燃油控制系统的原理
燃油蒸发控制系统的基础知识和检测方法及工作原理

燃油蒸发控制系统的基础知识和检测方法及工作原理一、微机控制燃油蒸发控制系统的结构与工作原理燃油蒸发控制系统的作用是防止汽车油箱内蒸发的汽油蒸气排入大气。
它由蒸气回收罐(亦称活性炭罐)、控制电磁阀、蒸气分离阀及相应的蒸气管道和真空软管等组成。
蒸气分离阀安装在油箱的顶部,油箱内的汽油蒸气从该阀出口经管道进入蒸气回收罐。
该阀的作用是防止汽车翻倾时油箱内的燃油从蒸气管道中漏出。
蒸气回收罐内充满了活性炭颗粒,故又称为活性炭罐。
活性炭可以吸附汽油蒸气中的汽油分子。
当油箱内的汽油蒸气经蒸气管道进入蒸气回收罐时,蒸气中的汽油分子被活性炭吸附。
蒸气回收罐上方的另一个出口经真空软管与发动机进气歧管相通。
软管中部有一个电磁阀控制管路的通断。
当发动机运转时,如果电磁阀开启,则在进气歧管真空吸力的作用下,新鲜空气将从蒸气回收罐下方进入,经过活性炭后再从蒸气回收罐的出口进入软管的发动机进气歧管,把吸附在活性炭上的汽油分子(重新蒸发的)送入发动机燃烧,使之得到充分利用;蒸气回收罐内的活性炭则随之恢复吸附能力,不会因使用太久而失效。
进入进气歧管的回收燃油蒸气量必须加以控制,以防破坏正常的混合气成分。
这一控制过程由微机根据发动机的水温、转速、节气门开度等运行参数,通过操纵控制电磁阀的开、闭来实现。
在发动机停机或怠速运转时,微机使电磁阀关闭,从油箱中逸出的燃油蒸气被蒸气回收罐中的活性炭吸收。
当发动机以中、高速运转时,微机使电磁阀开启,储存在蒸气回收罐内的汽油蒸气经过真空软管后被吸入发动机。
此时,因为发动机的进气量较大,少量的燃油蒸气不会影响混合气的成分。
二、燃油蒸发控制系统的检测对燃油蒸发控制系统的故障,微机一般不能自行诊断,只能采用就车检测和单件检测方法来查找。
1、就车检测就车检测可按下述顺序进行:(1)将发动机预热至正常工作温度,并使之怠速运转。
(2)拔下蒸气回收罐上的真空软管,检查软管内有无真空吸力。
若燃油蒸发控制系统工作正常,在发动机怠速运转中电磁阀应关闭、真空软管内无真空吸力。
柴油高压共轨原理

柴油高压共轨原理
柴油高压共轨原理是一种现代柴油燃油系统,通过将柴油加压到高压共轨中供给喷油器,实现精确的燃油控制。
其工作原理如下:
1. 燃油供给:柴油从燃油箱经过燃油泵被送至高压燃油管道,然后进入高压共轨。
2. 高压共轨:高压共轨是一个储存燃油的管道,其内部保持着高压。
在共轨的两端分别有进油口和出油口。
燃油进入共轨后,通过压力调节阀控制压力的大小。
3. 压力调节:压力调节阀控制共轨内的压力,根据需要不断调整。
当压力过高时,调节阀会放出一部分燃油,保持压力稳定;当压力过低时,调节阀会打开,使燃油从燃油泵进入共轨,提高压力。
4. 喷油器控制:在高压共轨上有多个喷油器,其工作由电子控制单元(ECU)控制。
ECU通过控制喷油器的打开和关闭时间以
及喷油的压力,来控制燃油的喷射量和喷射时间。
5. 精确喷射:由于高压共轨可以提供稳定的高压和精确的喷射时间控制,使得燃油能够在喷油器中形成微细的燃油雾化和高速燃烧,提高燃油的利用效率和动力性能。
总之,柴油高压共轨原理通过高压共轨和精确的燃油控制系统,
实现了精准的燃油喷射,提高了柴油引擎的燃烧效率和动力性能。
说明汽油发动机电控喷油系统燃油喷射的控制原理

说明汽油发动机电控喷油系统燃油喷射的控制原理
汽油发动机电控喷油系统的控制原理是通过一系列的传感器和控制模
块来检测发动机工作状态,如转速、负荷、氧气含量、水温等,然后根据
这些信息来控制燃油的喷射量和喷射时机。
具体地说,电控喷油系统中的主要部件包括发动机控制模块(ECU)、
氧气传感器(O2 sensor)、节气门位置传感器(Throttle position sensor, TPS)、水温传感器(Coolant temperature sensor)、空气流量传感器(Mass air flow sensor, MAF)和燃油喷射器。
当发动机启动时,ECU会读取传感器发来的数据,并根据预设的燃油
喷射曲线来计算喷油量和喷射时机。
在正常行驶过程中,ECU会不断地监
测发动机的工作状态,并根据需要进行调整,以使发动机能够保持最佳的
工作状态和燃油经济性。
在喷油的过程中,ECU控制燃油喷射器的喷油时间和数量,使其按照
正确的比例喷入发动机的进气道中。
同时,通过控制燃油喷射的时机和数量,ECU可以帮助发动机在不同负荷和转速下实现最佳的燃烧效率和动力
输出。
总之,汽油发动机电控喷油系统的控制原理是通过对发动机工作状态
的监测和调整,优化燃油喷射的时机和数量,以实现最佳的燃烧效率和性
能输出。
燃油喷射控制系统

(2)小负荷工况 要求供给较浓混合气α =0.7~0.9量少,因为,小负荷时, 节气门开度较小,进入气缸内的可燃混合气量较少,而上 一循环残留在气缸中的废气在气缸内气体中气占的比例相 对较多,不利于燃烧,因此必须供给较浓的可燃混合气。 (3)中负荷工况 要求经济性为主,混合气成分α =0.9~1.1,量多。 发动 机大部分工作时间处于中负荷工况,所以经济性要求为主。 中负荷时,节气门开度中等,故应供给接近于相应耗油率 最小的α 值的混合气,主要是α >1的稀混合气,这样,功 率损失不多,节油效果却很显著。
(6)加速工况 发动机的加速是指负荷突然迅速增加的过程。 要求:混合气量要突增,并保证浓度不下降。 当驾驶员猛踩踏板时,节气门开度突然加大,以期发动机 功率迅速增大。在这种情况下,空气流量大。 但由于汽油的惯性大于空气的惯性,汽油来不及足够地从 喷口喷出,所以瞬时汽油流量的增加比空气的增加要小得 多,致使混合气过稀。 另外,在节气门急开时,进气管内压力骤然升高,同时由 于冷空气来不及预热,使进气管内温度降低。不利于汽油 的蒸发,致使汽油的蒸发量减少,造成混合气过稀。 为了改善这种情况,就应该采取强制方法。在化油器节气 门突然开大时,强制多供油,额外增加供油量,及时使混 合气加浓到足够的程度。
燃油喷射控制系统
一、发动机基本知识
可燃混合气成分 可燃混合气是指空气与燃料的混合物,汽油机的可燃 混合气“汽油+空气”在汽缸内形成,其成分对发动机 的动力性与经济性有很大的影响。 可燃混合气的成分用过量空气系数α 表示
通过试验证明,发动机的功率 和耗油率 都是随着过量空气系数α 变化而变化的。 因为α >1时混合气中,有适量较多的空 气,正好满足完全燃烧的条件,此混合 气称为经济混合气。 对于不同的汽油机经济混合气成分不同, 一般在α =1.05~1.15范围内。当α 大于 或小于1.05~1.15时,ge↑,经济性变 坏。
燃油系统系统工作原理

燃油系统系统工作原理
燃油系统是汽车发动机运行的重要部件之一,它的工作原理主要包括燃油供给、燃油喷射和燃油燃烧三个方面。
首先是燃油供给方面。
燃油从汽车的油箱中通过燃油泵被抽取出来,经过燃油滤清器过滤后,进入燃油储存器,即燃油供应系统。
在供给系统中,燃油被气泵进行压力增加,使其保持稳定流量,并通过燃油供应管路输送至发动机。
其次是燃油喷射方面。
燃油进入发动机后,通过喷油嘴进行喷射。
喷油嘴通常由一个电磁线圈控制,在发动机控制单元(ECU)的指令下,电磁线圈会打开或关闭喷油嘴,控制喷油的时间和量。
喷射的燃油以雾化状态进入燃烧室,使其与空气充分混合,从而实现更好的燃烧效果。
最后是燃油燃烧方面。
在燃烧室内,混合物被点火产生火花,引发燃烧反应。
在燃烧过程中,燃油被加热并放出能量,推动活塞向下运动,从而驱动车辆。
同时,剩余的废气通过排气系统排出。
总结起来,燃油系统的工作原理就是通过供给、喷射和燃烧过程,将燃油转化为能量,驱动发动机运转,从而推动汽车行驶。
燃油系统分程控制原理

燃油控制系统简介:高效分离器进口燃油温度(TIT-3241)由原油进口加热器(WHP-E-3212)热油出口调节阀(TV-3241);高效分离器油室液位(LT-3247)由进口液位控制阀(LV-3247)和燃油储罐进口液位控制阀(LV-3262A/B)采用分程控制方式控制;燃油储罐液位(LT-3262A/B )由进口液位控制阀(LV-3262A/B)控制。
其中高效分离器进口燃油温度控制及燃油储罐液位控制属简单的单回路控制,比较简单,在此不再详述,只对高效分离器油室的液位控制说明如下:由于某种原因,高效分离器油室出现低液位,①首先动作为增大进口液位控制阀(LV-3247)开度,当液位持续降低,开度持续增大,但当阀开度增大到高效分离器允许流量(15 Am 3/h )时,此时阀位维持不变;②如果液位继续降低,进一步动作为:达到油室低液位报警液位(700mm )时,储油罐液位调节阀(LV-3262A/B)维持原位,当液位进一步降低,应促成液位调节阀(LV-3262A/B)开度减少。
详细描述见以下英文内容。
1.1 FUEL OIL CONTROL SYSTEM The temperature of the fuel oil on the inlet to the Crude Oil Separator downstream of the level control valve (LV-3247) is controlled by adjusting the hot oil control valve (TV-3241) on the outlet of the Crude Oil Inlet Heater WHP-E-3212. The level in the Crude Oil Separator (LT-3247) is is controlled controlled controlled by by by adjusting adjusting adjusting the the the level level level control control control valve valve valve on on on the the the inlet inlet inlet to to to the the the Separator Separator Separator (LV-3247) (LV-3247) (LV-3247) (feed (feed forward forward control). control). The The levels levels levels in in in the the the Fuel Fuel Fuel Oil Oil Oil Storage Storage Storage Tanks Tanks Tanks (LT-3262A/B) (LT-3262A/B) (LT-3262A/B) are are are controlled controlled controlled by by by the the level control valves (LV-3262A/B) on the tank inlets (feed forward control). The The final control in final control in the fuel oil system is the temperature control on the fired heaters. Under certain circumstances with low level in the Fuel Oil Storage Tanks, the level control valves on the Tank Inlets could go wide open. Depending on sizing and operating parameters, the possible flow to the tanks may be more than the possible flow to the Crude Oil Separator. In this case, the Crude Oil Separator would lose level and gas breakthrough to the Fuel Oil Storage Tanks would occur. This is not a desirable way to operate. Also, if both level controls go wide open, the demand for heat may exceed the maximum possible in the Crude Oil Inlet Heater. It is proposed to prevent this from happening by using the level controller in the Separator (LIC-3247) to limit opening of the inlet control valves to the Tanks (LV-3262A/B), and to use the flow transmitter (FT-3254) to supply a control signal to limit opening of the Separator inlet level control valve (LV-3247). Also, if flow stops altogether, the temperature controller output (TIC-3241) will be set to zero to close TV-3241. The P&ID has been marked up with the process engineer’s understanding of the requirements in the DCS. However, the instrument engineer may be able to achieve the desired control control in in in a a a simpler simpler simpler way. way. If If so, so, so, the the the instrument instrument instrument engineer engineer engineer should should should do do do this this this and and and the the the P&ID P&ID P&ID can can can be be marked up to suit. The following description pertains to revision 1 of the P&IDs with a minor modification. The The signal signal signal from from from the the the Separator Separator Separator level level level controller controller controller (LIC-3247) (LIC-3247) (LIC-3247) will will will be be be reversed reversed reversed then then then split split split with with 0-50% going to the Separator inlet level control and 50 to 100% of the signal going to the Tank inlet inlet level level level control. control. Thus Thus if if if the the the level level level starts starts starts to to to drop, drop, drop, the the the control control control signal signal signal from from from LIC-3247 LIC-3247 LIC-3247 will will will cause cause LV-3247 LV-3247 to to to open. open. If the level continues to d rop drop drop even even even if LV-3247 if LV-3247 is wide open open then then then the the the control control signal will increase further and will cause the Tank inlet level control valves LV-3262A/B to close in. Because Because the the the valves valves valves are are are fail fail fail closed closed closed valves, valves, valves, a a a drop drop drop in in in level level level in in in the the the Separator Separator Separator requires requires requires an an increase increase in in in signal signal signal to to to LV-3247 LV-3247 and and a a a decrease decrease decrease in in in signal signal signal to to to LV-3262A/B. LV-3262A/B. Hence Hence LIC-3247 LIC-3247 LIC-3247 is is reverse acting. The The signal signal signal to to to LV-3262 LV-3262 must must therefore therefore therefore go go go through through another another reversing reversing relay LY-3247D. The signal to the LV-3262A/B must go through a low signal selector to select either the signal from LIC-3247 or the signal from LIC-3262. The signal from LIC-3247 is the master UTILITY SYSTEM DESCRIPTION PAGE 2 Of 13 CNOOC ENGINEERING SPC-WHP-PR-0002signal that will override the signal from LIC-3262A/B. If LV-3247 tries to let too much flow through to the Fuel Oil Separator, the Fuel Oil Heater may may be be be overloaded. overloaded. To prevent prevent this this this happening, happening, happening, the the the flow flow flow transmitter transmitter transmitter is is is used used used to to to provide provide provide an an overriding overriding flow flow flow control control control signal signal signal from from from FIC-3254 FIC-3254 FIC-3254 that that that will will will limit limit limit the the the opening opening opening of of of LV-3247. LV-3247. The The flow flow controller will be set at the design flow rate of 15 Am 3/h. The flow control signal will also need to be be reversed i.e. reversed i.e. on on rising rising rising flow, flow, flow, the the the controller controller controller output output output will decrease will decrease to to close close close LV-3247. LV-3247. The The level level control signal from LIC-3247 will need to go through a converting relay to convert the signal from 4-12 mA to 4-20 mA. The flow control signal and the level control signal will go through a low signal selector which will choose the lowest signal to go to LV-3247. If flow is shut off completely for any reason, the temperature control on the Fuel Oil Heater, TIC-3241 will need to to go go to to zero zero to close TV-3241 to to prevent prevent hot oil flow otherwise the temperature transmitter TIT-3241 will register a low temperature and will tend to open TV-3241.。
柴油机电控燃油喷射系统的工作原理

柴油机电控燃油喷射系统的工作原理柴油机电控燃油喷射系统是一种现代化的燃油供给系统,它通过电控单元来控制燃油的喷射和供应。
其工作原理可分为传感器部分、电控单元部分和执行器部分。
首先,传感器部分是负责监测柴油机的工况和环境参数,例如转速、负荷、空气温度等。
传感器将这些参数实时传输给电控单元,以便后续的计算和控制。
接下来,电控单元是燃油喷射系统的核心。
它根据传感器传来的参数和预设的工作模式,通过内置的控制算法来确定最佳的燃油喷射量和喷射时间。
电控单元中还包含了一个存储器,用于存储各种不同工况下的喷射曲线和参数,以满足不同工况下的燃油需求。
最后,执行器部分是根据电控单元的指令来执行燃油喷射。
它包括喷油器和喷油泵。
当电控单元发送喷油指令时,执行器会将燃油从喷油泵中压力供应到喷油器中,并通过喷油器的喷油嘴将燃油以雾化的形式喷入气缸中。
喷油器的喷油量和喷油时间是通过控制喷油嘴的开启时间和喷孔的大小来实现的。
整个系统的工作原理可以归纳为:传感器监测并传输工况参数给电控单元,电控单元根据输入的参数选择最佳的喷油曲线和参数,再通过执行器控制喷油器实现燃油的喷射和供应。
与传统的机械喷油系统相比,柴油机电控燃油喷射系统具有很多优点。
首先,它可以根据不同的工况和负荷要求精确控制燃油的喷射量和喷射时间,提高燃烧效率,减少燃油消耗和排放物的生成。
其次,电控单元可以根据不同的工况和负荷要求灵活地调整燃油喷射参数,提高柴油机的动力性和响应速度。
此外,电控单元还可以进行自我诊断和故障监测,及时发现和修复系统的故障,提高柴油机的可靠性和稳定性。
总结来说,柴油机电控燃油喷射系统通过传感器、电控单元和执行器的协同工作,实现了对燃油喷射的精确控制,提高了柴油机的使用效率和环保性。
它是现代柴油机的重要组成部分,对于提高柴油机的性能和经济性具有重要的指导意义。
燃油泵控制原理

燃油泵控制原理
燃油泵控制原理是指对发动机燃油供给进行控制的一种技术。
其主要功能是将燃油从油箱送到发动机燃烧室,保证发动机正常运行。
下面将介绍燃油泵控制的基本原理。
1. 开启和关闭控制:燃油泵的工作需要通过控制开关来实现。
当发动机运行时,控制开关打开,燃油泵开始供应燃油;当发动机熄火或需要停止燃油供应时,控制开关关闭,燃油泵停止供应燃油。
2. 燃油压力控制:燃油流向发动机的流量和压力需要进行控制。
通过调节燃油泵的压力调节阀,可以控制燃油泵的出口压力。
当燃油泵的出口压力达到设定值时,压力调节阀会自动关闭或调节,保持压力稳定。
3. 燃油流量控制:燃油流量控制是通过调节燃油泵的转速来实现的。
燃油泵的转速可以通过调节控制开关的开合时间来控制。
当控制开关关闭时间增加时,燃油泵的转速减小,燃油流量减少;反之,燃油流量增加。
4. 电子控制系统:现代的燃油泵控制通常采用电子控制系统来实现。
该系统通过传感器感知发动机运行状态,包括转速、负载、温度等,然后根据这些信息来调节燃油泵的工作状态,以达到最佳的燃油供给效果。
综上所述,燃油泵控制原理包括开启和关闭控制、燃油压力控
制、燃油流量控制以及电子控制系统等方面。
这些控制原理的合理应用可以保证发动机燃油供给的稳定和高效运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃油控制系统的原理
燃油控制系统的工作原理可以概括为以下几点:
一、系统组成
燃油控制系统主要由供油装置、喷油装置、空燃比控制装置等组成。
二、供油装置
1. 由油箱、油泵、油滤等组成,实现从油箱到喷油器的燃油供应。
2. 油泵提供燃油流通压力,油滤过滤杂质粒子。
三、喷油装置
1. 主要是喷油器,其根据发动机运转状况控制油量。
2. 主要类型有曼式、庞通管式和电喷式。
都利用空气负压原理调节油量。
四、空燃比控制
1. 通过空气流量计和油量计反馈信号,由电控单元计算空燃比。
2. 控制单元通过驱动执行机构调节油量,达到最佳空燃比,确保正常发动。
五、闭环控制
采用传感器反馈的空燃比信号,形成闭环控制,使燃烧更加精确、经济、高效。
燃油系统根据发动机工况精确供给和喷射燃油,对发动机性能和经济性有重大影响。
CLOSED-LOOP控制可以使燃烧更加可控、高效。