北师大版高中数学必修5《三章 不等式 3 基本不等式 3.2基本不等式与最大(小)值》赛课导学案_13

合集下载

第三章3.1基本不等式-北师大版高一数学必修5课件(共21张PPT)

第三章3.1基本不等式-北师大版高一数学必修5课件(共21张PPT)

探究结果
1. 对于任意实数a,b,总有 a2 b2 2ab 如何证明?
当且仅当a=b时,等号成立.
特别地,如果 a 0,b 0 ,我们用 a , b 分别代替a,b,可得
a b 2 ab,即a b ab, 2
当且仅当a=b时,等号成立.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
2. 如果a,b都是
,那么 a b ab 2
当且仅当a=b时,等号成立.
我们称上述不等式为
ab ,其中 2 称为a,b的算术
平均数, ab 称为a,b
. 因此,基本不等式又被称为
均值不等式.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
当且仅当a=b时,等号成立.
文字语言可叙述为:两个非负实数的算术平均数不小于它们 的几何平均数.
从数列的角度看:两个正实数的等差中项不小于它们正的等 比中项.
课堂升华 几何解释
如图,AB是圆O的直径,AC=a,BC=b,过点C作CD⊥AB交圆O上半
圆于D. 由射影定理可知
D
CD ab, 而OD a b ,
同向相加可得 a b c ab ac bc, 当且仅当a b c时,等号成立.
例题讲解
例2 若a b 1,比较P lg a lg b,Q 1 (lg a lg b), 2
R lg a b 的大小关系. 2
解 因为a b 1,所以 lg a lg b 0,
由 ab a b , 2
证明 (方法2)
ab
2
ab 2ab
ab(b a) 2ab
11
ba

高二数学必修5第三章《基本不等式基本不等式及其变形公式的应用(第三课时)》新授课详细教案

高二数学必修5第三章《基本不等式基本不等式及其变形公式的应用(第三课时)》新授课详细教案

第三章 不等式3.4基本不等式2a bab +≤(第三课时)【创设情景 引入新知】前一节课我们学习了利用基本不等式解一些简单的实际应用问题,求一些简单的最值问题,在应用的过程中,我们对基本不等式2ba ab +≤的结构特征已是充分认识,并能够灵活把握.基本不等式不仅应用广泛,而且由基本不等式还可以推导出许多变形公式,为下一步的学习好应用提供了更多的思路和方法,那么你知道基本不等式有哪些变通形式?怎么灵活应用呢?另外,有一些代数式的积或和都不是定值,应该怎么求最值呢?对一些不等式我们能否利用基本不等式进行证明呢?本节课,我们将对基本不等式展开一些在求有关函数值域、最值的应用,更重要的是对基本不等式展开一些实际应用.【探索问题 形成概念】基本不等式的变通公式: 变式1:将基本不等式2a bab +≥两边平方可得22()a b ab +≥; 变式2:在不等式222a bab +≥两边同加上22a b +,再除以4,可得,22222()a b a b ++≥; 变式3:将不等式2(0,0)a b ab a b +≥>>两边同乘以ab ,可得2abab a b≥+,再让我再想想吧?将2ab a b+的分子、分母同除ab ,得211ab a b≥+.综合上述几种变式得出,2222211a b a b ab a b++≥≥≥+.(一)利用基本不等式求积或和都不是定值的函数的最值问题利用基本不等式求最值时,如果无定值,要先配、凑出定值,再利用基本不等式求解. 【例题】(1)已知3x <,求43()f x x x =+-的最大值;(2)已知01x << ,求 21x x -的最大值.【思路】(1)用基本不等式求最值时,构造积为定值,各项必须为正数,若为负数,则添负号变正.(2)构造和为定值,利用基本不等式求最值. 【解答】(1)330,.x x <∴-<4433334433233331()()()()f x x x x x x x x x ∴=+=+-+--⎡⎤=-+-+≤-⨯-+⎢⎥--⎣⎦=-当且仅当433()x x =--,即x =1时取等号.()f x ∴的最大值为-1.(2)2222201111122,()x x x x xx x <<+-∴-=-≤=当且仅当221xx =-,即22x =时取等号. ()f x ∴的最大值为12.【反思】对于某些问题,从形式上看不具备应用基本不等式的条件,可设法变形拼凑出应用基本不等式的条件,然后用基本不等式求解.(二)形如0()by at t t=+>型函数无法使用基本不等式求最值思考两个正数的积为定值,它们的和一定有最小值吗?不一定.应用基本不等式求最值时还要求等号能取到. 【例题】求函数2232x y x +=+的最小值.【思路】由于分子变量的次幂是分母变量次幂的2倍,因此可化为1y t t=+型函数求解. 【错误解法】22223122222min,.x y x x x y +==++≥++∴=但是22x +与212x +不可能相等,即“=”取不到,因此最小值不是2.【正确解法】222231222x y x x x +==++++,令22t x =+,则2t ≥,所以原式为12()y t t t=+≥.而函数1y t t=+在01(,)t ∈上为减函数,在1(,)t ∈+∞上为增函数,2t ≥,则当2t =时,y 取最小值,且132222min y =+=,此时0x =,故当0x =时,y 取最小值322.【反思】当形如0()by at t t=+>型函数无法使用基本不等式求最值时,可用函数的单调性求解,而函数0()b y at t t =+>在0,b a ⎛⎫⎪ ⎪⎝⎭上为减函数,在,b a ⎛⎫+∞⎪ ⎪⎝⎭上为增函数.(三)利用基本不等式证明不等式证明不等式是均值不等式的一个基本应用,注意分析不等式的左右两边的结构特征,通过拆(添)项创设一个应用均值不等式的条件.在解决本类问题时注意以下几点: (1)均值不等式成立的前提条件;(2)通过加减项的方法配凑成算术平均数、几何平均数的形式; (3)注意“1”的代换;(4)灵活变换基本不等式的形式并注意其变形式的运用.【例题】已知,,a b c 为不全相等的正实数.求证222a b cab bc ac ++>++.【思路】先构造基本不等式的条件,再运用基本不等式证明,不要忘记判断等号成立的条件. 【证明】22222222200022222,,,,,,()(),a b c a b ab b c bc a c ac a b c ab bc ac >>>∴+≥+≥+≥∴++≥++ 即222,a b cab bc ac ++≥++又,,a b c 为不全等的正实数,故等号不成立. ∴222a b cab bc ac ++>++【反思】对要证明的不等式作适当变形,变出基本不等式的形式,然后利用基本不等式进行证明.如果本例条件不变,求证a b c ab bc ac ++>++.则可以类似的证明000,,,a b c >>>222,,,a b ab b c bc a c ac ∴+≥+≥+≥∴22()()a b c ab bc ac ++≥++即a b c ab bc ac ++≥++.由于,,a b c 为不全相等的正实数,故等号不成立. ∴a b c ab bc ac ++>++.【解疑释惑 促进理解】难点一、如何利用基本不等式求条件最值在条件最值中,一种方法是消元转化为函数最值,另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值. 【例题】已知x >0,y >0,且1x +9y =1,求x +y 的最小值;【错误解法】0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ⎛⎫+=++≥= ⎪⎝⎭故 ()min 12x y += 。

3.3.1《基本不等式》课件(北师大版必修5)

3.3.1《基本不等式》课件(北师大版必修5)

≤-2
2
4 - -x· x=-4.
1 1 2 ③x +3+ 2 =x +2+ 2 +1≥2 x +2 x +2 +1=3.
1 x +2·2 x +2
2
解析: 在①中,由 x>0 不能保证 cos x>0,故不能应 用基本不等式;②由于 x<0,所以-x>0,故可以利用基本 不等式结合不等式的性质推导,推导过程是正确的. ③虽然可以利用基本不等式推导,但等号成立的条件是 1 x +2= 2 ,即 x2+2=1,这显然不可能,从而等号取不 x +2
答案:
a-c a-bb-c≤ 2 .
1 1 4.当 x>2 时,有 x+ =x-2+ + x-2 x-2 2≥2 1 x-2· +2=4,则当且仅当 x=________时,等 x-2
号成立.
1 解析: 等号成立的条件是 x-2= , x-2 ∵x>2,∴x-2=1,x=3.
• 答案: 3
• §3 基本不等式
• 3.1 基本不等式
• 1.了解基本不等式的证明过程及其几何解释. • 2.了解算术平均数,几何平均数的定义. • 3.会用基本不等式推出与基本不等式有关的简
单不等式.
• 1.利用基本不等式推出与基本不等式有关的简
单不等式是本节的考查热点. • 2.本节内容常与平面几何图形结合命题. • 3.多以选择题、填空题形式考查.
1 1 1 bc 2 得a-1b-1c-1≥2· a ·

ac 2 ab b · c =8,
1 当且仅当 a=b=c= 时取等号. 3 ∴原不等式成立.
a+b+c a+b+c a+b+c 证法二:左边= -1 -1 -1 a b c b c a c a b =a+ab+bc+c

3.2基本不等式与最大(小)值 (2)

3.2基本不等式与最大(小)值 (2)

3. 消元与整体代换的应用
4.在连续使用不等式时要注意等号条件的一致性
练习:
-8-
(1).已知向量AB (1, x 2),CD (2, 6 y),其中x 0, y 0,且AB / /CD,
则 3 1 的最小值等于(
)
xy
A、4B、6C、8D、12(2).已知x, y都是非负实数,且x y 2,则
即(t y6)(t1x1y8) 0,又y t x0,t 6
2
探究:3x当xx34y的y3,最y1小(1值时2 为,46x9)3y的5,最其小最值小为值6 为5. 5
如何应用基本不等式求含有等式条件的最值?
课堂小结
-7-
1. 不含等式条件的最值的常见方法.
2. 含等式条件的最值的常见方法.
当3x9且x3仅(4yx当y3x91y15)33(yyy1yx时y3等3xy)13号(3x1x成132立y4y.y)133((1x152(y33)yyx)62,429 11122xyy)3(1 y) 6 6
当又设且t 仅3xx当 1312y2y0,2则3(1t32xy11),22ty即1y0182,1当, x0且, 仅3时当等x号 1成, y立 1 时等号成立
考向2 求含有等式条件的最值
例2、(1).若正数x, y满足x 3y 5xy,则3x 4 y的最小值是
(2).(2017江西南昌模拟)已知x 0, y 0,且x 3y xy 9, 则x 3y的最小值为
解析:(12))..(方x法 0二一, y)由已0x,知且0得,xyx30y9,x35yx3yy, x1y09,3,y50,0 y 3, 1 y y x
2 会用基本不等式解决简单的最大 小 值问题.

高中数学北师大版必修五《3.3基本不等式》课件

高中数学北师大版必修五《3.3基本不等式》课件

证明:∵a,b,c∈R+,a+b+c=1, ∴1a-1=1-a a=b+a c=ba+ac≥2 abc,
同理1b-1≥2 bac,1c-1≥2 cab, 由上述三个不等式两边均为正,分别相乘.
∴(1a-1)(1b-1)(1c-1)
≥2
bc 2 a·
ac 2 b·
cab=8,
当且仅当 a=b=c=13时取等号.
(2)∵x>3,∴x-3>0. 又 y=x2-x23=2x-32+x1-23x-3+18=2(x-3)+ x-183+12≥2 2x-3·x-183+12=24,当且仅当 2(x -3)=x-183,即 x=6 时,上式等号成立. ∴当 x=6 时,ymin=24.
(3)a 1+b2=a
212+b22= 2·a
友情提示:利用公式a+b≥ ab求最值一定要注意 2
成立的三个条件:
(1)a,b 均为○32 ________数;
(2)a+b 与 ab 有一个为○33 ________;
(3)○34 ________必须取到.
概括起来就是“一正二定三相等”.应用基本不 等式求最大(小)值时,上述三个条件缺一不可.
如:求 y=si2nx+si2nx(0<x<π)的最小值.
错解:∵0<x<π,∴0<sinx≤1.
∴y=si2nx+si2nx≥2 ∴ymin=2.
si2nx·si2nx=2.
错误剖析:这种解法的错误在于忽视了不等式取
等号的条件,由于该不等式取等号的条件为si2nx=si2nx. 即 sin2x=4,但 sin2x∈(0,1],从而出现了错误.
函数式中各项(必要时还要考虑常数项)必须都是正 数,若不是正数,必须变为正数.

北师大版高中数学必修5《三章 不等式 3 基本不等式 3.2基本不等式与最大(小)值》公开课课件_26

北师大版高中数学必修5《三章 不等式  3 基本不等式  3.2基本不等式与最大(小)值》公开课课件_26

第二十四届国际数学家大会
2002年在北京国际会议中心隆重举行。此次大会在世界上创造了四 个第一:
1、这次会议,是历史上,"国际数学家大会"第一次在发展中国家召开。 2、这次会议是科技史上,中国数学家和外国数学家参加人数最多的一 次会议。 3、在世界上,第一次在中国召开的国际数学家大会,并由中国数学家 吴文俊院士担任大会主席。 4、是世界历史上,发展中国家规模最大的数学会议。
这是2002年在北京召开的 第24届国际数学家大会的会 标.会标是根据中国古代数 学家赵爽的弦图设计的,颜 色的明暗使它看上去像一个 风车,代表中国人民热情好 客。
设直角三角形的两直角边分 别为a,b,那么四个直角三角形的 面积之和与正方形的面积有什么 关系呢?
D
在正方形ABCD中有4个全等的直角三角形.
基本不等式
基本不等式的代数解释
我们常把
a+b 2
叫做正数a,b的算术平均数,
把 ab 叫做正数a,b的几何平均数.
基本不等式的数列解释
我们把
a+b 2
看做正数a,b的等差中项,

把 ab 看做正数a,b的正的等比中项.
利用不等式的基本性质推导基本不等式
要证: 只要证: 只要证: 只要证: 显然成立,当且仅当a=b时,等号成立
课题:3.4.1 基本不等式 ab a b
2
国际数学家大会
(International Congress of Mathematicians,ICM)
它是由国际数学联盟(IMU)主办的国际数学界规模最大也是最 重要的会议 。会议是数学家们为了数学交流,展示、研讨数学的 发展,会见老朋友、结交新朋友的国际性会议,是国际数学界的 盛会 。大会每四年举行一次,首届大会1897年在瑞士苏黎世举行, 至今已有百余年的历史 。它是全球性数学科学学术会议,被誉为 数学界的奥林匹克盛会 。

北师大版高中数学课本目录(2021年整理)

北师大版高中数学课本目录(2021年整理)

北师大版高中数学课本目录(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版高中数学课本目录(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版高中数学课本目录(word版可编辑修改)的全部内容。

必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3。

2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2。

1 函数概念2。

2 函数的表示法2。

3 映射§3 函数的单调性§4 二次函数性质的再研究4。

1 二次函数的图像4。

2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2。

1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3。

3 指数函数的图像和性质§4 对数4。

1 对数及其运算4.2 换底公式§5 对数函数5。

1 对数函数的概念5。

2 y=log2x的图像和性质5。

3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1。

1 利用函数性质判定方程解的存在1。

2 利用二分法求方程的近似解§2 实际问题的函数建模2。

1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4。

高中数学 第三章第3节基本不等式知识精讲 北师大版必修5

高中数学 第三章第3节基本不等式知识精讲 北师大版必修5

高二数学 第三章第3节基本不等式 北师大版必修5【本讲教育信息】一、教学内容:基本不等式及其应用二、教学目标:(1)熟练地掌握基本不等式),(,222R b a ab b a ∈≥+,)R b ,a (,ab 2ba +∈≥+,会解释其几何意义,并能利用基本不等式求函数的最大值(最小值)及在实际问题中的应用。

(2)在基本不等式应用过程中,体会等价转化的数学思想、函数的思想,会用配凑法,判别式法等数学思想方法解决问题。

三、知识要点分析: 1. 两个基本不等式(1))R b ,a (,ab 2b a 22∈≥+(当且仅当a=b 时等号成立)。

(2))R b ,a (,ab 2ba +∈≥+(当且仅当a=b 时等号成立)。

(2ba +叫两个正数a ,b 的算术平均数,ab 叫两个正数的几何平均数) 由上述的两个基本不等式得:⎪⎪⎩⎪⎪⎨⎧+≤++≤⇒∈≥+2b a )2b a (2b a ab )R b ,a (,ab 2b a 2222222 2)2(2b a ab ab b a +≤⇒≥+ 2b a 2ba ab b1a 1222+≤+≤≤+不等式链: 2. 基本不等式的应用:(1)若x+y=P (P 为定值,x ,y )+∈R ⇒4P )2y x (xy 22=+≤,(x=y 时取等号,和定积大)(2)若xy=S (S 为定值,x ,y )R +∈时取等号,积定和小y x (,S 2xy 2y x ==≥+⇒)3. 利用基本不等式),(,22+∈≥+R b a ab ba 求最值注意三点:(一正、二定、三相等) 一正:指公式中的字母均为正。

二定:和为定值积最大,积为定值和最小。

三相等:等号成立的条件,即等号应能取到。

否则不能用均值不等式求最值。

4. 基本不等式在实际问题中的应用:审题→建模→利用基本不等式求解→还原到实际问题。

四、典型例题分析考点一:利用基本不等式证明简单的不等式例1. (1)已知a ,b ,c +∈R 且a+b+c=1求证:9111≥++cb a (2)已知a ,b ,c ,R ∈求证:2222222≥+++++++cb ac a c b b a思路分析:(1)把已知条件中的“1”换成a+b+c ,然后拆分、配凑创造使用均值不等式的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2基本不等式与最大(小)值●三维目标1.知识与技能会用基本不等式解决简单的最大(小)值问题,会用基本不等式解决实际问题.通过探究实例过程,领悟利用不等式求简单的最大(小)值问题所满足的条件.3.情感、态度与价值观通过解题后的反思,逐步培养学生养成解题反思的习惯,培养学生的探索精神.●重点难点重点:用基本不等式解决简单的最值问题.难点:用基本不等式求最值的使用条件.●教学建议在用基本不等式求最值时,要讲清楚使用条件:“一正、二定、三相等”.课本P91例2就是对这三个应用条件的很好的阐释.有些问题看似不符合前面的三个条件,但经过适当的变形又可以转化成运用基本不等式解决如例3中若x<0则需要变形方可利用基本不等式求最值.●教学流程创设问题情境,提出问题:如何通过基本不等式求f(x)=x(1-x)(0<x<1)的最值?⇒引导学生回答问题,理解利用基本不等式的使用条件“一正二定三相等”,掌握用基本不等式解决最值问题⇒通过例1及变式训练,使学生掌握基本不等式求最值⇒通过例2及互动探究,使学生掌握求有约束条件的最值⇒通过例3及变式训练,使学生掌握基本不等式解决实际问题⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第59页)已知函数f(x)=x(1-x)(0<x<1),该函数有最大值还是最小值?能否通过基本不等式求它的最值?【提示】最大值;能.∵0<x<1,∴1-x>0,又∵a+b2≥ab,∴ab≤(a+b2)2,∴x(1-x)≤(x+1-x2)2=14,当且仅当x=1-x,即x=12时,f(x)有最大值14.已知x、y都是正数(对应学生用书第59页)(1)已知x >0,求函数y =x x 的最小值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.【思路探究】 (1)利用分式的性质拆开,构造ax +bx 形式,再利用基本不等式;(2)转化为括号内外x 的系数互为相反数即保证和为定值时,再使用基本不等式.【自主解答】 (1)∵y =x 2+5x +4x =x +4x +5≥24+5=9, 当且仅当x =4x 即x =2时等号成立. 故y =x 2+5x +4x (x >0)的最小值为9.(2)法一 ∵0<x <13,∴1-3x >0. ∴y =x (1-3x )=13·3x (1-3x )≤13[3x +(1-3x )2]2=112.当且仅当3x =1-3x ,即x =16时,等号成立. ∴当x =16时,函数取得最大值112.法二∵0<x<13,∴13-x>0.∴y=x(1-3x)=3·x(13-x)≤3·(x+13-x2)2=1 12,当且仅当x=13-x,即x=16时,等号成立.∴当x=16时,函数取得最大值112.1.应用基本不等式的条件:“一正、二定、三相等”,在求最值时必须同时具备,解答本题易漏掉等号成立的条件.2.此类题目在命题时常常把获得“定值”条件设计为一个难点,它需要一定的灵活性和技巧性.常用技巧有“拆项”、“添项”、“凑系数”、“常值代换”等.已知x<54,求函数y=4x-2+14x-5的最大值.【解】∵x<54,∴5-4x>0,∴y=4x-2+14x-5=4x-5+14x-5+3=-[(5-4x)+15-4x]+3≤-2+3=1.当且仅当5-4x=15-4x即x=1时等号成立,∴当x=1时,y max=1.已知a>0,b>0,a+2b=1,求1a+1b的最小值.【思路探究】思路一:利用“1”的整体代换求解:即把1a+1b看作⎝⎛⎭⎪⎫1a+1b×1=⎝ ⎛⎭⎪⎫1a +1b ×(a +2b ),化简后利用基本不等式求解. 思路二:将式子1a +1b 中的1用a +2b 代换后,利用基本不等式求解. 【自主解答】 法一 1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·1=⎝ ⎛⎭⎪⎫1a +1b ·(a +2b ) =1+2b a +a b +2=3+2b a +ab ≥3+22b a ·ab=3+22,当且仅当⎩⎪⎨⎪⎧2b a =a b a +2b =1,即⎩⎨⎧a =2-1b =1-22时等号成立.∴1a +1b 的最小值为3+2 2.法二 1a +1b =a +2b a +a +2b b =1+2b a +ab +2 =3+2b a +ab ≥3+22,当且仅当⎩⎪⎨⎪⎧2b a =a b a +2b =1,即⎩⎨⎧a =2-1b =1-22时,等号成立,∴1a +1b 的最小值为3+2 2.1.本题在解答中要注意使1a +1b 取最小值所对应a 、b 的值也要一并解出来. 2.解含有条件的最值问题,常结合要求最值的式子,采用“配”、“凑”的方法,构选成基本不等式的形式,从而得出最值.本例中,如何求ab 的最大值?【解】 法一 ab =12a ·(2b )≤12·⎝ ⎛⎭⎪⎫a +2b 22=18,当且仅当⎩⎨⎧a +2b =1a =2b,即⎩⎪⎨⎪⎧a =12b =14时,ab 取得最大值18.法二 ∵a +2b =1,∴1=a +2b ≥2a ·(2b ), 即ab ≤122,∴ab ≤18,当且仅当⎩⎨⎧a =2b a +2b =1,即⎩⎪⎨⎪⎧a =12b =14时,ab 取得最大值18.某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,池塘周围的基围宽均为2米,如图3-3-3,设池塘所占总面积为S 平方米.图3-3-3(1)试用x 表示S ;(2)当x 取何值时,才能使得S 最大?并求出S 的最大值.【思路探究】 根据题中变量,认真分析图形,构建函数关系式,利用基本不等式求最值.【自主解答】 (1)由图形知,3a +6=x , ∴a =x -63.S =(1 800x -4)·a +2a (1 800x -6) =a (5 400x -16) =x -63(5 400x -16)=1 832-(10 800x +16x3). 即S =1 832-(10 800x +16x3)(x >0). (2)由S =1 832-(10 800x +16x 3), 得S ≤1 832-210 800x ·16x 3=1 832-2×240=1 352, 当且仅当10 800x =16x3时等号成立,此时,x =45, 即当x 为45米时,S 最大,且S 最大值为1 352平方米.1.根据已知,列出关系式是解答本题的关键.2.利用基本不等式解决实际问题要遵循以下几点:①在理解题意的基础上设变量,确定问题中量与量之间的关系,初步确定用怎样的函数模型;②建立相应的函数解析式,将实际问题抽象为函数的最大值或最小值问题;③在定义域(使实际问题有意义的自变量的取值范围)内,求出函数的最大值或最小值;④回到实际问题中,检验并写出正确答案.北京市有关部门经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【解】 (1)由题意 y =920v v 2+3v +1 600=920(v +1 600v )+3≤9202v ·1 600v +3=92083,当且仅当v =1 600v ,即v =40时取等号. ∴y max =92083≈11.1(千辆/小时), ∴当车速v =40千米/小时时, 车流量最大为11.1千辆/小时. (2)由题意:920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v-25)(v-64)<0,解得25<v<64.∴当车辆平均速度大于25千米/小时且小于64千米/小时时,车流量超过10千辆/小时.(对应学生用书第61页)忽视基本不等式的条件致误求函数y=1-2x-3x的值域.【错解】函数可化为y=1-(2x+3 x).∵2x+3x≥22x·3x=2 6.当且仅当2x=3x,即x=±62时取等号.∴y=1-(2x+3x)≤1-2 6.∴函数的值域为(-∞,1-26].【错因分析】利用基本不等式求最值时,忽视了各项为正的条件.【防范措施】利用基本不等式求最值时一定注意应用条件“一正、二定、三相等”.【正解】函数可化为y=1-(2x+3 x).①当x>0时,2x+3x≥22x·3x=2 6.当且仅当2x=3x,即x=62或x=-62(舍)时等号成立.∴y=1-(2x+3x)≤1-2 6.②当x<0时,y=1+(-2x)+(-3 x).∵-2x+(-3x)≥2(-2x)·(-3x)=26,y≥1+2 6.当且仅当-2x=-3x时,即x=62(舍).若x=-62时等号成立.∴函数的值域为(-∞,1-26]∪[1+26,+∞).1.利用基本不等式求最值,要注意使用的条件“一正二定三相等”,三个条件缺一不可,解题时,有时为了达到使用基本不等式的三个条件,需要通过配凑、裂项、转化、分离常数等变形手段,创设一个适合应用基本不等式的情境.2.不等式的应用题大都与函数相关联,在求最值时,基本不等式是经常使用的工具,但若对自变量有限制,一定要注意等号能否取到,若取不到,必须利用函数的单调性去求函数的最值.(对应学生用书第61页)1.下列函数中最小值为4的是()A.y=x+4 xB.y=sin x+4sin x(0<x<π)C.y=3x+4·3-xD.y=lg x+4log x10【解析】A不满足正数,B取不到等号成立,D不满足正数,C正确.【答案】C2.若实数a、b满足a+b=2,则2a+2b的最小值为()A.2B.22C.2D.4【解析】由基本不等式得,2a+2b≥22a·2b=22a+b=4.【答案】 D3.设x ,y ∈N +满足x +y =20,则lg x +lg y 的最大值为________. 【解析】 ∵x ,y ∈N +,∴20=x +y ≥2xy , ∴xy ≤100,∴lg x +lg y =lg xy ≤lg 100=2,当x =y =10时取“=”. 【答案】 24.已知x >0,y >0,且满足8x +1y =1.求x +2y 的最小值. 【解】 x >0,y >0,8x +1y =1, ∴x +2y =(8x +1y )(x +2y )=10+x y +16yx ≥10+2x y ·16yx =18,当且仅当⎩⎪⎨⎪⎧8x +1y =1,x y =16y x ,即⎩⎨⎧x =12y =3时,等号成立, 故当x =12,y =3时,(x +2y )min =18.(对应学生用书第113页)一、选择题 1.若a >1,则a +1a -1的最小值是( ) A .2 B .a C.2aa -1D .3 【解析】 a >1,∴a -1>0,∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=3.【答案】 D2.设x >0,则y =3-3x -1x 的最大值是( ) A .3 B .-3 2 C .3-2 3 D .-1【解析】 ∵x >0,∴y =3-(3x +1x )≤3-23x ·1x =3-2 3.当且仅当3x =1x ,且x >0,即x =33时,等号成立.【答案】 C3.(2013·鹤岗高二检测)若x >0,y >0,且1x +4y =1,则x +y 的最小值是( ) A .3 B .6 C .9 D .12【解析】 x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +4y =1+y x +4x y +4 =5+y x +4xy ≥5+2y x ·4xy =5+4=9.当且仅当⎩⎪⎨⎪⎧1x +4y =1y x =4x y ,即⎩⎨⎧x =3y =6时等号成立,故x +y 的最小值为9.【答案】 C4.要设计一个矩形,现只知道它的对角线长度为10,则在所有满足条件的设计中,面积最大的一个矩形的面积为( )A .50B .25 3C .50 3D .100【解析】 设矩形的长和宽分别为x 、y ,则x 2+y 2=100. 于是S =xy ≤x 2+y 22=50,当且仅当x =y 时等号成立. 【答案】 A5.(2013·宿州高二检测)若a >0,b >0,且ln(a +b )=0,则1a +1b 的最小值是( ) A.14 B .1 C .4 D .8【解析】由a >0,b >0,ln(a +b )=0,得⎩⎨⎧a >0,b >0,a +b =1,∴1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·a b =4,当且仅当a =b =12时,取等号.【答案】 C 二、填空题6.(2013·广州高二检测)若x >0,则x +2x 的最小值是________. 【解析】 x +2x ≥2x ·2x =22,当且仅当x =2时,等号成立.【答案】 2 27.(2013·南京高二检测)若log m n =-1,则3n +m 的最小值是________. 【解析】 ∵log m n =-1, ∴mn =1且m >0,n >0,m ≠1. ∴3n +m ≥23mn =2 3.当且仅当3n =m 即n =33,m =3时等号成立. 【答案】 2 38.函数y =log 2x +log x (2x )的值域是________. 【解析】 y =log 2x +log x 2+1.由|log 2x +log x 2|=|log 2x |+|log x 2|≥2|log 2x |·|log x 2|=2, 得log 2x +log x 2≥ 2或log 2x +log x 2≤ -2, ∴y ≥ 3或y ≤ -1.【答案】 (-∞ ,-1]∪ [3,+∞ ) 三、解答题9.当x <32时,求函数y =x +82x -3的最大值.【解】 y =12(2x -3)+82x -3+32=-(3-2x 2+83-2x )+32,∵当x <32时,3-2x >0, ∴3-2x 2+83-2x≥23-2x 2 ·83-2x =4,当且仅当3-2x 2=83-2x,即x =-12时取等号.于是y ≤-4+32=-52,故函数有最大值-52.10.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是多少? 【解】 法一 ∵x +2y +2xy =8, ∴y =8-x 2x +2>0,∴0<x <8.∴x +2y =x +2·8-x2x +2=(x +1)+9x +1-2≥2(x +1)·9x +1-2=4.当且仅当x +1=9x +1时“=”成立,此时x =2,y =1.法二 ∵x >0,y >0,∴8=x +2y +2xy =x +2y +x ·2y ≤x +2y +(x +2y 2)2, 即(x +2y )2+4(x +2y )-32≥0, ∴[(x +2y )+8][(x +2y )-4]≥0, ∴x +2y ≥4,当且仅当x =2y 时取等号.由x =2y 且x +2y +2xy =8,得x =2,y =1,此时x +2y 有最小值4. 11.为了改善居民的居住条件,某城建公司承包了旧城拆建工程,按合同规定在4个月内完成.若提前完成,则每提前一天可获2 000元奖金,但要追加投入费用;若延期完成,则每延期一天将被罚款5 000元.追加投入的费用按以下关系计算:6x +784x +3-118(千元),其中x 表示提前完工的天数,试问提前多少天,才能使公司获得最大附加效益?(附加效益=所获奖金-追加费用)【解】 设城建公司获得的附加效益为y 千元,由题意得 y =2x -(6x +784x +3-118)=118-(4x +784x +3) =118-[4(x +3)+784x +3-12] =130-[4(x +3)+784x +3] ≤130-24(x +3)·784x +3=130-112=18(千元),当且仅当4(x +3)=784x +3,即x =11时取等号. 所以提前11天,能使公司获得最大附加效益.(教师用书独具)某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,饲料的价格为1.8元,饲料的保管与其他费用为平均每千克每天0.03元,购买饲料每次支付运费300元.求该厂多少天购买一次饲料才能使平均每天支付的总费用最少.【思路探究】 审题、理解题意―→ 建立相应的函数解析式,标出定义域―→ 在定义域内求出函数的最小值―→ 回到实际问题,检验作答【自主解答】 设该厂x (x ∈N +)天购买一次饲料,平均每天支付的总费用为y 1元.∵饲料的保管与其他费用每天比前一天少200×0.03=6(元),∴x 天饲料的保管与其他费用共是6(x -1)+6(x -2)+…+6=3x 2-3x (元). 从而有y 1=1x (3x 2-3x +300)+200×1.8 =300x +3x +357≥417.当且仅当300x =3x ,即x =10时,y 1有最小值.即10天购买一次饲料才能使平均每天支付的总费用最少.利用基本不等式解决实际问题的一般思路如下:(1)在理解题意的基础上设变量,确定问题中量与量间的关系,初步确立用怎样的函数模型.(2)建立相应的函数解析式,将实际问题抽象为函数的最大值或最小值问题. (3)在定义域(使实际问题有意义的自变量的取值范围)内,求出函数的最大值或最小值.(4)回到实际问题中,检验并写出正确答案.从等腰直角三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC =2,∠A =90°,则这两个正方形的面积之和的最小值为________.【解析】 设两个正方形边长分别为a ,b ,则由题可得a +b =1,且13≤a ,b ≤23,S =a 2+b 2≥2×(a +b 2)2=12,当且仅当a =b =12时取等号.【答案】 错误!。

相关文档
最新文档