弹性力学复习题

合集下载

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习 学习材料 试题与参考答案

《弹性力学》复习学习材料试题与参考答案一、单选题1.利用有限单元法求解弹性力学问题时,不包括哪个步骤(D)A.结构离散化B.单元分析C.整体分析D.应力分析2.如果必须在弹性体上挖空,那么孔的形状应尽可能采用(C)A.正方形B.菱形C.圆形D.椭圆形3.每个单元的位移一般总是包含着(B)部分A.一B.二C.三D.四4.在弹性力学中规定,线应变(C),与正应力的正负号规定相适应。

A.伸长时为负,缩短时为负B.伸长时为正,缩短时为正C.伸长时为正,缩短时为负D.伸长时为负,缩短时为正5.在弹性力学中规定,切应变以直角( C ),与切应力的正负号规定相适应。

A.变小时为正,变大时为正B.变小时为负,变大时为负C.变小时为负,变大时为正D.变小时为正,变大时为负6.物体受外力以后,其内部将发生内力,它的集度称为(C )A应变B应力C变形D切变力7.平面问题分为平面(A)问题和平面( )问题。

A应力,应变B切变、应力C内力、应变D外力,内力8.在弹性力学里分析问题,要建立( C )套方程。

A一B二C三D四9.下列关于几何方程的叙述,没有错误的是(C)A.由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移B.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移C.几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量D.几何方程是一点位移与应变分量之间的唯一关系10.用应力分量表示的相容方程等价于(B)A.平衡微分方程B.几何方程和物理方程C.用应变分量表示的相容方程D.平衡微分方程.几何方程和物理方程11.平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z轴方向)(C)A.xB.yC.zD.x,y,z12.在平面应力问题中(取中面作xy平面)则(C)A.σz=0,w=0B.σz≠0,w≠0C.σz=0,w≠0D.σz≠0,w=013.下面不属于边界条件的是(B)。

弹性力学考试和答案

弹性力学考试和答案

弹性力学考试和答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:A2. 弹性力学中,位移场的三个基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:B3. 弹性力学中,平面应力问题与平面应变问题的主要区别是()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:C4. 弹性力学中,圣维南原理是指()。

A. 应力集中现象B. 应力释放现象C. 应力平衡现象D. 应力松弛现象答案:B5. 弹性力学中,莫尔圆表示的是()。

A. 应力状态B. 应变状态C. 位移状态D. 应力-应变关系答案:A6. 弹性力学中,平面问题的基本解法有()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A7. 弹性力学中,轴对称问题的基本解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A8. 弹性力学中,扭转问题的解法是()。

A. 直接积分法B. 叠加原理C. 变分法D. 能量法答案:A9. 弹性力学中,平面应力问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:A10. 弹性力学中,平面应变问题的应力函数是()。

A. 单一函数B. 两个函数C. 三个函数D. 四个函数答案:B二、多项选择题(每题3分,共15分)11. 弹性力学中,应力状态的基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:AC12. 弹性力学中,位移场的三个基本方程包括()。

A. 平衡方程B. 几何方程C. 物理方程D. 边界条件答案:BC13. 弹性力学中,平面应力问题与平面应变问题的主要区别包括()。

A. 应力分量不同B. 位移分量不同C. 应变分量不同D. 边界条件不同答案:AC14. 弹性力学中,圣维南原理包括()。

(完整word版)弹性力学复习题(word文档良心出品)

(完整word版)弹性力学复习题(word文档良心出品)

弹性力学复习题一.判断与改错1. 材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。

( × )2. 在弹性力学和材料力学里关于应力的正负规定是一样的。

(× )3. 在体力是常数的情况下,应力解答将与弹性常量无关。

( √ )4. 三次或三次以下的多项式总能满足相容方程。

(√ )5. 对于纯弯曲的细长梁,由材料力学得到的挠曲线是它的精确解。

(√ )二.简答题1. 什么是平面应力问题及平面应变问题?答:平面应力问题:对于含有以下条件:(1)等厚度的薄板; (2)体力x f 、y f 作用于体内,∥xy 面,沿板厚不变;(3)面力-x f 、-y f 作用于板边,∥xy 面,沿板厚不变; (4)约束u 、v 作用于板边,∥xy 面,沿板厚不变。

那么可以简化为应力中只有平面应力x σ,y σ,xy τ 存在并且只有xy 面内的面力或体力的问题。

平面应变问题:对于含有以下条件:(1)很长的常截面柱体 ;(2)体力x f 、y f 作用于体内,∥xy 面,沿长度方向不变;(3)面力-x f 、-y f 作用于柱面,∥xy 面,沿长度方向不变;(4)约束u 、v 作用于柱面,∥xy 面,沿长度方向不变。

那么可以简化为应变中只有平面应变x ε,y ε,xy γ 存在并且只有xy 面内的面力或体力的问题。

2. 简述圣维南原理 ?圣维南原理表明了什么?答:圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应力分量将有显著的改变,但远处所受的影响可以不计。

圣维南原理表明:在小边界上进行面力的静力等效变换后,只影响近处(局部区域)的应力,对绝大部分弹性体区域的应力没有明显影响。

3. 何谓逆解法和半逆解法?答:所谓逆解法,就是先按某种方法给出一组满足全部基本方程的应力分量或位移分量,然后考察,在确定的坐标系下,对于形状和几何尺寸完全确定的物体,当其表面受什么样的面力作用或具有什么样的位移时,才能得到这组解答。

弹性力学复习题---有答案-知识归纳整理

弹性力学复习题---有答案-知识归纳整理

知识归纳整理一、挑选题1. 下列材料中,( D )属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

2 对于弹性力学的正确认识是(A )。

A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

3. 弹性力学与材料力学的主要不同之处在于( B )。

A. 任务;B. 研究对象;C. 研究想法;D. 基本假设。

4. 所谓“彻底弹性体”是指( A )。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时光历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

5. 所谓“应力状态”是指( B )。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,所以应力矢量是不可确定的。

6. 变形协调方程说明( B )。

A. 几何方程是根据运动学关系确定的,所以对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。

7. 下列对于弹性力学基本方程描述正确的是( A )。

A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值延续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最终需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .几何方程B .边界条件C .数值想法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。

答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。

其中,τ_xy表示________面上的切应力。

答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。

答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。

弹性模量E = 200 GPa,泊松比μ = 0.3。

求应变分量ε_x, ε_y, γ_xy。

解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

简明弹性力学复习资料

简明弹性力学复习资料一、单项选择题1.关于弹性力学的正确认识是(A)计算力学在工程结构设计中的作用日益重要(B)弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题做假设(C)任何弹性变形材料都是弹性力学的研究对象(D)弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析2.下列对象不属于弹性力学研究对象的是(A)(B)板壳(C)块体(D)质点3.下列关于几何方程的叙述,没有错误的是(A)由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移。

(B)几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移。

(C)几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量。

(D)几何方程是一点位移与应变分量之间的唯一关系。

4.应力状态分析是建立在静力学基础上的,这是因为(A)没有考虑面力边界条件;(B)没有讨论多连域的变形;(C)没有涉及材料本构关系;(D)没有考虑材料的变形对于应力状态的影响5.切应力互等定理根据条件成立(A)纯剪切(B)任意应力状态(C)三向应力状态(D)平面应力状态6.下列关于“刚体转动”的描述,认识正确的是(A)刚性转动描述了微分单元体的方位变化,与变形位移一起构成弹性体的变形(B)刚性转动分量描述的是一点的刚体转动位移,因此与弹性体的变形无关(C)刚性转动分量可以确定弹性体的刚体位移(D)刚性转动位移也是位移的导数,因此它描述了一点的变形7.变形协调方程说明(A)几何方程是根据运动学关系确定的,因此关于弹性体的变形描述是不正确的;(B)微分单元体的变形必须受到变形协调条件的约束;(C)变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;(D)变形是由应变分量和转动分量共同组成的。

8.各向异性材料的弹性常数为(A)9个(B)21个(C)3个(D)13个9.弹性力学的解的唯一性定理在条件成立(A)具有相同体力和面力边界条件;(B)具有相同位移约束;(C)相同材料;(D)上述3条同时成立10.关于弹性力学的叠加原理,应用的基本条件不包括(A)小变形条件;(B)材料变形满足完全弹性条件;(C)材料的本构关系满足线性弹性条件(D)应力应变关系是线性完全弹性体二、填空题1.在弹性力学中规定:切应变以直角时为正,时为负,与的正负号规定相适应。

弹性力学复习

弹性力学复习指导一、问答题1. 试叙述弹性力学的基本假设及这些基本假定在建立弹性力学基本方程时的作用。

(1)连续性,所有的物理量均可以用连续函数,从而可以应用数学分析的工具(2)完全弹性,物体中的应力及应变之间的物理关系可以用胡克定律来表示(3)均匀性,物体的弹性常数等不随位置坐标而变化(4)各向同性,弹性常数等也不随方向而变化(5)小变形假定,简化几何方程,简化平衡微分方程2. 叙述平面应力问题在结构形状、所受外力和约束有何特点。

答:平面应力问题一般对于等厚度薄板(z方向尺寸远小于板面尺寸的等厚度薄板)。

外力平行于板面作用在板边,且沿板厚不变,版面上无面力,z方向的分力为0。

约束只作用于板边,其方向平行于中面(x0y面),且沿厚度(z向)不变,只有作用于板边的x,y向的边界约束存在。

3. 叙述平面应变问题在结构形状、所受外力和约束有何特点。

答:平面应变问题一般对于常截面长柱体(z方向尺寸远大于截面尺寸的等截面柱体)。

外力垂直柱体轴线,且沿长度方向不变,z方向分力为0。

约束只作用于柱面,其方向平行于中面(x0y面),且沿厚度(z向)不变,只有作用于板边的x,y向的边界约束存在。

4.试叙述在大边界上不能应用圣维南原理。

答:圣维南原理是基于静力等效原理,当将面力的等效变换范围应用到大边界上,则必然使整个物体的应力状态都改变,所以大边界不能应用静力等效,在大边界上不能应用圣维南原理。

5. 试叙述弹性力学中解的叠加定理。

答:在线弹性和小变形假定下,作用于弹性体上几组荷载产生的总效应(应力和变形),等于每组荷载产生的效应之和,且及加载顺序无关(p135)6. 试叙述弹性力学中虚位移原理。

答:假定处于平衡状态的弹性体在虚位移过程中,没有温度的改变,也没有速度的改变,既没有热能和动能的改变,则按照能量守恒定理,形变势能的增加,等于外力势能的减少,也就等于外力所做的功,即所谓虚功。

(p135)7. 有限元方法中,每个单元都是一个连续体。

弹性力学期末考试复习题

弹性力学期末考试复习题
一、选择题
1. 弹性力学的基本假设是什么?
A. 材料是均匀的
B. 材料是各向同性的
C. 材料是线弹性的
D. 所有选项都是
2. 弹性模量和泊松比之间有什么关系?
A. 它们是独立的
B. 它们之间存在数学关系
C. 弹性模量总是大于泊松比
D. 泊松比总是小于0.5
二、简答题
1. 简述胡克定律的基本内容及其适用范围。

2. 解释什么是平面应力问题和平面应变问题,并给出它们的区别。

三、计算题
1. 给定一个矩形板,尺寸为2米×1米,厚度为0.1米,材料的弹性
模量为200 GPa,泊松比为0.3。

若在板的一侧施加均匀压力为1 MPa,求板的中心点的位移。

2. 一个圆柱形压力容器,内径为2米,外径为2.05米,材料的弹性
模量为210 GPa,泊松比为0.3。

求在内部压力为10 MPa时,容器壁
的最大应力。

四、论述题
1. 论述弹性力学在工程实际中的应用及其重要性。

2. 讨论材料的非线性行为对弹性力学分析的影响。

五、案例分析题
分析一个实际工程问题,如桥梁、大坝或高层建筑的结构设计,说明
在设计过程中如何应用弹性力学的原理来确保结构的稳定性和安全性。

结束语
弹性力学是一门理论性和实践性都很强的学科,希望同学们能够通过
本次复习,加深对弹性力学基本原理的理解和应用能力,为解决实际
工程问题打下坚实的基础。

祝大家考试顺利!。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。

2. 在弹性碰撞中,两个物体的速度满足_________定律。

3. 弹簧的弹簧常数_________,表示弹簧的_________。

4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。

5. 弹性模量是衡量材料_________的物理量。

四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。

(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。

求物体滑到斜面底部时的速度。

(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。

它们从静止开始相互碰撞,求碰撞后A和B的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11/14
2
南昌工程学院
满足,而在次要边界上可以 满足。 11、 解答受内外压力的厚壁圆筒问题,除用边界条件外,还用 条件确定常数。 12、 刚体位移相应于 应变状态。 13、 一组可能的应力分量应满足: 、 和 。 14、 体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为 ; 面 力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为 ; 体力和面 力符号的规定为以 为正; 应力是作用于截面单位面积的力, 应力的量纲 为 ,应力符号的规定为: 。 15、 小孔口应力集中现象中有两个特点:一是 ,即孔附近的应力远大于远处的应 力,或远大于无孔时的应力。二是 ,由于孔口存在而引起的应力扰动范围主要 集中在距孔边 1.5 倍孔口尺寸的范围内。 16、 弹性力学中,正面是指 的面,负面是指 的 面 。 17、 利用有限单元法求解弹性力学问题时,简单来说包含 、 、 三个主要步骤。 18、 在有限元计算中,需要将体力、面力等荷载向结点移植,这种移植必须按照静力等效 的原则进行。对于变形体,所谓静力等效是指 。 19、 所谓绕节点平均法是指 ; 所谓二单元平均法是指 。 20、 单元刚度矩阵的第一行第二列元素 k12 的物理意义是 。单元刚度矩阵决定于单元的 、 和 ,而与单元的 无关。 21、 为了提高有限元分析的精度,一般采用两种方法:一是 ;二是 。 22、 一般而言产生轴对称应力状态的条件是弹性体的 和 是轴对称的。 23、 由于求解微分方程边值问题的困难,在弹性力学中先后发展了三种数值解法,分别是 、 和 。
D、 M L T , M L T , M L T ) 。 B、 1, M L T , M L T
-2 -2 -2 -2 -2 -2 2
C、 M L T , M L T , M L T D、 M L T , M L T , M L T 16、 下列力不是体力的是( ) 。 A、重力 B、惯性力 C、电磁力 D、静水压力 17、 下列问题可能简化为平面应变问题的是( ) 。 A、受横向集中荷载的细长梁 B、挡土墙 C、楼板 D、高速旋转的薄圆板 18、 在有限单元法中是以( )为基本未知量的。 A、结点力 B、结点应力 C、结点应变 D、结点位移 19、 弹性力学平面问题的基本方程共有 8 个,平衡方程、几何方程和物理方程分别是 ( ) 。 A、3 个,4 个,1 个 B、3 个,3 个,2 个 C、2 个,3 个,3 个 D、3 个,2 个,3 个
5、 常体力情况下, 按应力求解平面问题可进一步简化为按应力函数 求解, 应力函数 必 须满足哪些条件? 6、 平面应力问题与平面应变问题各有什么特点,典型工程实例有哪些?在什么条件下,平
11/14
3
南昌工程学院
面应力问题的 x y xy 与平面应变问题的 x y xy 是相同的。 7、 平面应力和平面应变各指什么?哪种情况下有近似?为什么?弹性力学平面问题三类 基本方程。 8、 简述应变协调方程的物理意义,并写出平面条件下的应变协调方程; 9、 在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假设?
l cos 30 0 、m cos 60 0 斜面上的 X N 、Y N 、 N 、 N 。
7. 已知: (a) Ay
4 3
2
y
2
2
x 2 Bxy C x 2 y 2
2 3 4
(b) Ax Bx y Cx y Dxy Ey 以上两式能否作为平面问题应力函数的表达式?若能,则需要满足什么条件。 8. 试写出应力边界条件,用极坐标形式。
三、简答题
1、 弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么 用途? 2、 面力、 体力与应力的正负号规定是什么, 要会标明单元体指定面上的应力、 面力及体力。 3、 什么是主平面、主应力、应力主方向。课本 P17 4、 弹性力学分析问题,要从几方面考虑?各方面反映的是那些变量间的关系?
提示:考察是否满足变形协调方程。 3. 检查下面的应力分量在体力为零时是否能成为可能4 y 2 , xy 8 xy
提示:是否满足应力表达的相容方程。 4. 5. 已知物体内某点的应力分量为 x 100 , y 50 , xy 10 50 ,试求该点的主应力
7、 8、
z
,z
方程, 个 方 弹性力学平面问题的基本方程包括___ 个 程, 个 方程。试分别写出。 9、 用应力函数 求解平面问题,当体力为常量时,在直角坐标系下的应力分量表达式为
x
, y
, xy
;应力函数
需满足 方程,其物理意义代表了物体的 条件。 10、 对于弹性力学应力边界问题,通常存在主、次边界之分,在主要边界上边界条件要
南昌工程学院
弹性力学复习题(11 水工)
一、选择题
1、 下列材料中, ( )属于各向同性材料。 A、竹材 B、纤维增强复合材料 C、玻璃钢 D、钢材 2、 关于弹性力学的正确认识是( ) 。 A、计算力学在工程结构设计的中作用日益重要; B、弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C、任何弹性变形材料都是弹性力学的研究对象; D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3、 弹性力学与材料力学的主要不同之处在于( ) 。 A、任务 B、研究对象 C、研究方法 D、基本假设 4、 所谓“应力状态”是指( ) 。 A、斜截面应力矢量与横截面应力矢量不同 B、一点不同截面的应力随着截面方位变化而改变 C、三个主应力作用平面相互垂直 D、不同截面的应力不同,因此应力矢量是不可确定的。 5、 变形协调方程说明( ) 。 A、几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B、微元体的变形必须受到变形协调条件的约束; C、变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D、变形是由应变分量和转动分量共同组成的。 6、 下列关于弹性力学基本方程描述正确的是( ) 。 A、几何方程适用小变形条件 B. 物理方程与材料性质无关 C. 平衡微分方程是确定弹性体平衡的唯一条件 D. 变形协调方程是确定弹性体位移单值连续的唯一条件 7、 弹性力学建立的基本方程多是偏微分方程,最后需结合( )求解这些微分方程, 以求得具体问题的应力、应变、位移。 A、几何方程 B、边界条件 C、数值方法 D、附加假定 8、 弹性力学平面问题的求解中, 平面应力问题与平面应变问题的三类基本方程具有下列关 系( ) 。 A、平衡微分方程、几何方程、物理方程完全相同 B、平衡微分方程、几何方程相同,物理方程不同 C、平衡微分方程、物理方程相同,几何方程不同 D、平衡微分方程,几何方程、物理方程都不同 9、 根据圣维南原理,作用在物体一小部分边界上的面力可以用下列( )的力系代 替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A、静力等效 B、几何等效 C.平衡 D、任意 10、 不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( ) 。 ①区域内的相容方程; ②边界上的应力边界条件; ③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A、①②④ B、②③④ C、①②③ D、①②③④ 11、 应力函数必须是( ) 。 A、多项式函数 B、三角函数 C、重调和函数 D、二元函数 12、 要使函数 axy bx y 作为应力函数,则 a、b 满足的关系是(
, ,
, ,
4Φ 4Φ 4Φ 2 0 ,请问:相 x 4 x 2 y 2 y 4 容方程的作用是什么?两种解法中, 哪一种解法不需要将相容方程作为基本方程?为什 么? 11、 按应力求解平面问题时,应力分量应满足哪些条件? 12、 简述圣维南原理的两种表述方法及其举例,并说明它在弹性力学分析中的作用。
-1 -2 -2
D、 a b 2 D.三次分布
-2 -1 -2 -2
B、 M L T , M L T , M L T
-2 -2 -2 -2 -1
C、 M L T , M L T , M L T 15、 应变、Airy 应力函数、势能的量纲分别是( A、 1, M L T , M L T
-1 -2 -2 -2 2 -2 2 -2
1 , 2 和 1 。
已知一点处的应力分量 x 30 Mpa, y 25 MPa, xy 50 Mpa ,试求主应力
1、 2 以及 1 与 x 轴的夹角。 6. 已知过 P 点的应力分量 x 15Mpa, y 25 Mpa , xy 20 Mpa 。求过 P 点,
k
C
11/14
4
南昌工程学院
四、计算题
1. 2. 试问 x ay , y bx , xy ( a b) xy ,是否可能成为弹性力学问题中的应变分量?
2 2
下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。
x C ( x 2 y 2 ), y Cy 2 , xy 2Cxy 。
-2
二、填空题
1、 2、 3、 弹性力学的基本假设包括: 和 。 已知一点的三个应力分量为 、 、 、 、
x 12, y 10, xy 6 , 则 其 主 应 力 分 别
4、 5、 6、
、 、 ,最大剪应力等于 。 为: 在选取应力函数时,由于双调和方程是四阶的,故低于 三 次的多项式都是双调和函 数。但必须至少是二次以上,以保证得出非零的应力解。由此也可以看出在应力函数中 增添或除去 x 和 y 的一次式,并不影响应力分量。 弹性力学的三类边值问题是: (1) , (2) , (3) 。 对于平面应变问题,只需将对应的平面应力问题的解答作材料常数的替换即可,即 E , 。 弹性力学问题有 和 两种基本解法,前者以 为基本未知量, 归结为在 条件下求解 ,后者以 为基本未知量,归结为 在 条件下求解 。 对于平面应变问题 z ,z 。 ;对于平面应力问题
相关文档
最新文档