋势】中考对尺规作图的考查涉及多种形式,不再是单一的对作图技法操作进行考查,而是把作图与计算、证明、分析、判断等数学思维活动有效融合,既体现了动手实践的数学思维活动,也考查了学生运用数学思考解决问题的能力.【中考考查重点】一、根据尺规作图的痕迹、步骤判断结论和计算。
二、尺规作图及相关证明与计算考点:五种基本尺规作图类型图示步骤作图依据1.作一条线段等于已知线段O A P (1)画射线OP(2)在射线OP上截取OA=a圆上的点到圆心的距离等于半径2.作一个角等于已知角(1)以点O为圆心.任意长为半径画弧.分别交OA.OB于点C,D(2)画一条射线PO.以点P为圆心.OC长为半径画弧.交PO于点C′(3)以P为圆心.CD长为半径画弧.与第(2)步中所画的弧相交于点D′(4)过点P、P画射线PB′.则∠B′PO=∠BOC三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线3.作一个角的平分线(1)以点 O 为圆心.适当长为半径画弧.交 OA 于点 M.交 OB 于点 N.(2)分别以点M、N 为圆心.大于MN21的长为半径画弧.两弧在∠AOB 的内部交于点 C.(3)画出射线OC .射线 OC 即为所求点在直•广元)观察下列作图痕迹A.B.C.D.【答案】C【解答】解:根据基本作图.A、D选项中为过C点作AB的垂线.B选项作AB的垂直平分线得到AB边上的中线CD.C选项作CD平分∠ACB.故选:C.2.(2021秋•广州期中)如图.在△ABC中.以A为圆心.任意长为半径画弧.分别交AB、AC于点M、N;再分别以M、N为圆心.大于MN的长为半径画弧.两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD+BD<AB B.AD一定经过△ABC的重心C.∠BAD=∠CAD D.AD是三角形的高【答案】C【解答】解:由题可知AD是∠BAC的角平分线.∴∠BAD=∠CAD.故选:C.3.(2021•济宁)如图.已知△ABC.(1)以点A为圆心.以适当长为半径画弧.交AC于点M.交AB于点N.(2)分别以M.N为圆心.以大于MN的长为半径画弧.两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A.D为圆心.以大于AD的长为半径画弧.两弧相交于G.H两点.(5)作直线GH.交AC.AB分别于点E.F.依据以上作图.若AF=2.CE=3.BD=.则CD的长是()A.B.1C.D.4【答案】C【解答】解:由作法得AD平分∠BAC.EF垂直平分AD.∴∠EAD=∠F AD.EA=ED.F A=FD.∵EA=ED.∴∠EAD=∠EDA.∴∠F AD=∠EDA.∴DE∥AF.同理可得AE∥DF.∴四边形AEDF为平行四边形.而EA=ED.∴四边形AEDF为菱形.∴AE=AF=2.∵DE∥AB.∴=.即=.∴CD=.故选:C.4.(2021秋•开封期末)已知线段AB如图所示.延长AB至C.使BC=AB.反向延长AB 至D.使AD=BC.点M是CD的中点.点N是AD的中点.(1)依题意补全图形;(2)若AB长为10.求线段MN的长度.【答案】略【解答】解:(1)如图.(2)∵BC=AD=AB=10.∴DC=30.∵点M是CD的中点.∴DM=CD=15.∵点N是AD的中点.∴DN=AD=5.∴MN=DM﹣DN=15﹣5=10.答:线段MN的长度为10.5.(2022•雨花区校级开学)下面是小华设计的“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:①以点A为圆心.适当长为半径画弧.交直线BC于点M.N;②分别以点M.N为圆心.以大于MN的长为半径画弧.两弧相交于点P;③作直线AP交BC于点D.则线段AD即为所求△ABC的边BC上的高.根据小华设计的尺规作图过程:(1)AP是线段MN的;(2)证明AD是△ABC的高.【答案】(1)垂直平分线(2)略【解答】(1)解:由作法得AP为线段MN的垂直平分线;故答案为:垂直平分线;(2)证明:∵AM=AN.PM=PN.∴A点和P点在MN的垂直平分线上.∴即AP垂直平分MN.即AD是△ABC的高.6.(2021•烟台)如图.已知Rt△ABC中.∠C=90°.(1)请按如下要求完成尺规作图(不写作法.保留作图痕迹).①作∠BAC的角平分线AD.交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心.以OD长为半径画圆.交边AB于点M.(2)在(1)的条件下.求证:BC是⊙O的切线;(3)若AM=4BM.AC=10.求⊙O的半径.【答案】略【解答】解:(1)如图所示.①以A为圆心.以任意长度为半径画弧.与AC、AB相交.再以两个交点为圆心.以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点.将点A与它连接并延长.与BC交于点D.则AD为∠BAC的平分线;②分别以点A、点D为圆心.以大于AD长度为半径画圆.将两圆交点连接.则EF为AD的垂直平分线.EF与AB交于点O;③如图.⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线.且点O在EF上.∴∠OAD=∠ODA.∵AD是∠BAC的平分线.∴∠OAD=∠CAD.∴∠ODA=∠CAD.∴OD∥AC.∵AC⊥BC.∴OD⊥BC.故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=AM.AM=4BM.∴OM=2BM.BO=3BM.AB=5BM.∴==.由(2)可知Rt△BOD与Rt△BAC有公共角∠B.∴Rt△BOD∽Rt△BAC.∴=.即=.解得DO=6.故⊙O的半径为6.1.(2021秋•盱眙县期末)如图.在Rt△ABC中.∠C=90°.以顶点A为圆心.适当长为半径画圆弧.分别交AB、AC于点D、E.再分别以点D、E为圆心.大于DE长为半径画圆弧.两弧交于点F.作射线AF交边BC于点G.若CG=4.AB=10.则△ABG的面积是()A.10B.20C.30D.40【答案】B【解答】解:如图.过点G作GH⊥AB于点H.由作图过程可知:AG平分∠BAC.∵∠C=90°.∴GC⊥AC.∴GH=GC=4.∴△ABG的面积=AB•GH=10×4=20.故选:B.2.(2021秋•宁波期末)如图.在Rt△ABC中.∠B=90°.分别以A.C为圆心.大于AC长为半径作弧.两弧相交于点M.N.作直线MN.与AC.BC分别交于D.E.连结AE.若AB=6.AC=10.则△ABE的周长为()A.13B.14C.15D.16【答案】B【解答】解:由作法得ED垂直平分AC.∴EA=EC.在Rt△ABC中.BC===8.∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=6+8=14.故选:B.3.(2021秋•定西期末)下列选项中的尺规作图.能推出P A=PC的是()A.B.C.D.【答案】B【解答】解:∵P A=PC.∴P点为AC的垂直平分线的上的点.故选:B.4.(2021秋•郧阳区期末)如图为用直尺和圆规作一个角等于已知角.那么能得出∠A′O′B′=∠AOB的依据是运用了我们学习的全等三角形判定()A.角角边B.边角边C.角边角D.边边边【答案】D【解答】解:由作法得OD=OC=OC′=OD′.CD=C′D′.则可根据“SSS”可判定△OCD≌△OC′D′.所以∠A′O′B′=∠AOB.故选:D.5.(2021秋•朝阳区校级期末)如图.在Rt△ABC中.∠ACB=90°.分别以点B和点C 为圆心.大于BC的长为半径作弧.两弧相交于D、E两点.作直线DE交AB于点F.交BC与点G.连接CF.若AC=3.CG=2.则CF的长为.【答案】【解答】解:由作图可知.DE垂直平分线段BC.∴CG=GB=2.FG⊥CB.∴∠FGB=∠ACB=90°.∴FG∥AC.∵CG=GB.∴AF=FB.∴FG=AC=.∵∠FGC=90°.∴CF===.故答案为.1.(2021•阿坝州)如图.在△ABC中.∠BAC=70°.∠C=40°.分别以点A和点C为圆心.大于AC的长为半径画弧.两弧相交于点M.N.作直线MN交BC于点D.连接AD.则∠BAD的大小为()A.30°B.40°C.50°D.60°【答案】A【解答】解:由作图可知.直线MN是线段AC的垂直平分线.∴DA=DC.∴∠DAC=∠C=40°.∵∠BAC=70°.∴∠BAD=∠BAC﹣∠DAC=70°﹣40°=30°.故选:A.2.(2021•百色)如图.在⊙O中.尺规作图的部分作法如下:(1)分别以弦AB的端点A、B为圆心.适当等长为半径画弧.使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10.AB=16.则tan B等于()A.B.C.D.【答案】B【解答】解:如图.连接OA.∴OA=OB.根据作图过程可知:OM是AB的垂直平分线.∴AN=BN=AB=8.在Rt△OBN中.OB=10.BN=8.根据勾股定理.得ON==6.∴tan B===.故选:B.3.(2021•黄石)如图.在Rt△ABC中.∠ACB=90°.按以下步骤作图:①以B为圆心.任意长为半径作弧.分别交BA、BC于M、N两点;②分别以M、N为圆心.以大于MN 的长为半径作弧.两弧相交于点P;③作射线BP.交边AC于D点.若AB=10.BC=6.则线段CD的长为()A.3B.C.D.【答案】A【解答】解:由作法得BD平分∠ABC.过D点作DE⊥AB于E.如图.则DE=DC.在Rt△ABC中.AC===8.∵S△ABD+S△BCD=S△ABC.∴•DE×10+•CD×6=×6×8.即5CD+3CD=24.∴CD=3.故选:A.4.(2021•铜仁市)如图.在Rt△ABC中.∠C=90°.AB=10.BC=8.按下列步骤作图:步骤1:以点A为圆心.小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心.大于DE的长为半径作弧.两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【答案】B【解答】解:由作法得AF平分∠BAC.过F点作FH⊥AB于H.如图.∵AF平分∠BAC.FH⊥AB.FC⊥AC.∴FH=FC.在△ABC中.∵∠C=90°.AB=10.BC=8.∴AC==6.设CF=x.则FH=x.∵S△ABF+S△ACF=S△ABC.∴×10•x+×6•x=×6×8.解得x=3.在Rt△ACF中.AF===3.故选:B.5.(2021•永州)如图.在△ABC中.AB=AC.分别以点A.B为圆心.大于AB的长为半径画弧.两弧相交于点M和点N.作直线MN分别交BC、AB于点D和点E.若∠B=50°.则∠CAD的度数是()A.30°B.40°C.50°D.60°【答案】A【解答】解:由作法得MN垂直平分AB.∴DA=DB.∴∠DAB=∠B=50°.∵AB=AC.∴∠C=∠B=50°.∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°.∴∠CAD=∠BAC﹣∠DAB=80°﹣50°=30°.故选:A.6.(2021•长春)在△ABC中.∠BAC=90°.AB≠AC.用无刻度的直尺和圆规在BC边上找一点D.使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.【答案】A【解答】解:A、由作图可知AD是△ABC的角平分线.推不出△ADC是等腰三角形.本选项符合题意.B、由作图可知CA=CD.△ADC是等腰三角形.本选项不符合题意.C、由作图可知DA=CD.△ADC是等腰三角形.本选项不符合题意.D、由作图可知DA=CD.△ADC是等腰三角形.本选项不符合题意.故选:A.7.(2021•贵阳)如图.已知线段AB=6.利用尺规作AB的垂直平分线.步骤如下:①分别以点A.B为圆心.以b的长为半径作弧.两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.则b的长可能是()A.1B.2C.3D.4【答案】D【解答】解:根据题意得b>AB.即b>3.故选:D.8.(2021•荆州)如图.在△ABC中.AB=AC.∠A=40°.点D.P分别是图中所作直线和射线与AB.CD的交点.根据图中尺规作图痕迹推断.以下结论错误的是()A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A 【答案】D【解答】解:由作图可知.点D在AC的垂直平分线上.∴DA=DC.故选项A正确.∴∠A=∠ACD=40°.由作图可知.BP平分∠ABC.∴∠ABP=∠CBP.故选项B正确.∵AB=AC.∠A=40°.∴∠ABC=∠ACB=(180°﹣40°)=70°.∵∠PBC=∠ABC=35°.∠PCB=∠ACB﹣∠ACD=30°.∴∠BPC=180°﹣35°﹣30°=115°.故选项C正确.若∠PBC=∠A.则∠A=36°.显然不符合题意.故选:D.1.(2021•广陵区二模)用直尺和圆规作已知角∠AOB的平分线的作法如图.能得出∠AOC=∠BOC的依据是()A.(SAS)B.(SSS)C.(AAS)D.(ASA)【答案】B【解答】解:由作图可知.OD=OE.PD=PE.在△OPD和△OPE中..∴△OPD≌△OPE(SSS).∴∠AOC=∠BOC.故选:B.2.(2021•河南模拟)如图.在Rt△ABC中.∠ACB=90°.AC=BC=2.按以下步骤作图:①以点A为圆心.适当长度为半径作弧.分别交AC.AB于M.N两点;②分别以点M.N为圆心.大于MN的长为半径作弧.两弧相交于点P;③作射线AP.交BC于点E.则EC的长为()A.B.1C.D.【答案】C【解答】解:由作法得AP平分∠BAC.作EH⊥AB于H.如图.∵AE为角平分线.EC⊥AC.EH⊥AB.∴EC=EH.∵∠ACB=90°.AC=BC=2.∴∠B=45°.AB=BC.∴△BEH为等腰直角三角形.∴BH=EH=BE.设EH=x.则BH=EC=x.BE=x.∴x+x=2.∴x=2﹣2.∴EC=2﹣2.故选:C.3.(2021•高阳县模拟)如图.已知∠MAN=60°.AB=6.依据尺规作图的痕迹可求出BD的长为()A.2B.3C.3D.6【答案】B【解答】解:由题意.AB=AC.∠BAC=60°.∴△ABC是等边三角形.∴AB=BC=AC=6.∵AD平分∠BAC.∴AD⊥BC.BD=CD=3.故选:B.4.(2021•范县模拟)如图.在Rt△ABC中.∠ACB=90°.AC=2BC.分别以点A和B为圆心.以大于AB的长为半径作弧.两弧相交于点M和N.作直线MN.交AC于点E.连接BE.若CE=3.则BE的长为()A.5B.4C.3D.6【答案】A【解答】解:解:由作图可知.MN垂直平分线段AB.∴AE=EB.设AE=EB=x.∵EC=3.AC=2BC.∴BC=(x+3).在Rt△BCE中.∵BE2=BC2+EC2.∴x2=32+[(x+3)]2.解得.x=5或﹣3(舍弃).∴BE=5.故选:A.5.(2021•开平区一模)用尺规作图作直线l的一条垂线.下面是甲.乙两个同学作图描述:甲:如图1.在直线l上任取一点C.以C为圆心任意长为半径画弧.与直线l相交于点A、B两点.再分别以A、B为圆心以大于长为半径画弧.两弧相交于点D.作直线CD 即为所求.乙:如图2在直线l上任取两点M.N作线段MN的垂直平分线.下面说法正确的是()A.甲对.乙不对B.乙对甲不对C.甲乙都对D.甲乙都不对【答案】C【解答】解:根据过一点作已知直线的垂线的方法可知:甲正确;根据作已知线段的垂直平分线的方法可知:乙正确.所以甲乙都对.故选:C.6.(2021•莲都区校级模拟)下列三幅图都是“作已知三角形的高”的尺规作图过程.其中作图正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【答案】A【解答】解:图(1)和图(2)中.由“到线段两端距离相等的点在线段的垂直平分线上”可知.AJ垂直平分GH.BC垂直平分AK.故作图正确;图(3)中.依据“直径所对的圆周角等于90°”可知.BC所对的圆周角为直角.故作图正确;故选:A.7.(2021•马山县模拟)如图.已知AB=AC.AB=5.BC=3.以A.B两点为圆心.大于AB 的长为半径画弧.两弧相交于点M.N.连接MN与AC相交于点D.则△BDC的周长为()A.10B.8C.11D.13【答案】B【解答】解:由作法得MN垂直平分AB.∴DA=DB.∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=AB+BC=5+3=8.故选:B.8.(2021•平泉市一模)如图.已知直线AB和AB外一点C.用尺规过点C作AB的垂线.步骤如下:第一步:任意取一点K.使点K和点C在AB的两旁;第二步:以C为圆心.以a为半径画弧.交直线AB于点D.E;第三步:分别以D.E为圆心.以b为半径画弧.两弧交于点F;第四步:画直线CF.直线CF即为所求.下列正确的是()A.a.b均无限制B.a=CK.b>DE的长C.a有最小限制.b无限制D.a≥CK.b<DE的长【答案】B【解答】解:由作图可知.a=CK.b>DE的长.故选:B.9.(2021•河北一模)嘉淇在用直尺和圆规作一个角等于已知角的步骤如下:已知:∠AOB求作:∠A'O'B'.使∠A'O'B'=∠AOB.作法:(1)如图.以点O为圆心.m为半径画弧.分别交OA.OB于点C.D;(2)画一条射线O'A'.以点O'为圆心.n为半径画弧.交O'A'于点C';(3)以点C'为圆心.p为半径画弧.与第(2)步中所画的弧相交于点D';(4)过点D'画射线O'B'.则∠A'O'B'=∠AOB.下列说法正确的是()A.m=p>0B.n=p>0C.D.m=n>0【答案】D【解答】解:由作图得OD=OC=OD′=OC′.CD=C′D′.则m=n>0.故选:D.10.(2021•定兴县一模)如图.在Rt△ABC中.∠C=90°.以顶点A为圆心.适当长为半径画弧.分别交AC.AB于点M.N.再分别以点M.N为圆心.大于MN长为半径画弧.两弧交于点P.作射线AP交边BC于点D.若CD=2.AB=7.则△ABD的面积是()A.7B.30C.14D.60【答案】A【解答】解:如图.过点D作DH⊥AB于H.∵AP平分∠CAB.DC⊥AC.DH⊥AB.∴DC=DH=2.∴S△ABD=×7×2=7.故选:A.。
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
人教版2023中考数学专题复习:尺规作图
尺规作图命题点1 五种基本尺规作图类型一判定作图结果1.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC 大小关系的是()A.B.C.D.2.(2022•益阳)如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是()A.I到AB,AC边的距离相等B.CI平分∠ACBC.I是△ABC的内心D.I到A,B,C三点的距离相等3.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A.B.4C.6D.4.(2022•长春)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC 5.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.6.(2022•舟山)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.类型二根据作图步骤进行计算、证明或结论判断7.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C 为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ 分别交BC,AC于点D和点E.若CD=3,则BD的长为()A.4B.5C.6D.7 8.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△ABC的周长为()A.13cm B.14cm C.15cm D.16cm 9.(2022•资阳)如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA 10.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为()A.B.C.D.11.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE=BD C.AF=AC D.∠EQF=25°12.(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 13.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 14.(2022•鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D 为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF 分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN=.16.(2022•辽宁)如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.类型三依据要求直接作图17.(2022•淮安)如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.18.(2022•襄阳)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.19.(2022•宁夏)如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.20.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.类型四转化类作图21.(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)命题点2无刻度直尺作图类型一网格中作图22.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.23.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.类型二根据图形性质作图24.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.25.(2022•无锡)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.26.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.27.(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)11。
课件 基本尺规作图-【慕联】中考数学复习基本图形(二)
照设计要求,发射塔到两个城镇A,B的距
C1
离必须相等,到两条公路l1,l2的距离也必
须相等,发射塔C应修建在什么位置?请
用尺规作图找出所有符合条件的点,注明
C2
点C的位置(保留作图痕迹,不要求写出画 法).
P F
考点 基本尺规作图
如图,已知在△ABC中,∠A=90°. (1)请用圆规和直尺作出⊙P,使圆心P在 AC边上,且与AB,BC两边都相切(保留作图
A
37°
16°
D C
37°
B
考点 基本尺规作图
尺规作图的关键: (1)先分析题目,读懂题意,判断题目要求作什么. (2)读懂题意后,再运用几种基本作图方法解决问题. (3)作图时,要保留作图痕迹,作完后不要忘记写结论.
考点 基本尺规作图
E
在公路l1同侧、l2异侧有两个城镇A,B,如
D
图,电信部门要修建一座信号发射塔,按
AP=3 • tan30°
A 3 P
3
痕迹,不写作法和证明).
30°
(2)若∠B=60°,AB=3,求⊙P的面积.
B
C
=
π • AP2 =3π
慕联提示
亲爱的同学,课后请做一下相关的题 目进行巩固。这节课就到这里了,我们下 节课再见!
则直线CD即为所求.连结AC,BC,AD,BD,
根据她的作图方法可知,四边形ADBC一定是
( )B
形
考点 基本尺规作图
2.如图,在平面直角坐标系中,以点O为圆心,适
当长为半径画弧,交x轴于点M,交y轴于点N,再 分别以点M,N为圆心,大于 MN的长为1半径画弧,
中考复习 基本尺规作图
[慕联教育专题课程] 课程编号:ZS10202Z060401LL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[问答题,简答题]什么是航空?什么是航天?航空与航天有何联系? [单选,A型题]关于心肌易损期的描述,正确的是()。A.心室有易损期,在T波的升支;心房有易损期,在R波的升支B.心室有易损期,在T波的降支;心房无易损期C.心室有易损期,在T波的顶峰前或后30~40ms内;心房有易损期,在R波的降支和S波内D.心室无易损期,心房有易损期,在R波的降 有易损期,在T波的升支;心房无易损期 [单选]脑外伤及其后遗症时脑SPECT可显示血流灌注缺损或减低区,其检出率()A.高于X线CT,低于MRIB.低于X线CT,高于MRIC.高于X线CT和MRID.低于X线CT和MRIE.高于X线CT,而与MRI相仿 [单选]婚姻成立还需要实质要件,这是婚姻成立的关键。客户的婚姻关系如果不符合()的实质要件,可能非但不受法律的保护,甚至已经成立的婚姻也面临着被撤销的风险。A.结婚B.婚姻登记C.同居D.领取结婚证 [单选]在代码的几个功能中,()功能是最基本的,任何代码都必须具备此种功能。A、标识的唯一性B、分类C、排序D、特定含义 [问答题,简答题]税收的概念是什么? [多选]反映体内酸碱平衡的指标有()A.动脉血氧分压B.动脉二氧化碳分压C.标准碳酸盐和实际碳酸盐D.阴离子间隙E.动脉血氧饱和度 [单选]全身用冷的方法是()A.身体周围放冰袋B.调节室内温度低于18℃C.头、颈、腋下及腹股沟放冰袋D.用32~34℃温水拭浴E.四肢及头部冷敷 [单选,A1型题]关于糖皮质激素的作用,下列哪项错误()A.促进全身各部位的脂肪分解B.促进肝外组织蛋白分解C.促进糖异生D.促进肾保钠、保水E.减少外周组织对葡萄糖的利用 [单选]关于电压门控Na通道,下述哪项不正确()A.属于兴奋性通道B.通道传导抑制可导致麻醉C.外周Na通道对全麻药不敏感D.中枢Na通道对全麻药敏感E.电压-门控钠通道对吸入全麻药敏感 [单选,A2型题,A1/A2型题]固体吸附剂采样管的最大采样体积越大,浓缩效率()。A.越小B.不确定C.越大D.与最大采样体积无关E.不变 [单选,A1型题]人类行为可分为本能行为和()A.外显行为B.社会行为C.生物行为D.遗传行为E.能动行为 [单选]能测出梅毒螺旋体特异抗体的试验是()A.荧光密螺旋体抗体吸收试验B.捕获ELISA法C.梅毒螺旋体制动试验D.非密螺旋体抗原试验E.梅毒螺旋体血凝试验 [填空题]在公司总体品牌战略下,对于分级服务体系,可以从()和()两个维度去进行规划。 [单选]对肝硬化有确诊价值的检查是A.肝功能检查B.免疫功能检查C.影像学检查D.内镜检查E.肝穿刺活组织检查 [单选]根据多马的理沦,总需求的变化量决定于()。A.净投资乘以边际储蓄倾向B.一个收入期的变化量乘以边际储蓄倾向的倒数C.净投资的变化量乘以边际储蓄倾向的例数D.资本的平均生产率乘以平均储蓄倾向 [单选]关于对原始土地登记资料的查询,下列表述正确的是()。A.土地登记代理机构可以查询所有登记资料B.土地权利人有权查询其土地权利范围内的土地登记资料C.国家安全机关可以查询所有土地原始登记资料D.纪检部门有权查询所有土地原始登记资料 [单选,A1型题]关于肌的起止和作用,正确的是()A.止点,也称动点B.躯干肌的起点多远离中线C.肌多根据其起止来命名D.四肢肌多起于肢体的远端E.肌肉的定点和动点是不可互换的 [判断题]使可燃物质与空气隔绝,这种方法称隔离法.A.正确B.错误 [问答题]法人应当具备哪些条件? [填空题]爆破图表主要内容包括()、()、()和()。 [单选]风险溢价的影响因素不包括()。A.无风险的国债收益率B.发行人种类C.发行人的信用度D.提前赎回条款 [单选]某单层砖混结构建筑物,外墙高2.5m,长15m,宽5m(240mm厚灰砂墙),外墙上有四个1.5m×1.5m的窗和两个1m×2m的门。砌砖墙每立方米用砂浆0.26m³。需用砂浆()m。A.5.24B.5.35C.5.43D.5.51 [单选,A2型题,A1/A2型题]诊断急性肺损伤和ARDS的重要指标是()A.BPB.MBPCVPD.PAWPE.CO [单选,B1型题]6岁男孩,反复咳嗽和喘息发作6个月,夜间加重。查体:两肺哮鸣音和粗湿啰音,余无异常发现。胸片示肺纹理增多,外周血WBC7×109/L,N0.50,L0.38,E0.12。为明确诊断,应选用()A.免疫功能过筛试验B.肺吸虫抗原皮试C.纤维支气管镜活组织检查D.下呼吸道分泌物培养E.肺 [单选,A2型题,A1/A2型题]《素问·阴阳应象大论》中“先痛而后肿者”是由于()A.寒伤形B.热伤气C.形伤气D.气伤形E.寒伤气 [单选,A2型题,A1/A2型题]低钾血症的病因中,以下哪项不正确()。A.结肠吻合术后长期进食不足B.输尿管乙状结肠吻合术后C.急性肾功能衰竭D.肠瘘E.静脉营养液中盐补充不足 [单选]家畜环境的应激,目前认为主要受下列哪项的主导()A、体液调节B、交感-肾上腺髓质系统C、中枢神经系统D、生长激素 [单选]氧疗对哪型缺氧效果最好()A.血液性缺氧B.低张性缺氧C.循环性缺氧D.组织性缺氧E.混合性缺氧 [单选]以下有利于干扰素疗效的是()A.HBVDNA滴度高B.消化道症状明显C.病程短D.HCV非2B基因型E.男性 [单选]脑肿瘤放疗术后坏死组织表现为A.['B.C.D.E. [单选]下列关于肥胖病因的叙述错误的是()A.单纯性肥胖可呈一定的家族倾向,但遗传基础未明B.用电、化学或放射线破坏大鼠下丘脑的饱食中枢,可以引起肥胖C.肥胖者瘦素分泌减少,使脂肪分解减少,体重增加D.摄入过多高热量食品,是肥胖的主要原因E.某些肥胖是由于体力活动减少所致, 动不足可能是肥胖的后果或仅参与了维持肥胖状态和发展而非特异的原因 [填空题]工程上把延伸率δ>5%的材料称为()材料,δ<5%的材料称为()材料。 [单选,A2型题,A1/A2型题]下列属于医院感染的是()A.新生儿出生后48小时内出现的水痘B.非生物因子刺激产生的炎症表现C.创伤产生的炎症表现D.原有的慢性感染在医院内急性发作E.自入院时起超过平均潜伏期后发生的感染 [问答题,简答题]空分工艺流程计算的基础是运用哪些最基本原理? 4480首播影院:/