鲁教版2020九年级数学圆的有关性质课后练习题1(附答案)

合集下载

鲁教版初中数学九年级下册《确定圆的条件》同步练习1

鲁教版初中数学九年级下册《确定圆的条件》同步练习1

C BA A CB AC B 5.5 确定圆的条件【基础练习】一、填空题:1. 经过一点可以作 个圆,经过两点可以作 个圆,经过不在同一条直线上的三个点 个圆;2. 经过三角形三个顶点的圆叫做三角形的 ,这个圆的圆心是三角形三条边的 的交点,叫做三角形的 ,它到三角形 的距离相等;3. 锐角三角形的外心位于 ,直角三角形的外心位于 ,钝角三角形的外心位于 .二、选择题:1. 下列说法正确的是( );A. 三点确定一个圆B. 任何一个三角形有且只有一个外接圆C. 任何一个四边形都有一个外接圆D. 等腰三角形的外心一定在三角形内部2. 若等边三角形的边长为2 cm ,则其外接圆的半径等于( ); A. 33cm B. 332cm C. 23cm D. 3cm3. 在Rt △ABC 中,∠C = 90°,AC = 20 cm ,BC = 21 cm ,则它的外心与顶点C 的距离等于( ).A. 13 cmB. 13.5 cmC. 14 cmD. 14.5 cm三、解答题:1. 请画出下列各三角形的外接圆.2. 已知三角形的三边长分别为22cm ,23cm ,25cm ,求它的外接圆半径.【综合练习】如图3-22,已知:⊙O 是△ABC 的外接圆,∠ACB = 90°,弦CD 平分∠ACB ,交AB 于E ,连接AD 、BD .(1)写出图中所有的相似三角形;(2)求CD BC AC 的值; (3)若AD = 5 cm ,求⊙O 的直径.O图3-22DEB A C参考答案【基础练习】一、1. 无数,无数,只可以作一;2. 外接圆,垂直平分线,外心,三个顶点;3. 三角形内部,斜边的中点,三角形外部.二、1. B; 2. B; 3. D.三、1. 略. 2. 5cm.【综合练习】(1)△ACE∽△DBE∽△DCB,△BCE∽△DAE∽△DCA;(2)2;(3)52cm.。

九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。

2020--2021学年鲁教版(五四制)数学九年级下学期《5.5 确定圆的条件》 同步练习

2020--2021学年鲁教版(五四制)数学九年级下学期《5.5 确定圆的条件》 同步练习

5.5 确定圆的条件一.选择题1.已知⊙O的半径为10cm,点P到圆心O的距离为8cm,则点P和圆的位置关系()A.点在圆内B.点在圆外C.点在圆上D.无法判断2.已知⊙O的半径为10cm,点M到圆心O的距离为10cm,则该点M与⊙O的位置关系为()A.点M在圆内B.点M在圆上C.点M在圆外D.无法判断3.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cmC.5.5cm D.2.5cm或5.5cm4.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定5.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外6.下列说法中,正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块8.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能9.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°10.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC =95°,则△ABC的外心在第几象限?()A.一B.二C.三D.四二.填空题11.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.12.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.13.当点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.三.解答题15.如图,⊙O是△BC的外接圆,AB长为4,AB=AC,联结CO并延长,交边AB于点D,交AB于点E,且E为弧AB的中点.求:(1)边BC的长;(2)⊙O的半径.参考答案一.选择题1.解:∵点P到圆心的距离为8cm,小于⊙O的半径10cm,∴点P在⊙O内.故选:A.2.解:∵⊙O的半径为10cm,点M到圆心O的距离为10cm,∴d=r,∴点M与⊙O的位置关系是:点M在圆上,故选:B.3.解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.4.解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.5.解:∵圆心O的坐标为(0,0),点P的坐标为(4,2),∴OP==<5,因而点P在⊙O内.故选:A.6.解:A、不在同一直线上的三点确定一个圆,故原命题错误;B、三角形有且只有一个外切圆,原命题正确;C、并不是所有的四边形都有一个外接圆,原命题错误;D、圆有无数个内接三角形.故选:B.7.解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.8.解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.9.解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.10.解:∵∠BAC=95°,∴△ABC的外心在△ABC的外部,即在x轴的下方,∵外心在线段BC的垂直平分线上,即在直线x=上,∴△ABC的外心在第四象限,故选:D.二.填空题11.解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.12.解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)13.解:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,﹣3),∴解得:k=﹣,b=,∴直线AB的解析式为y=﹣+,∵点A(1,2),B(3,﹣3),C(m,n)三点可以确定一个圆时,∴点C不在直线AB上,∴5m+2n≠9,故答案为:5m+2n≠9.14.解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.三.解答题15.解:(1)∵E点为的中点,CE为直径,∴CE⊥AB,∴AD=BD,即CD垂直平分AB,∴CB=CA=4;(2)连接OB,如图,∵AB=BC=AC,∴△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴∠BOD=60°,在Rt△BOD中,BD=AB=2,∴OD=BD=,∴OB=2OD=,即⊙O的半径为.。

2019-2020学年度数学九年级下册第五章 圆1 圆鲁教版练习题第八十一篇

2019-2020学年度数学九年级下册第五章 圆1 圆鲁教版练习题第八十一篇

2019-2020学年度数学九年级下册第五章圆1 圆鲁教版练习题第八十一篇第1题【单选题】圆内最大的弦长为10cm,则圆的半径( )A、小于5cmB、大于5cmC、等于5cmD、不能确定【答案】:【解析】:第2题【单选题】车轮要做成圆形,实际上就是根据圆的特征( )A、同弧所对的圆周角相等B、直径是圆中最大的弦C、圆上各点到圆心的距离相等D、圆是中心对称图形【答案】:【解析】:第3题【单选题】下列说法正确的是( )A、三点确定一个圆B、一个三角形只有一个外接圆C、和半径垂直的直线是圆的切线D、三角形的内心到三角形三个顶点距离相等【答案】:【解析】:第4题【单选题】在平面直角坐标系xOy中,如果⊙O是以原点O(0,0)为圆心,以5为半径的圆,那么点A(﹣3,﹣4)与⊙O的位置关系是( )A、在⊙O内B、在⊙O上C、在⊙O外D、不能确定【答案】:【解析】:第5题【单选题】⊙O的半径为1,同一平面内,若点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A、点P在⊙O外B、点P在⊙O上C、点P在⊙O内D、无法确定【答案】:【解析】:第6题【单选题】有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )A、4个B、3个C、2个D、1个【答案】:【解析】:第7题【单选题】若圆的半径为R,圆的面积为S,则S与R之间的关系式为( )A、S=2πRB、S=πR^2C、S=4πR^2D、S=有误【答案】:【解析】:第8题【单选题】如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( )A、4B、5C、6D、10【答案】:【解析】:第9题【填空题】已知⊙O 的半径为5,点A在⊙O 外,那么线段OA的取值范围是______。

【答案】:【解析】:第10题【填空题】如图,在网格(每个小正方形的边长均为1)中选取7个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为______.【答案】:【解析】:第11题【填空题】已知⊙O的周长为12π,若点P到点O的距离为5,则点P在⊙O______A、的内部【答案】:【解析】:第12题【填空题】如图,AB是⊙O的直径,∠C=20°,则∠BOC的度数是______.【答案】:【解析】:第13题【解答题】如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′?OP=r^2 ,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.【答案】:【解析】:第14题【解答题】如图,BD=OD,∠AOC=114°,求∠AOD的度数.?【答案】:【解析】:第15题【综合题】如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长AO交O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:求证:CD是⊙O的切线;若BC=4,CD=6,求平行四边形OABC的面积.【答案】:【解析】:。

鲁教版九年级下册5.1圆同步课时训练(word版含答案)

鲁教版九年级下册5.1圆同步课时训练(word版含答案)

鲁教版九年级下册5.1圆同步课时训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.在⊙O中,圆心O在坐标原点上,半径为P的坐标为(4,5),那么点P 与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定2.点P在半径为r的A外,则点P到圆心A的距离d与r的关系是()A.d r B.d rC.d r D.d r3.已知O的半径为6,点A与圆心O的距离为5,则点A与O的位置关系是()A.点A在O内B.点A在O上C.点A在O外D.点A不在O内4.已知O的半径是5,点A到圆心O的距离是7,则点A与O的位置关系是()A.点A在O上B.点A在O内C.点A在O外D.点A与圆心O 重合5.如图,抛物线y=14x2-4 与x 轴交于A、B 两点,P 是以点C(0,3)为圆心,2 为半径的圆上的动点,Q是线段PA 的中点,连结OQ,则线段OQ的最大值是()A.1.5 B.3 C.3.5 D.46.已知O的半径为5cm,P为O外一点,则OP的长可能是().A.6cm B.4cm C.3cm D.5cm7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且45∠=︒,DF AB⊥于点G,当点C在AB上运动时.设ACD⊥于点F,EG AB=,下列中图象中,能表示y与x的函数关系式的图象大致是() =,DE yAF xA.B.C.D.8.已知O的半径是6cm,则O中最长的弦长是()A.6cm B.12cm C.16cm D.20cm9.如图,我们把一个半圆与抛物线的一部分围成的封闭图象称为“果园”,已知点A,B,C,D分别是“果园”与坐标轴的交点,抛物线的解析式为y=x2﹣4x﹣5,AB为半圆的直径,则这个“果园”被y轴截得的弦CD的长为()A.8 B.5 C.D.510.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,则2AP+BP的最小值为()二、填空题11.在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,分别以A 、B 为圆心的两圆外切,如果点C 在圆A 内,那么圆A 的半径长r 的取值范围是__.12.已知⊙P 在直角坐标平面内,它的半径是5,圆心P (﹣3,4),则坐标原点O 与⊙P 的位置关系是__.13.如图,在平面直角坐标系xOy 中,以点A (﹣5,0)为圆心,13为半径作弧,交y 轴的正半轴于点B ,则点B 的坐标为_____.14.如图,Rt OAB △的直角边2OA =,1AB =,OA 在数轴上,在OB 上截取BC BA =,以原点O 为圆心,OC 为半径画弧,交边OA 于点P ,则点P 对应的实数是________.15.如图,C 的半径为1,圆心坐标为()3,4C ,点()P m n ,是C 内或C 上的一个动点,则22m n +的最小值是__________.16.如图,已知矩形ABCD 中3AB =,4BC =,将三角板的直角顶点P 放在矩形内,移动三角板保持两直角边分别经过点B 、C ,则PD 的最小值为________.三、解答题17.如图,在Rt ABC △中,Rt ,2,ACB BC AC ∠=∠==D 是AC 边上的中点.有一动点P 由点A 以每秒1个单位的速度向终点B 运动,设运动时间为t 秒.(1)如图1,当ADP △是以点P 为直角顶点的直角三角形时,求t 的值;(2)如图2,过点A 作直线DP 的垂线AE ,点E 为垂足.①是否存在这样的t ,使得以,,A P E 为顶点的三角形与ABC 相似,若存在,请求出t 的值;若不存在,请说明理由.②连结BE ,当点P 由点A 运动到点B 的过程中(不包括端点),请直接写出BE 的取值范围.18.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .19.如图, Rt △ABC 中,90C =∠,3BC =,4AC =,以B 为圆心,4为半径作圆弧交AC 边于点F ,交AB 于点E .(1)求CF 的长;(2)联结CE ,求ACE ∠的正切值.20.已知抛物线212y x bx c =++与x 轴交于(4,0),(2,0)A B -,与y 轴交于点C .(1)求抛物线的解析式及C 点坐标;(2)点D 为第四象限抛物线上一点,设点D 的横坐标为m ,四边形ABCD 的面积为S ,求S 与m 的函数关系式,并求S 的最值;(3)点P 在抛物线的对称轴上,且45BPC ∠=,请直接写出点P 的坐标.参考答案1.A2.D3.A4.C5.C6.A7.A8.B9.C10.A11r <212.点O 在⊙P 上13.()0,12.14115.1616217.(1)32;(2)①存在,1或2或3;4BE <. 【详解】解:(1)Rt ACB ∠=∠,2BC =,AC =tanBC A AC ∴==, 30A ∴∠=︒,点D 是AC 边上的中点,AD CD ∴=DP AB ⊥,cosAP A AD ∴===, 32AP ∴=, 3()12AP t s ∴==; (2)①AE DP ⊥,90C AED ∴∠=∠=︒,如图3,当30BAC ADP ∠=∠=︒时,90E ∠=︒,30ADP ∠=︒,12AE AD ∴== 60APE ADP PAD ∠=∠+∠=︒,30PAE ∴∠=︒,2AP PE ∴=,AE ==, 1AP ∴=,1()1AP t s ∴==; 如图4,若30APD BAC =∠=︒∠时,2AP AE ∴=,60ADE APD PAD ∠=∠+∠=︒,30DAE ∴∠=︒,12DE AD ∴==,32AE ==,3AP ∴=,3()1AP t s ∴==; 如图5,若点E 与点D 重合时,2AP DP ∴=,AD1DP ,2AP =,2()1AP t s ∴==; 综上所述:t 的值为1或2或3;②90AED ∠=︒,∴点E 在以AD 为半径的圆上,如图6,取AD 的中点F ,连接BF ,过点F 作FH AB ⊥于H ,AF ∴=, 30BAC ∠=︒,12FH AF ∴==,34AH ==,24AB BC ==, 134AH ∴=,BF ∴=, 点E 在以AD 为半径的圆上,∴当点E 在线段BF 上时,BE 有最小值,BE ∴- 当点E 与点A 重合时,BE 有最大值为4,∴4BE <.18.(1)±;(2)①m 2+n 2=5;②5【详解】解:(1)把m =1,x =1代入方程得1+2﹣n 2+5=0,解得n =±,即n 的值为±; (2)①根据题意得△=4m 2﹣4(﹣n 2+5)=0,整理得m 2+n 2=5;②∵OH =|m |,PH =|n |,∴OP即点P 在以O∴原点与点(3,4)的连线与⊙O 的交点P 使点P 到点(3,4)的距离最小,∵原点到点(3,45,∴点P 到点(3,4)的距离最小值是5故答案为519.(1)CF =(2)316tan ACE ∠=. 【详解】解:(1)连接BF .∵以B 为圆心,4为半径作圆弧交AC 边于点F ,交AB 于点E , ∴4BF BE ==.∵在Rt △BCF 中,90C =∠,3BC =,4BF =,∴CF ===(2)如图,过点E 作EG ⊥AC 垂足为G .∵90ACB ∠=,∴EG ∥BC .,AGE ACB ∴∽ ∴EG AE AG BC AB AC==. ∵5AB =,4BE =,∴1AE =. ∴1354EG AG ==. ∴35EG =,45AG =. ∴416455CG AC AG =-=-=. ∴33516165EG tan ACE CG ∠===. 20.(1)211(4)(2)422y x x x x =-+=--,C (0,-4);(2)2(2)16S m =--+,最大值为16;(3)(1,1-或(1,1-【详解】解:(1)∵抛物线经过A (4,0),B (-2,0),∴抛物线的表达式为:211(4)(2)422y x x x x =-+=--, 令x=0,则y=-4,∴点C 的坐标为(0,-4);(2)设点21(,4)2D m m m --, ()()221111111·24442162222222OBC OCD ODA D S S S S OB OC OC m AO y m m m m ∆∆∆⎡⎤⎛⎫=++=⨯⨯++⨯-=⨯⨯+⨯=⨯---=--+ ⎪⎢⎥⎝⎭⎣⎦,当2m =时,S 的最大值为16;(3)45BPC ∠=︒,则BC 对应的圆心角为90︒,如图作圆R ,则90BRC ∠=︒, 圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点(,)R m n .90BMR MRB ∠+∠=︒,90MRB CRN ∠+∠=︒,CRN MBR ∴∠=∠,90BMR RNC ∠=∠=︒,BR RC =,()BMR RNC AAS ∴∆≅∆,CN RM ∴=,RN BM =,即24m n +=+,n m -=,解得:1m =,1n =-,即点(1,1)R -,即点R 在函数对称轴上,=则点P 的坐标为:(1,1-或(1,1-.。

最新精选鲁教版初中数学九年级下册第五章 圆1 圆课后练习八十

最新精选鲁教版初中数学九年级下册第五章 圆1 圆课后练习八十

最新精选鲁教版初中数学九年级下册第五章圆1 圆课后练习八十第1题【单选题】⊙O的半径为6,点P在⊙O内,则OP的长可能是( )A、5B、6C、7D、8【答案】:【解析】:第2题【单选题】已知⊙O中最长的弦为8cm,则⊙O的半径为( )cm.A、2B、4C、8D、16【答案】:【解析】:第3题【单选题】已知⊙O的半径r=5cm,点A到圆心O的距离为8cm,则点A和⊙O的位置关系为( )A、圆内B、圆外C、圆上D、无法确定【答案】:【解析】:第4题【单选题】下列说法正确的个数是( )①直径是圆的对称轴;②半径相等的两个半圆是等弧;③长度相等的两条弧是等弧;④和圆有一个公共点的直线是圆的切线.A、1B、2C、3D、4【答案】:【解析】:第5题【单选题】下列说法中,正确的是( )A、长度相等的两条弧是等弧B、优弧一定大于劣弧C、任意三角形都一定有外接圆D、不同的圆中不可能有相等的弦【答案】:【解析】:第6题【填空题】圆是______图形,其对称轴是任意一条______的直线.【答案】:【解析】:第7题【填空题】如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B 在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是______.A、8<r<10【答案】:【解析】:第8题【填空题】如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为______.【答案】:【解析】:第9题【填空题】交通工具上的轮子都是做圆的,这是运用了圆的性质中的______.【答案】:【解析】:第10题【填空题】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为______.A、7【答案】:【解析】:第11题【解答题】在△ABC中,∠C=90°,AC=4,AB=5,以点C为圆心,以r=3为半径作圆,判断A,B两点和⊙C 的位置关系.【答案】:【解析】:第12题【解答题】如图所示,已知⊙O和直线L,过圆心O作OP⊥L,P为垂足,A,B,C为直线L上三个点,且PA=2cm,PB=3cm,PC=4cm,若⊙O的半径为5cm,OP=4cm,判断A,B,C三点与⊙O的位置关系.【答案】:【解析】:第13题【解答题】在一个圆中任意画四条半径,可以把这个圆分成几个扇形?请你画图说明.【答案】:【解析】:第14题【解答题】如图,在A地往北60m的B处有一幢房,西80m的C处有一变电设施,在BC的中点D处有古建筑.因施工需要在A处进行一次爆破,为使房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?【答案】:【解析】:第15题【综合题】如图,在Rt△ABC中,∠ACB=90°.利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作AC的垂直平分线,交AB于点O,交AC于点D;②以O为圆心,OA为半径作圆,交OD的延长线于点E.在(1)所作的图形中,解答下列问题.①点B与⊙O的位置关系是_;(直接写出答案)②若DE=2,AC=8,求⊙O的半径.【答案】:无【解析】:。

难点详解鲁教版(五四制)九年级数学下册第五章圆必考点解析试题(含答案及详细解析)

难点详解鲁教版(五四制)九年级数学下册第五章圆必考点解析试题(含答案及详细解析)

鲁教版(五四制)九年级数学下册第五章圆必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)∥交O于点D,点C、D 1、如图,AB是O的直径,点C在O上,连接AC、BC,过点O作OD AC∠的度数是()在AB的异侧.若24∠=︒,则BCDBA.66°B.67°C.57°D.48°2、如图,A,B,C为⊙O上三点,若∠ABC=44°,则∠OAC的度数为()A.46°B.44°C.40°D.50°3、如图,在O中,点A,B,C在圆上,45∠=︒,则AOB的形状是().ACBA.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4、如果一弧长是其所在圆周长的118,那么这条弧长所对的圆心角为()A.15度B.16度C.20度D.24度5、如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD,CD,OA,若∠ADC=25°,则∠ABO的度数为()A.35°B.40°C.50°D.55°6、如图,AB是⊙O的直径,AP是⊙O的切线,PB交⊙O于点C,点D在⊙O上,若∠ADC=40°,则∠P的度数是()A.35°B.40°C.45°D.50°7、如图,AB为⊙O的直径,点C在⊙O上,∠A=24°,则∠B的度数为()A .66°B .48°C .33°D .24°8、如图,点A 、B 、C 是O 上的点,且90ACB ∠=︒,6AC =,8BC =,ACB ∠的平分线交O 于D ,下列4个判断:①O 的半径为5;②CD 的长为BC 弦所在直线上存在3个不同的点E ,使得CDE △是等腰三角形;④在BC 弦所在直线上存在2个不同的点F ,使得CDF 是直角三角形;正确判断的个数有( )A .1B .2C .3D .49、平面内,⊙O 的半径为3,若点P 在⊙O 外,则OP 的长可能为( )A .4B .3C .2D .110、如图,BC 为O 的直径,AB 交于O E 点,AC 交O 于D 点,AD CD =,70A ∠=︒,则∠BOE 的度数是( ).A.140°B.100°C.90°D.80°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB为⊙O的直径,且AB=10,点C为⊙O上半圆的一点,CE⊥AB于点E,∠OCE的角平分线交⊙O于点D,弦AC=6,那么△ACD的面积是_______.2、如图,四边形ABCD内接于ΘO,DA=DC,若∠CBE=40°,则∠DAC的度数是________.3、一个扇形的弧长是10πcm,面积是75πcm2,则扇形的圆心角是 _____.4、如图,甲、乙、丙、丁四个扇形的面积之比是1:2:3:4,则甲、乙、丙、丁四个扇形中圆心角度数最大的是___________度.5、如图,将半径为6cm的圆分别沿两条平行弦对折,使得两弧都经过圆心,则图中阴影部分的面积为______cm2.三、解答题(5小题,每小题10分,共计50分)1、已知,如图,直线MN交⊙O于A,B两点,AC是直径,DE与⊙O相切于点D,过D点作DE⊥MN于点E.(1)求证:AD平分∠CAE;(2)若AE=2,AD=4,求⊙O的半径.2、在Rt△ABC中,∠BCA=90°,BC=AC,点E是△ABC外一动点(点B,点E位于AC异侧),连接CE,AE.(1)如图1,点D是AB的中点,连接DC,DE,当△ADE为等边三角形时,求∠AEC的度数;(2)当∠AEC=135°时,①如图2,连接BE,用等式表示线段BE,CE,EA之间的数量关系,并证明;②如图3,点F为线段AB上一点,AF=1,BF=7,连接CF,EF,直接写出△CEF面积的最大值.3、如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是AmB上的一点.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,求∠AQB的度数;(3)在(2)的条件下,若OA=18,求AmB的长.4、如图,在每个小正方形的边长为1的网格中,ABC的顶点A在格点上,B是小正方形边的中点,经过点A,B的圆的圆心在边AC上.(1)弦AB 的长等于_____;(2)请用无刻度的直尺,在如图所示的网格中,找出经过点A ,B 的圆的圆心O ,并简要说明点O 的位置是如何找到的(不要求证明)_____.5、如图,在Rt △ABC 中,90C ∠=︒,D 是AB 上的一点,以AD 为直径的⊙O 与BC 相切于点E ,连接AE ,DE .(1)求证:AE 平分∠BAC ;(2)若30B ∠=︒,求CE DE的值.-参考答案-一、单选题1、C【解析】【分析】先求出CAO ∠,得出AOD ∠,由等腰三角形的性质和三角形内角和定理求出OAD ∠,再由圆周角定理求出BCD ∠的度数即可.解:连接AD,如图所示:AC OD,//∴∠=∠,CAO AODAB是O的直径,∴∠=︒,ACB90∴∠CCC=90°−∠C=66°.∴∠=︒,AOD66=,OA ODOAD AOD∴∠=︒-∠÷=︒,(180)257∴∠=∠=︒;BCD OAD57故选:C.【点睛】本题考查了圆周角定理、平行线的性质、等腰三角形的性质,解题的关键是熟练掌握圆周角定理的内容.2、A【解析】【分析】先利用圆周角定理求出AOC∠即可.∠的度数,然后再利用等腰三角形的性质求出OAC解:AC 所对的圆周角是ABC ∠,AC 所对的圆心角是AOC ∠,288AOC ABC ∴∠=∠=︒,OA OC =,46OAC OCA ∴∠=∠=︒,故选:A .【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,解题的关键是熟练掌握圆周角定理.3、D【解析】【分析】根据圆周角定理可得290AOB ACB ∠=∠=︒,根据半径相等可得OA OB =,进而即可判断出AOB 的形状.【详解】解:∵AB AB =,45ACB ∠=︒,∴290AOB ACB ∠=∠=︒,OA OB =AOB ∴是等腰直角三角形故选:D【点睛】本题考查了圆周角定理,理解圆周角定理,掌握等腰三角形的性质是解题的关键.4、C【解析】根据弧长公式和圆的周长公式的关系即可得出答案【详解】 解:∵一弧长是其所在圆周长的118, ∴1=2r 18018n r ππ⨯ ∴=20n∴这条弧长所对的圆心角为20故选:C【点睛】 本题考查了弧长的计算,掌握弧长公式180n r l π=是解题的关键. 5、B【解析】【分析】根据圆周角和圆心角的关系,可以得到∠AOC 的度数,然后根据AB 为⊙O 的切线和直角三角形的两个锐角互余,即可求得∠ABO 的度数.【详解】解:∵∠ADC =25°,∴∠AOC =50°,∵AB 为⊙O 的切线,点A 为切点,∴∠OAB =90°,∴∠ABO =∠OAB ﹣∠AOC =90°﹣50°=40°,故选:B .【点睛】本题考查切线的性质、圆周角定理、直角三角形的性质,利用数形结合的思想解答问题是解答本题的关键.6、D【解析】【分析】根据圆周角和圆心角的关系,可以得到ADC ∠的度数,然后根据AP 为O 的切线和直角三角形的两个锐角互余,即可求得P ∠的度数.【详解】解:40ADC ∠=︒,40ABC ∴∠=︒, AB 为O 的切线,点A 为切点,90OAB ︒∴∠=, 90904050P ABC ∴∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查切线的性质、圆周角定理、直角三角形的性质,解题的关键是利用数形结合的思想解答.7、A【解析】【分析】根据直径所对的圆周角为90°得90C ∠=︒,由三角形的内角和为180°,即可求出B .【详解】∵AB 为⊙O 的直径,∴90C ∠=︒,∴180180249066B A C ∠=︒-∠-∠=︒-︒-︒=︒.故选:A .【点睛】本题考查圆周角定理与三角形的内角和定理,掌握直径所对的圆周角为90°是解题的关键.8、C【解析】【分析】利用勾股定理求出AB 即可判断①正确;如图1中,过点D 作DM ⊥CA 交CA 的延长线于点M ,DN ⊥BC 于N .证明四边形CMDN 是正方形,求出CM ,可得结论②正确;利用图形法,即可判断③错误;利用图形法即可判断④正确.【详解】解:如图1中,连接AB.∵∠ACB =90°,∴AB 是直径, ∴22226810AB AC BC ,∴⊙O 的半径为5.故①正确,如图1中,连接AD,BD,过点D作DM⊥CA交CA的延长线于点M,DN⊥BC于N.∵CD平分∠ACB,∴∠ACD=∠BCD,∴AD BD,∴AD=BD,∵∠M=∠DNC=90°,CD=CD,∴△CDM≌△CDN(AAS),∴CM=CN.DM=DN,∵∠M=∠DNB=90°,DA=DB,∴Rt△DMA≌Rt△DNB(HL),∴AM=BN,∵∠M=∠MAN=∠DNC=90°,∴四边形CMDN是矩形,∵DM=DN,∴四边形CMDN是正方形,∴CD,∵AC+CB=CM-AM+CN+BN=2CM=14,∴CM=7,∴CD,故②正确,如图2中,满足条件的点E有4个,故③错误,如图3中,满足条件的点F有2个,故④正确,∴正确的结论是①②④,共3个故选:C.【点睛】本题考查了勾股定理,正方形的判定与性质,全等三角形的判定与性质,等腰三角形,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9、A【解析】【分析】根据点与圆的位置关系得出OP>3即可.【详解】解:∵⊙O的半径为3,点P在⊙O外,∴OP>3,故选:A.【点睛】本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外⇔d>r,点在圆上⇔d=r,点在圆内⇔d<r.10、B【解析】【分析】首先连接BD,CE,OE,由BC为⊙O的直径,根据直径所对的圆周角是直角,可得∠BDC=∠BEC=90°,然后由线段垂直平分线的性质,可得AB=BC,继而求得∠ABC的度数,则可求得∠BCE的度数.【详解】解:连接BD,CE,OE,∵BC为⊙O的直径,∴∠BDC=∠BEC=90°,∴BD⊥CD,∵AD=CD,∴AB=CB,∵∠A=70°,∠ACB=70°,∴∠ABC=180°−∠A−∠ACB=40°,∴∠BCE=90°−∠ABC=50°,∴∠BOE=2∠BCE=100°.故选:B.【点睛】此题考查了圆周角定理、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题1、21【解析】【分析】连接OD,作AG⊥CD于G,利用角平分线定义、直径所对的圆周角为直角与余角的性质推得∠ACD为45°,然后由等腰直角三角形的性质求出AG和CG的长,再利用垂径定理得出∠AOD=90°,于是由等腰直角三角形的性质求出AD的长度,则由勾股定理可求GD的长度,进而求出CD的长,现知△ACD 的底和高,则其面积可求.【详解】解:如图,连接OD,BD,过点A作AG⊥CD于G,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵CE⊥AB,∴∠ACE+∠CAB=90°,∴∠ACE=∠ABC,∵OC=OB,∵∠CBO=∠BCO,∴∠ACE=∠BCO,∵CD平分∠ECO,∴∠ECD=∠OCD,∴∠ACE+∠ECD=45°,∵AC=6,∴AG=CG=∵∠ACD=∠BCD=45°,∴AD=BD,∴OD⊥OA,∴OA=OD,∵AB =10,∴AD OA =,∴DG AG 2222523242,∴CD =CG +GD ==∴△ACD 的面积=12×CD ×AG =1221.故答案为:21.【点睛】本题考查角平分线定义,直径所对圆周角性质,等腰直角三角形性质,垂径定理,勾股定理三角形面积,掌握角平分线定义,直径所对圆周角性质,等腰直角三角形性质,垂径定理,勾股定理三角形面积是解题关键.2、70°【解析】【分析】根据邻补角互补求出ABC ∠,根据圆内接四边形的性质得出180D ABC ∠+∠=︒,求出D ∠,再根据等腰三角形的性质和三角形内角和定理求出DAC ∠即可.【详解】解:40CBE ∠=︒,180140ABC CBE ∴∠=︒-∠=︒, 四边形ABCD 是O 的内接四边形,180D ABC ,40D ∴∠=︒,AD CD =,1(180)702DAC DCA D ∴∠=∠=︒-∠=︒, 故答案为:70︒.【点睛】本题考查了圆内接四边形的性质,等腰三角形的性质,三角形内角和定理,圆心角、弧、弦之间的关系,圆周角定理等知识点,解题的关键是能熟记圆内接四边形的对角互补.3、120°【解析】【分析】根据扇形面积公式求出圆的半径,再根据弧长公式求出圆心角度数即可.【详解】解:∵一个扇形的弧长是10πcm ,面积是75πcm 2, ∴110752r ππ⨯=,解得,15r =, ∴10180n rππ=, ∴1510180n ππ=,解得,120n =,故答案为:120°.【点睛】本题考查了扇形面积和弧长的计算,解题关键是熟记扇形面积公式和弧长公式.4、144【解析】【分析】先设甲、乙、丙、丁的圆心角分别为α、β、γ、δ,根据扇形面积得出α:β:γ:δ=1:2:3:4,利用周角360°分别求出α=303166︒=︒,β=2α=72°,γ=3α=108°,δ=4α=144°即可. 【详解】 解;设甲、乙、丙、丁的圆心角分别为α、β、γ、δ,∴S 甲=απr 2360,S 乙=βπr 2360,S 丙=γπr 2360,S 丁=δπr 2360, ∵S 甲:S 乙:S 丙:S 丁=1:2:3:4, ∴απr 2360:βπr 2360:γπr 2360:δπr 2360=1:2:3:4, ∴α:β:γ:δ=1:2:3:4,∴α=0303166︒=︒,β=2α=72°,γ=3α=108°,δ=4α=144°, 故甲、乙、丙、丁四个扇形中圆心角度数最大的是144°.故答案为:144.【点睛】本题考查扇形面积,圆心角,掌握扇形面积与圆心角的关系是解题关键.5、12π【解析】【分析】设该圆圆心为O ,并用大写字母表示出其它点,作OC AB ⊥于点C .根据所作图形可知AC BC =,再根据题意可知11322OC OA OB cm ===,60AOC BOC ∠=∠=︒,即得出AOB ∠.结合勾股定理,在Rt OAC △中,可求出AC 的长,即可求出AB 的长,最后根据4()AOB AOB S S S S =--阴圆扇形,结合圆的面积公式、扇形的面积公式,三角形面积公式求出结果即可.【详解】如图,设该圆圆心为O ,其它点如图所示,并作OC AB ⊥于点C .根据垂径定理可知,AC BC =.∵该圆分别沿两条平行弦对折,且两弧都经过圆心, ∴11163222OC OA OB cm ===⨯=, ∴30OAC OBC ∠=∠=︒,∴903060AOC BOC ∠=∠=︒-︒=︒,∴6060120AOB ∠=︒+︒=︒.∵在Rt OAC △中,AC ,∴BC AC ==,∴AB =.∴222120614()64(3)12)3602AOB AOB S S S S cm πππ⋅=--=⋅--⨯=阴圆扇形.故答案为:12π【点睛】本题考查不规则图形的面积计算,涉及垂径定理,含30角的直角三角形的性质,勾股定理,圆的面积公式,扇形的面积公式.正确的作出辅助线是解答本题的关键.三、解答题1、 (1)见解析(2)4【解析】【分析】(1)由DE与圆O相切,利用切线的性质得到OD垂直于DE,再由DE垂直于MB,得到一对同旁内角互补,利用同旁内角互补两直线平行,得到OD与MB平行,利用两直线平行得到一对内错角相等,再由OD=OA,利用等边对等角得到一对角相等,等量代换可得出∠DAE=∠OAD,即AD为∠CAE的平分线,得证;(2)过O作OF垂直于MB,显然得到四边形ODEF为矩形,利用矩形的对边相等得到OD=EF,OF=DE,设圆的半径为rcm,由DE的长得出OF的长,由EF-AE=OD-EF表示出AF的长,在直角三角形AOF 中,利用勾股定理列出关于r的方程,求出方程的解即可得到半径r的长.【小题1】解:证明:连接OD,∵DE切圆O于D,∴OD⊥DE,∴∠ODE=90°,又∵DE⊥MB,∴∠DEB=90°,∴∠ODE+∠DEB=180°,∴OD∥MB,∴∠ODA=∠DAE,又∵OD=OA,∴∠ODA=∠OAD,∴∠DAE=∠OAD,则AD为∠CAM的平分线;【小题2】过O作OF⊥AB,显然四边形ODEF为矩形,则OF=DE,OD=EF,设圆的半径OD=EF=OA=r,∵AE=2,AD=4,∠AED=90°,∴DE=∴OF=DE=AF=EF-AE=r-2,在Rt△AOF中,根据勾股定理得:OA2=AF2+OF2,即r2=(r-2)2+(2,解得:r=4,故⊙O的半径为4.【点睛】此题考查了切线的性质,勾股定理,平行线的判定与性质,利用了转化及方程的思想,熟练掌握切线的性质是解本题的关键.2、(1)∠AEC=135°;(2)①BE+EA,理由见解析;②4【解析】【分析】(1)由等腰直角三角形的性质得∠CDA=90°,CD=DA,再由等边三角形的性质得DE=DA,∠DEA=∠EDA=60°,然后求出∠DEC=75°,即可求解;(2)①过点C作CH⊥CE交AE的延长线于点H,证△ACH≌△BCE(SAS),得BE=AH=HE+EACE+AE;②取AB的中点O,连接OC,由勾股定理得CF=5,再证A、B、C、E四点共圆,由圆周角定理得AB是圆的直径,AB的中点O是圆心,过点O作ON⊥CF于N,延长ON交圆O于点E,此时点E到CF的距离最大,△CEF面积的面积最大,然后由三角形面积求出ON=125,则EN=OE-ON=85,即可求解.(1)解:∵∠BCA=90°,BC=AC,点D是AB的中点,∴∠CDA=90°,CD=12AB=DA,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠EDA=60°,∴DC=DE,∠CDE=∠CDA-∠EDA=90°-60°=30°,∴∠DEC=12(180°-∠CDE)=12×(180°-30°)=75°,∴∠AEC=∠DEC+∠DEA=75°+60°=135°;(2)解:①线段BE,CE,EA之间的数量关系为:BE+EA,理由如下:过点C作CH⊥CE交AE的延长线于点H,如图2所示:则∠CEH =180°-∠AEC =180°-135°=45°,∴△ECH 是等腰直角三角形,∴CH =CE ,HE,∵∠BCA =∠ECH =90°,∴∠ACH =∠BCE ,在△ACH 和△BCE 中,AC BC ACH BCE CH CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACH ≌△BCE (SAS ),∴BE =AH =HE +EA+AE ;②取AB 的中点O ,连接OC ,如图3所示:∵∠BCA =90°,BC =AC ,∴△ACB 是等腰直角三角形,∴∠ABC =45°,∵O 是AB 的中点,∴OC ⊥AB ,OC =OA =12AB =12(AF +BF )=12×(1+7)=4,∴OF=OA-AF=4-1=3,在Rt△COF中,由勾股定理得:CF=,∵CF是定值,∴点E到CF的距离最大时,△CEF面积的面积最大,∵∠AEC=135°,∴∠ABC+∠AEC=180°,∴A、B、C、E四点共圆,∵∠BCA=90°,∴AB是圆的直径,AB的中点O是圆心,过点O作ON⊥CF于N,延长ON交圆O于点E,此时点E到CF的距离最大,△CEF面积的面积最大,∵S△OCF=12OC•OF=12CF•ON,∴431255OC OFONCF⋅⨯===,∵OE=OC=4,∴EN=OE-ON=4-125=85,∴△CEF面积的面积最大值为:12CF•EN=12×5×85=4.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质、四点共圆、圆周角定理、垂径定理、勾股定理、三角形面积等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质和圆周角定理,证明△ACH≌△BCE 是解题的关键.3、 (1)见解析(2)65°(3)23π【解析】【分析】(1)连接OB,根据等腰三角形的性质得到∠OAB=∠OBA,∠CPB=∠PBC,等量代换得到∠APO=∠CBP,根据三角形的内角和得到∠CBO=90°,于是得到结论;(2)根据等腰三角形和直角三角形的性质得到∠ABO=25°,∠APO=65°,根据三角形外角的性质得到∠POB=∠APO﹣∠ABO=40°,根据圆周角定理即可得到结论;(3)根据弧长公式即可得到结论.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;(2)解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=12(∠AOP+∠POB)=12×130°=65°;(3)解:由(2)得,∠AQB=65°,∴∠AOB=130°,∴AmB的长=AQB的长=23018180π⋅⨯=23π.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,弧长的计算,圆周角定理,熟练正确切线的判定和性质定理是解题的关键.4、90°的圆周角所对的弦是直径【解析】【分析】(1)由勾股定理即可得出答案;(2)取圆与网格线的交点D 、E ,连接DE 交AC 于O ,点O 即为经过出点A ,B 的圆的圆心;由圆周角定理即可得出结论.【详解】解:(1)由勾股定理得:AB ;; (2)如图试所示:取圆与网格线的交点D 、E ,连接DE 交AC 于O ,点O 即为经过出点A ,B 的圆的圆心;理由如下:∵∠EAD =90°,∴DE 为圆O 的直径,∵经过点A ,B 的圆的圆心在边AC 上,∴DE 与AC 的交点即为点O ;故答案为:90°的圆周角所对的弦是直径.【点睛】本题考查了圆周角定理、勾股定理;熟练掌握圆周角定理和勾股定理是解题的关键.5、 (1)见解析(2)CE DE =【解析】【分析】(1)连接OE,根据切线的性质得到∠OEB=90°,进而得到OE//AC,根据平行线的性质得到∠OEA=∠EAC,根据等腰三角形的性质得到∠OEA=∠OAE,根据角平分线的定义证明结论;(2)根据圆周角定理得到∠AED=90°,证明△DAE∽△EAC,根据相似三角形的性质得到CE AE DE AD,根据余弦的定义计算,得到答案.(1)证明:连接OE,∵BC是⊙O的切线,∴OE⊥BC,即∠OEB=90°,∵∠C=90°,∴OE//AC,∴∠OEA=∠EAC,∵OE=OA,∴∠OEA=∠OAE,∴∠OAE=∠EAC,即AE平分∠BAC;(2)∵AD为⊙O的直径,∴∠AED=90°,∵∠OAE =∠EAC ,∠C =90°,∴△DAE ∽△EAC , ∴CE AE DE AD=, ∵∠C =90°,∠B =30°,∴∠BAC =90°-30°=60°,∴∠DAE =12∠BAC =30°,∵cos AE DAE AD ∠==cos30︒=∴CE AE DE AD == 【点睛】本题考查的是切线的性质、圆周角定理、相似三角形的判定和性质、锐角三角函数的定义,根据圆的切线垂直于经过切点的半径得到OE ⊥BC 是解题的关键.。

鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(培优 含答案)

鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(培优 含答案)

鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(培优 含答案)1.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC =5,CD =3,AB = ,则⊙O 的直径等于( )A .52B .C .D .72.如图,已知△ABC 的外接圆⊙O 的半径为3,AC =4,则sinB 的值是( )A .B .C .D .3.如图,A ,B ,C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是( )A.25°B.50°C.60°D.90°4.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC=8,AH=6,⊙O 的半径OC=5,则AB 的值为( )A.5B.132C.7D.1525.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4.P 是△ABC 内部的一个动点,且满足∠P AB=∠PB C.则线段CP 长的最小值为( )A.32B.2C.13D.136.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,则下列说法中不正确的是( )A .当a ﹤5时,点B 在⊙A 内 B .当1﹤a ﹤5时,点B 在⊙A 内C .当a ﹤-1时,点B 在⊙A 外D .当a ﹥5时,点B 在⊙A 外7.如图,在矩形ABCD 中,AB=3,AD=4,若以点A 为圆心,以4为半径作⊙A ,则下列各点中在⊙A 外的是( )A.点AB.点BC.点CD.点D8.如图,在△ABC 中,AB=AC ,∠ABC=45°,以AB 为直径的⊙O 交BC 于点D ,若,则图中阴影部分的面积为( )A.π+1B.π+2C.2π+2D.4π+19.已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是_____. 10.如图,P 是⊙O 外一点,A 、B 、C 是⊙O 上的三点,∠AOB=60°,PA 、PB 分别交ACB 于M 、N 两点,则∠APB 的范围是______.11.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为______.12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图(从上向下垂直投影)如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是________cm.13.如图,在平面直角坐标系中,点P(3,4),⊙P半径为2,A(2.6,0),B(5.2,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值为_____________.14.阅读下面材料:如图,AB是半圆的直径,点C在半圆外,老师要求小明用无刻度的直尺画出△ABC的三条高.小明的作法如下:(1)连接AD,BE,它们相交于点P;(2)连接CP并延长,交AB于点F.所以,线段AD,BE,CF就是所求的△ABC的三条高.请回答,小明的作图依据是________.15.已知AB、CD为⊙O的两条弦,圆心O到它们的距离分别为OM、O N,如果AB>CD,那么OM____ON。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版2020九年级数学圆的有关性质课后练习题1(附答案)一.选择题(共10小题)1.如图是一个由四个同心圆构成的靶子示意图,点O为圆心,且OA=AB=BC =CD=5,那么周长是接近100的圆是()A.OA为半径的圆B.OB为半径的圆C.OC为半径的圆D.OD为半径的圆2.我们知道沿直线前进的自行车车轮上的点既随着自行车作向前的直线运动,又以车轴为圆心作圆周运动,如果我们仔细观察这个点的运动轨迹,会发现这个点在我们眼前划出了一道道优美的弧线.其实,很早以前人们就对沿直线前进的马车车轮上的点的轨迹产生了浓厚的研究兴趣,有人认为这个轨迹是一段段周而复始的圆弧,也有人认为这个轨迹是一段段的抛物线.你认为呢?摆线(Cycloid):当一个圆沿一条定直线作无滑动的滚动时,动圆圆周上一个定点的轨迹叫做摆线.定直线称为基线,动圆称为母圆,该定点称为摆点:现做一个小实验,取两枚相同的硬币并排排列,如果我们让右侧的硬币绕左侧硬币作无滑动的滚动,那么:(1)当右侧硬币上接触点A的运动轨迹大致是什么形状?(2)当右侧硬币转到左侧时,硬币面上的图案向还是向下?(3)当右侧硬币转回原地时,硬币自身转动了几圈?()A.一条围绕于硬币的封闭曲线;向上;1圈B.一条摆线;向上;1圈C.一条围绕于硬币的封闭曲线;向上;2圈D.一条摆线;向下;2圈3.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A.B.C.D.不能确定4.有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.6.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2B.C.3D.7.如图,点A,B,C都在⊙O上,∠C+∠O=63°,则∠O的度数是()A.21°B.27°C.30°D.42°8.如图,AB是⊙O的直径,C、D为圆上两点,∠D=34°,则∠BOC的度数为()A.102°B.112°C.122°D.132°9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=90°,则∠BCD的度数是()A.45°B.90°C.135°D.150°10.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定二.填空题(共10小题)11.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010πcm后才停下来.则这只蚂蚁停在点.12.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成部分;圆的十九条弦最多可将圆分成部分.13.如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=α中,一定成立的是(填序号).14.如图,多边形ABDEC是由边长为m的等边△ABC和正方形BDEC组成,⊙O过A、D、E三点,则∠ACO=.15.如图,⊙O的弦AB=8,C是AB的中点,OC=3,则⊙O的半径为.16.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.17.菱形ABCD中,∠A=40°,点P在以A为圆心,对角线BD长为半径的圆上,且BP =BA,则∠PBD的度数为.18.如图,⊙O的两条直径分别为AB、CD,弦CE∥AB,∠COE=40°,则∠BOD=°.19.如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为度.20.如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠P AB=∠PBC,则线段CP的最小值是.三.解答题(共8小题)21.如图,大半圆中有n个小半圆,大半圆弧长为L1,n个小半圆的弧长和为L2,找出L1和L2的关系并证明你的结论.(友情提示:利用弧长公式)22.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?23.已知,如图,AD=BC.求证:AB=CD.24.如图,A、B是⊙O上的两点,∠AOB=120°,C是的中点.求证:四边形AOBC 是菱形.25.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB =8,CD=2,求⊙O的半径及EC的长.26.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D,E,且.(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求BD的长.27.如图,四边形ABCD内接于⊙O,AC与BD为对角线,∠BCA=∠BAD,过点A作AE ∥BC交CD的延长线于点E.(1)求证:EC=AC.(2)若cos∠ADB=,BC=10,求DE的长.28.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(网格小正方形边长为1)(1)请写出该圆弧所在圆的圆心P的坐标;⊙P的半径为(结果保留根号);(2)判断点M(﹣1,1)与⊙P的位置关系.参考答案与试题解析一.选择题(共10小题)1.如图是一个由四个同心圆构成的靶子示意图,点O为圆心,且OA=AB=BC=CD=5,那么周长是接近100的圆是()A.OA为半径的圆B.OB为半径的圆C.OC为半径的圆D.OD为半径的圆【解答】解:根据圆的周长公式,得若2πR=100,则R≈16根据题意中的数据,OC最接近.故选:C.2.我们知道沿直线前进的自行车车轮上的点既随着自行车作向前的直线运动,又以车轴为圆心作圆周运动,如果我们仔细观察这个点的运动轨迹,会发现这个点在我们眼前划出了一道道优美的弧线.其实,很早以前人们就对沿直线前进的马车车轮上的点的轨迹产生了浓厚的研究兴趣,有人认为这个轨迹是一段段周而复始的圆弧,也有人认为这个轨迹是一段段的抛物线.你认为呢?摆线(Cycloid):当一个圆沿一条定直线作无滑动的滚动时,动圆圆周上一个定点的轨迹叫做摆线.定直线称为基线,动圆称为母圆,该定点称为摆点:现做一个小实验,取两枚相同的硬币并排排列,如果我们让右侧的硬币绕左侧硬币作无滑动的滚动,那么:(1)当右侧硬币上接触点A的运动轨迹大致是什么形状?(2)当右侧硬币转到左侧时,硬币面上的图案向还是向下?(3)当右侧硬币转回原地时,硬币自身转动了几圈?()A.一条围绕于硬币的封闭曲线;向上;1圈B.一条摆线;向上;1圈C.一条围绕于硬币的封闭曲线;向上;2圈D.一条摆线;向下;2圈【解答】解:(1)根据题意中的表述,可知其运动轨迹是一条围绕于硬币的封闭曲线;(2)当右侧硬币转到左侧时,硬币自身转动了1圈,故硬币面上的图案向上;(3)分析可得:当右侧硬币转回原地时,硬币自身转动2圈.故选:C.3.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A.B.C.D.不能确定【解答】解:在同圆和等圆中相等的弦所对的弧才会相等,要注意同圆和的条件,本题是两个不同的圆,所以无法判断两弦所对的弧的大小,故选D.4.有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:①在同圆或等圆中,能够重合的弧叫做等弧,等弧的长度相等;故①正确;②正确;③在同圆或等圆中,相等的圆心角所对的弧相等;故③错误;④圆中,90°圆周角所对的弦是直径;故④错误;⑤在同圆中,等弦所对的圆周角相等或互补;故⑤错误;因此正确的结论是①②;故选:B.5.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.【解答】解:∵CD为直径,CD⊥AB,∴=,∴∠AOD=2∠C,∵CD⊥AB,AE⊥BC,∴∠AFO=∠CEO=90°,在△AFO和△CEO中∴△AFO≌△CEO(AAS),∴∠C=∠A,∴∠AOD=2∠A,∵∠AFO=90°,∴∠A=30°,∵AO=1,∴OF=AO=,AF=OF=,同理CE=,OE=,连接OB,∵CD⊥AB,AE⊥BC,CD、AE过O,∴由垂径定理得:BF=AF=,BE=CE=,∴四边形BEOF的面积S=S△BFO+S△BEO=××+=,故选:C.6.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2B.C.3D.【解答】解:如图所示,AB⊥CD,根据垂径定理,BD=AB=×8=4.由于圆的半径为5,根据勾股定理,OD===3,CD=5﹣3=2.故选:A.7.如图,点A,B,C都在⊙O上,∠C+∠O=63°,则∠O的度数是()A.21°B.27°C.30°D.42°【解答】解:∵2∠C=∠O,∵∠C+∠O=63°,∴∠O=42°,故选:D.8.如图,AB是⊙O的直径,C、D为圆上两点,∠D=34°,则∠BOC的度数为()A.102°B.112°C.122°D.132°【解答】解:连接BC,∵∠D=34°,∴由圆周角定理得:∠B=∠D=34°,∵OC=OB,∴∠OCB=∠B=34°,∴∠BOC=180°﹣∠B﹣∠OCB=112°,故选:B.9.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=90°,则∠BCD的度数是()A.45°B.90°C.135°D.150°【解答】解:∵=,∴∠A=∠DOB=×90°=45°,∵∠A+∠C=180°,∴∠C=180°﹣45°=135°,故选:C.10.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【解答】解:∵圆心P的坐标为(﹣3,4),∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.故选:B.二.填空题(共10小题)11.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010πcm后才停下来.则这只蚂蚁停在点E.【解答】解:A开始ABCDEFCGA的顺序转一周的路径长是:8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是:2010π÷12π=167…6π.即转167周以后又走了6πcm.从A到B得路长是:2π,再到C的路线长也是2π,从C到D,到E的路线长是2π,则从A行走6πcm到E点.故答案是:E.12.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成11部分;圆的十九条弦最多可将圆分成191部分.【解答】解:一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n条弦将圆分成1+1+2+3+…+n=1+部分,当n=19时,1+=191部分.13.如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABC=α中,一定成立的是①③(填序号).【解答】解:如图,连接OC,设OB交CD于K.∵AB=CD,OD=OC=OB=OA,∴△AOB≌△COD(SSS),∴∠CDO=∠OBA,∵∠DKO=∠BKE,∴∠DOK=∠BEK=α,即∠BOD=α,故①正确,不妨设,∠OAB=90°﹣α,∵OA=OB,∴∠OAB=∠OBA,∴∠OBE+∠BEK=90°,∴∠BKE=90°,∴OB⊥CD,显然不可能成立,故②错误,∵CD=AB,∴=,∴=,∴∠ABC=∠DOB=α,故③正确.故答案为①③.14.如图,多边形ABDEC是由边长为m的等边△ABC和正方形BDEC组成,⊙O过A、D、E三点,则∠ACO=75°.【解答】解:∵多边形ABDEC是由边长为m的等边△ABC和正方形BDEC组成,∴AC=EC,∠ACE=∠ACB+∠ECB=60°+90°=150°,∵⊙O过A,D,E三点,∴AO=EO,又OC=OC,∴△ACO≌ECO(SSS),∴∠ACO=∠ECO=∠ACE=1/2×150°=75°,故答案为:75°.15.如图,⊙O的弦AB=8,C是AB的中点,OC=3,则⊙O的半径为5.【解答】解:连接OA,∵⊙O的弦AB=8,C是AB的中点,OC过O,∴OC⊥AB,AC=BC=AB=4,由勾股定理得:OA===5,即⊙O的半径为5,故答案为:5.16.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升10或70cm.【解答】解:作半径OD⊥AB于C,连接OB由垂径定理得:BC=AB=30cm,在Rt△OBC中,OC==40cm,当水位上升到圆心以下时水面宽80cm时,则OC′==30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.17.菱形ABCD中,∠A=40°,点P在以A为圆心,对角线BD长为半径的圆上,且BP=BA,则∠PBD的度数为110°或30°.【解答】解:如图,当点P在直线AB的右侧时.连接AP.∵AB=AD,∠BAD=40°,∴∠ABD=∠ADB=70°,∵AB=AB,AD=PB,BD=P A,∴△ABD≌△BAP(SSS),∴∠ABP=∠BAD=40°,∴∠PBD=∠ABD﹣∠ABP=30°,当点P′在AB的左侧时,同法可得∠ABP′=40°,∴∠P′BD=40°+70°=110°,故答案为30°或110°.18.如图,⊙O的两条直径分别为AB、CD,弦CE∥AB,∠COE=40°,则∠BOD=110°.【解答】解:∵OC=OE,∴∠ECO=∠OEC,∴∠OCE=(180°﹣∠COE)=×(180°﹣40°)=70°,∵CE∥AB,∴∠AOD=∠OCE=70°,∴∠BOD=180°﹣70°=110°,故答案为110.19.如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为100度.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠B+∠ADC=180°,∴∠B=180°﹣130°=50°,∴∠AOC=2∠B=100°.故答案为:100.20.如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠P AB=∠PBC,则线段CP的最小值是﹣4.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,∵在矩形ABCD中,AB=8,BC=5,在RT△BCO中,∵∠OBC=90°,BC=5,OB=4,∴OC=,∴PC=OC﹣OP=﹣4.∴PC最小值为﹣4.故答案为:﹣4.三.解答题(共8小题)21.如图,大半圆中有n个小半圆,大半圆弧长为L1,n个小半圆的弧长和为L2,找出L1和L2的关系并证明你的结论.(友情提示:利用弧长公式)【解答】解:L1=L2.理由如下:设n个小半圆半径依次为r1,r2,…,r n.则大圆半径为(r1+r2+…+r n)∴L1=π(r1+r2+…+r n),L2=πr1+πr2+…+πr n=π(r1+r2+…+r n),∴L1=L2.22.实践探究:有一个周长62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为应选哪种比较合适?安装在什么地方?【解答】解:设圆形草坪的半径为r,则由题意知,2πr=62.8,解得:r≈10m.所以选射程为10米的喷灌装置,安装在圆形草坪的中心处.23.已知,如图,AD=BC.求证:AB=CD.【解答】证明:∵AD=BC,∴,∴,即,∴AB=CD.24.如图,A、B是⊙O上的两点,∠AOB=120°,C是的中点.求证:四边形AOBC 是菱形.【解答】证明:连OC,如图,∵C是的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.25.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB =8,CD=2,求⊙O的半径及EC的长.【解答】解:∵OD⊥弦AB,AB=8,∴AC===4,设⊙O的半径OA=r,∴OC=OD﹣CD=r﹣2,在Rt△OAC中,r2=(r﹣2)2+42,解得:r=5,连结BE,如图,∵OD=5,CD=2,∴OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE=.26.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D,E,且.(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求BD的长.【解答】解:(1)△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90°,∴AE⊥BC,∵∠C+∠CAE=90°,∠ABC+∠BAE=90°,∴∠C=∠ABC,∴AC=AB,∴△ABC为等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴,在Rt△ABE中,∵AB=10,BE=6,∴AE===8,∵AB为直径,∴∠ADB=90°,∴,∴,27.如图,四边形ABCD内接于⊙O,AC与BD为对角线,∠BCA=∠BAD,过点A作AE ∥BC交CD的延长线于点E.(1)求证:EC=AC.(2)若cos∠ADB=,BC=10,求DE的长.【解答】(1)证明:∵BC∥AE,∴∠ACB=∠EAC,∵∠ACB=∠BAD,∴∠EAC=∠BAD,∴∠EAD=∠CAB,∵∠ADE+∠ADC=180°,∠ADC+∠ABC=180°,∴∠ADE=∠ABC,∵∠EAD+∠ADE+∠E=180°,∠BAC+∠ABC+∠ACB=180°,∴∠E=∠ACB=∠EAC,∴CE=CA.(2)解:设AE交⊙O于M,连接DM,作MH⊥DE于H.∵∠EAD=∠CAB,∴=,∴DM=BC=10,∵∠MDE+∠MDC=180°,∠MDC+∠MAC=180°,∴∠MDE=∠CAM,∵∠E=∠CAE,∴∠E=∠MDE,∴MD=ME=10,∵MH⊥DE,∴EH=DH,∵∠ADB=∠ACB=∠BAD=∠E,∴cos∠E==,∴EH=4,∴DE=2EH=8.28.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(网格小正方形边长为1)(1)请写出该圆弧所在圆的圆心P的坐标(2,﹣1);⊙P的半径为2(结果保留根号);(2)判断点M(﹣1,1)与⊙P的位置关系圆内.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示:则圆心是(2,﹣1),r==2,d==<2,故答案为:(2,﹣1),2,圆内。

相关文档
最新文档