气相色谱柱固定相简介

合集下载

气相色谱柱知识详解

气相色谱柱知识详解

气相色谱柱知识详解第一节气相色谱柱的类型气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。

其核心即为色谱柱。

气相色谱柱有多种类型。

从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。

色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。

在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。

对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。

按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。

前者的内径在24mm,长度为110m左右;后者内径在0.20.5mm,长度一般在25100m。

在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。

根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。

固定液的种类繁多,极性各不相同。

色谱柱对混合样品的分离能力,往往取决于固定液的极性。

常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。

新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。

其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。

在进行气相色谱分析时,色谱柱的选择是至关重要的。

不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。

有关内容我们将在以后章节中加以详细讨论。

第二节填充气相色谱柱填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。

据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。

填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。

仪器分析笔记《气相色谱分析》

仪器分析笔记《气相色谱分析》
A、气固色谱分填充柱和毛细管柱两种:
填充柱(Packing column):常用不锈钢制成,内径2~4 mm,柱长1~3m。填充吸附剂或覆盖
在载体上均匀固定液膜。
毛细管柱(Capillary column):常用石英制成,内径0.1~0.5mm,柱长可达数十米。固定液直
接涂在毛细管内壁表面。
B、气相色谱固定相可分为:
1.2.2色谱分离的基本理论
柱效率可用理论塔板数(n)或理论塔板高度(H)表示。柱效率的高低能反映组分在柱内两相间的分配情况和组分通过色谱柱后峰加宽的程度,它与组分在气相中的扩散及在液相中的传质阻力有关。
1、塔板理论
塔板理论是将色谱柱比作蒸馏塔,柱内有若干“想象”的塔板。每两块塔板之间的距离称为板高,各组分就在这些塔板间隔的气液两相间进行分配,经过多次分配平衡后,分配系数小的组分先离开色谱柱,分配系数大的组分,后离开色谱柱。
C、按分离的原理分类
①吸附色谱:利用组分在固定相上的吸附能力强弱不同分离。
②分配色谱:利用组分在固定液中溶解度不同分离。
③凝胶(排阻)色谱:利用大小不同的分子在多孔固定相中的选择渗透分离
④离子交换色谱法:利用组分在离子交换剂上的亲和力大小不同分离
3、气相色谱仪组成
Ⅰ载气系统:气源、气体净化器、供气控制阀门和仪表;
(1)分配系数
在一定温度和压力下,组分在固定相和流动相间达到分配平衡时的浓度比,称为分配系数。
式中—— :组分在固定相中的浓度; :组分在流动相中的浓度。
该组分与固定液分子间作用力 ;
空气在固定液中不溶解,其 ,故空气在柱子内的滞留时间最短,最先从色谱柱中馏出,因此,将空气的保留时间称之为死时间;
被测组分的 相差越大,越容易分离;

15-色谱分析法简介

15-色谱分析法简介
8
色谱图及常用术语
色谱流出曲线: 由检测器输出的电信号强 度对时间作图,所得曲线 色谱峰: 曲线上突起部分
t
1、基线: 没有样品组分流出时的流出曲线; 2、峰高: 色谱峰顶点与基线之间的垂直距离; 3、区域宽度: 即色谱峰的宽度; 峰底宽度wb:Wb = 4 σ 半峰宽w1/2: W1/2 = 2.354 σ 标准偏差σ: 0.607倍峰高处峰宽的一半 。
15
分离度定义:相邻两峰保留值之差与两蜂宽之和的一半的比值
在—般情况下,由于色谱柱中溶质的浓度较低,分配系数K 为常数。——称线性色谱。 色谱峰是对称的呈高斯分布,高斯峰,其蜂底宽度等于4σ。 相邻两个蜂,其峰宽大致相等:
Rs=1,峰间距离4 σ ,4 σ分离。峰有2%的重叠 Rs=1.5,峰间距离6 σ ,称为6 σ分离,峰重叠小于1%, 两峰已完全分开。
9
峰面积A: 4、保留值 常用时间、距离或用将组分带出色谱柱所需要的流动相体
积表示,保留值由色谱分离过程中的热力学因素所决定; 在一 定色谱条件下保留值是特征的,可作为色谱定性的参数是色谱 法的重要概念之一;
a.保留时间 tR 从进样开始到色谱蜂最大值出现时所需要的时间;某组分
的保留时间就是它通过色谱柱所需要的时间; 死时间tM:多用t0表示 不被固定相保留的组分,从进样到出现峰极大值的时间;死 时间实际上就是流动相流经色谱柱所需要的时间;
3
色谱法的实质:分离; 色谱法的依据:各组分在互不相溶的两相——固定相与流动 相中吸附能力、分配系数或其它亲和作用性能的差异. 2. 色谱法的分类 (1)按流动相和固定相所处状态分类 气固色谱 气相色谱:气体作流动相 气液色谱 液相色谱:液体作流动相 液固色谱 液液色谱 超临界流体色谱: (2)按固定相的固定方式分类 柱色谱法:固定相装在色谱柱中 纸色谱法:用滤纸上的水分子作固定相 薄层色谱法:将吸附剂粉末制成薄层作固定相

气相色谱柱内容介绍

气相色谱柱内容介绍

气相色谱柱内容介绍通常来说,一根毛细管色谱柱由两部分组成—管身和固定相.管身一般使用熔融二氧化硅或不锈钢作为基本材质:而固定相种类就有许多了.大部分地固定相是液体或胶状地高分子量,具有高热稳定性地聚合物,最常用地是聚硅氧烷(有时误称为硅氧烷)和聚乙二醇,另外还有一类是小地多孔粒子组成地聚合物或沸石(例如氧化铝、分子筛等). 色谱柱管熔融二氧化硅即高纯度合成石英(以下通称熔融石英),通常在其表面涂上一层聚酰亚胺做为保护层.涂层后地熔融石英毛细管呈褐色:但是涂层后地毛细管之间地颜色却不尽相同.色谱柱地颜色对于其色谱性能没有什么影响.经过持续地较高温度处理后.聚酰亚胺涂层管地地温度会变得比以前更深:标准地聚酰亚胺涂层管熔融石英管地温度上限为℃,高温聚酰亚胺涂层管地温度上限为℃. 固定相:聚硅氧烷;聚乙二醇聚硅氧烷聚硅氧烷在其用途地多用性、性质地稳定性上都有优良地表现也是目前最为常用地固定相.标准地聚硅氧烷是由许多单个地硅氧烷重复联接构成:每个硅原子与两个功能基团相连,功能基团地类型和数量决定了固定相总体类型和性质常见地四种功能基团为甲基、氰丙基、三氟丙基和苯基. 最基本地聚硅氧烷是由甲基取代地.当有其他种类地取代基出现时,该集团地数量将由一个百分数来表示.例如:%二苯基—%二甲基聚硅氧烷表示其包含有%地苯基基团和%地甲基基团.“二”是表示每个硅原子包含有两个特定基团,但当两个特定基团完全相同时,我们有时也会省略这种叫法.如果甲基地百分数没有表征,则表示它地含量可能是%(如%苯基—甲基聚硅氧烷表示甲基地含量为%).有时我们可能对氰丙基苯基地百分含量产生错误地理解,如%氰丙基苯基—二甲基聚硅氧烷表示地是其含有%氰丙基和%苯基(另有%地甲基),因为一个氰丙基和一个苯基连接于同一个硅原子上,所以%是一种加和地表征方式. 我们有时会用低流失或“”来表征一类固定相.这一类固定相是在硅氧烷聚合物中链接一定数量地苯基或苯基类地集团,通常我们称之为“亚芳基”.由于它们地加入,聚合物地链接变得更加坚固稳定,保证了在较高温度时,固定相不会产生降解.也就是说,进一步降低了色谱柱地柱流失,提高了色谱柱地使用温度.与原始地非亚芳基类型地固定相相比,亚芳基色谱柱固定相不仅拥有相同地分离指数,而且在色谱柱地维护等方面也有许多地调整(例如和).尽管同类普通型和低流失型固定相地分离性能相同或极为相似,但是在某些方面还有微小地区别.另外,我们也使用一些没有相应“普通型”地独特低流失固定相.聚乙二醇聚乙二醇是另外一类广泛应用地固定相.有些我们称之为“”.聚乙二醇不象聚硅氧烷那样有多种取代集团,它是固定基质地聚合物.相对于聚硅氧烷,聚乙二醇固定相色谱柱地寿命较短,而且容易受温度和环境(有氧环境等)地影响.另外,聚乙二醇固定相在相应地实验条件下需保持液态.但由于其独特地分离性能,聚乙二醇仍是我们常用地固定相之一. 常用地聚乙二醇固定相有两种,一种是能在较高温度下使用地,但是它地活性相对较高一些(也就是说有些化合物地色谱峰会有拖尾现象).另一种地使用温度上限较低,温度下限也较低,但使用中所表现出地再现性和惰性比上一种要好.在分离指数上,上述两种固定相有轻微地差异.还有一种是阳离子改性聚乙二醇固定相.柱就是一类用对苯二甲酸改性地聚乙二醇作为固定相地.这种色谱柱常用于分析分离酸性化合物.另外,我们也用碱性化合物对聚乙二醇固定相改性用来分析分离碱性化合物().普通分析色谱柱分离强酸或强碱化合物时会出现色谱峰拖尾现象,使用改性固定相后,这种现象会明显地减小.气固固定相气固固定相就是在管壁表面粘合很薄一层地小颗粒物质,通常叫做多孔层开口管()柱.样品是通过在气固固定相上产生吸附脱附作用来分离地.因为所用颗粒是多孔地,所以在分离过程中,既有尺寸排阻作用,也有分子择形过程.最为常用地地柱固定相有苯乙烯衍个物、氧化铝和分子筛等.柱地保留性能非常突出,用它可以进行那些常规固定相做不到地分析分离.对于那些要求在低于室温地条件下,使用聚硅氧烷或聚乙二醇固定相进行地分析分离,柱在室温或高于室温地状态下就可以轻易完成.烃类和硫化物气体、惰性和永久性气体以及低沸点溶剂等都是常用柱进行分析分离地化合物. 有些柱地固定相有时会有粒子地流失,由于这个原因,可能会对那些依靠检测颗粒物质地检测器产生负面地影响.例如质谱检测器由于在色谱柱地出口是一个高真空地空间,所以极易受色谱柱离子流失地影响.键合和交联固定相交联是将多个聚合物链单体通过共价键进行连接,键合是将其再通过共价键与管壁表面相连.这样处理地结果使得固定相地热稳定性和溶剂稳定性都有较大地提高.所以,键合交联固定相色谱柱可以通过某种溶剂地浸洗,从而去除柱内地污染物.大多数地聚硅氧烷和聚乙二醇固定相都是经过键合交联处理地.另有少数固定相是不用键合或键合交联进行处现地.但如有可能,能够进行键合交联地,都会对固定相做出相应地处理.国产色谱柱是非交联色谱柱.柱流失所有地色谱柱都有柱流失地现象.这是由于固定相地正常降解而产生地被洗脱物质.柱流失会随着温度地升高加剧.我们可以通过流失曲线或图清楚地看到这种变化.一般我们会在程序升温地条件下做一次空白试验,温度要升至色谱柱地温度上限,并持续该温度—分钟,这样就可以得到该色谱柱地正常流失曲线图. 从流失图中我们可以得到几个重要地指标.空自试验地基线在较低温度区域相对平坦,到离温度上限—℃时开始急速地上升,直至达到温度上限.在上限温度持续期间,基线又变得平稳许多.几分钟后基线会又变得完全平坦.如出现明显或严重地偏差,其并不是由于色谱柱流失引起地.色谱柱地流失是一种持续地过程并不会偶然地开始,也不会突然地停止.如果在空白试验中得到了色谱峰,这并不是由于柱流失而引起地,它极有可能是系统中地污染物质.使用质谱检测器进行检测并与谱库对照,您会发现它们是一些含硅地化合物.它们地来源极有可能是进样垫. 一般来说,极性固定相地流失率较高,较低温度下,它们地流失就很明显.如果您使用地检测器对固定相中任何原子或功能团都有特别灵敏地响应,那么柱流失就非常明显了.就算柱流失不是很严重,但由于检测器对柱内降解产物有较灵敏地响应,会导致很强地基线噪声.在氰丙基取代聚硅氧烷固定相与系统或聚乙二醇柱与系统中,这种现象就很突出.由流失图中我们可以看到,在高温区域柱流失会迅速升高.当流失率增高时,我们无法用一种绝对地方法去测量指示.柱流失最佳地测量方法是测量在两种温度下背景倍号地不同或改变.通常我们会选择色谱柱地温度上限和℃这两个点,绝对地背景信号通常是整个系统背景地组合,我们不可能测量出柱流失对这个信号有多大地贡献.而测量柱流失地相对数量,其它对背景信号有贡献地因素也就被减去了.大多数地色谱柱是通过进行检测地.地输出信号为微微安培().流失水平就是在两种温度下信号值地差(Δ).由于这些数值随检测器响应地变化而变化,所以只有在相同地实验条件下使用同一个检测器,或者,在标准地流量条件下使用相同标准地检测器,并且流失数值以/克固定相来表示,这样做地数据才真实有效. 随着色谱柱地使用,柱流失会不断地升高.色谱柱暴露于有氧环境(空气)中和/或者持续在等于或接近色谱柱地上限温度条件下被使用,都会加速色谱柱地流失.柱流失突然或快速地升高则可能是色谱柱有损坏或系统有问题出现.而持续在高于色谱柱上限温度下操作使用,持续使色谱柱暴露于有氧环境中(通常由于泄漏),或者不断分析地样品中有破坏性物质,这些都可能是问题地原因. 色谱柱温度极限一根色谱柱通常有两个温度极限,温度下限和温度上限.如果在低于温度下限地条件下实验,得到地色谱峰又圆又宽(柱效降低).但是色谱柱并不会受到什么损坏.这样并不能发挥色谱柱地正常功能.在达到下限温度或者高于下限温度时,得到地色谱峰会有明显地好转. 温度上限—般有两个固定地数值.较低地是恒温极限,在该温度下色谱柱可以正常地使用,柱流失地寿命不会受到影响.较高地数值是程升极限,在此温度下色谱柱使用时间如果在—分钟内,色谱柱地流失和寿命不会受到太大地影响.但如果持续时间过长,则会增色谱柱加色谱柱地流失,缩短色谱柱地寿命,固定相和熔融石英管地惰性都有可能被破坏.色谱柱容量色谱柱容量是指色谱柱对一种溶质可容纳地最大量值,一旦超过此数值,该溶质地色谱峰就会发生畸变,也就是说该溶质超载.超载地色谱峰并不均衡而且沿固定方向变化.一般我们称之为“鲨鳍”峰.柱超载表现为色谱峰地拖尾.不过以上种种情况对色谱柱本身没有什么影响.柱容量与固定相地极性、膜地厚度、柱内径和溶质保留度等有关.如果色谱柱对一种溶质地容量很高,则表明该溶质与固定相地极性很相似(相似相溶).例如,一根极性柱对极性化合物地容量一定大于对非极性化合物地容量;厚膜和大口径地色谱柱,其相对柱常量也会较高;而溶质地保留度增加会使柱容量降低;如果两种溶质极性类似,后出峰地化合物更容易发生超载现象.。

气相色谱柱的分类

气相色谱柱的分类

一. 气相色谱柱的分类色谱柱是由柱管和固定相组成,按照拄管的粗细和固定相的填充方式分为(1)填充柱;(2)毛细管柱。

二. 填充柱气相色谱固定相在影响色谱柱分离效果的诸多因素中选择适当的色谱固定相是关键。

必须使待测各组分在选定的固定相上具有不同的吸附或分配,才能达到分离的目的。

(一)气-液色谱(分配色谱)固定相气-液色谱的固定相是由高沸点物质固定液和惰性担体组成。

1. 担体(或载体)是一种化学惰性的多孔固体颗粒,支持固定液,表面积大,稳定性好(化学、热),颗径和孔径分布均匀;有一定的机械强度,不易破碎。

(1)担体的种类和性能:硅藻土型:红色硅藻土担体—强度好,但表面存在活性中心,分离极性物质时色谱峰易拖尾;常用于分离非、弱极性物质。

白色硅藻土担体—表面吸附性小,但强度差,常用于分离极性物质。

非硅藻土型担体:有氟担体,适用于强极性和腐蚀性气体的分析;玻璃微球,适合于高沸点物质的分析;高分子多孔微球既可以用作气-固色谱的吸附剂,又可以用作气-液色谱的担体。

(2)担体的预处理:除去其表面的活性中心,使之钝化。

酸洗法(除去碱性活性基团);碱洗法(除去酸性活性的基团);硅烷化(消除氢键结合力);釉化处理(使表面玻璃化、堵住微孔)等。

2.固定液——涂在担体上作固定相的主成分(l)对固定液的要求:化学稳定性好:不与担体、载气和待测组分发生反应;热稳定性好:在操作温度下呈液体状态,蒸气压低,不易流失;选择性高:分配系数K 差别大;溶解性好:固定液对待测组分应有一定的溶解度。

(2)组分与固定液分子间的相互作用:组分与固定液分子间相互作用力通常包括:静电力、诱导力、色散力和氢键作用力。

在气-液色谱中,只有当组分与固定液分子间的作用力大于组分分子间的作用力,组分才能在固定液中进行分配。

选择适宜的固定液使待侧各组分与固定液之间的作用力有差异,才能达到彼此分离的目的。

(3)固定液的分类:固定液有四百余种,常用相对极性分类。

气相色谱柱知识详解

气相色谱柱知识详解

v1.0 可编辑可修改气相色谱柱知识详解第一节气相色谱柱的类型气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。

其核心即为色谱柱。

气相色谱柱有多种类型。

从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。

色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。

在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。

对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。

按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。

前者的内径在24mm,长度为110m左右;后者内径在,长度一般在25100m。

在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。

根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。

固定液的种类繁多,极性各不相同。

色谱柱对混合样品的分离能力,往往取决于固定液的极性。

常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。

新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。

其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。

在进行气相色谱分析时,色谱柱的选择是至关重要的。

不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。

有关内容我们将在以后章节中加以详细讨论。

第二节填充气相色谱柱填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。

据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。

填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。

气相色谱固定相及色谱柱技术

气相色谱固定相及色谱柱技术

气液色谱固定相
(iii)分离非极性和极性混合物:一般选用 极性固定液,这时非极性组分先流出,极 性组分后流出。
(vi)分离能形成氢键的试样:一般选用极 性或氢键型固定液。试样中各组分按与固 定液分子间形成氢键能力大小先后流出, 不易形成氢键的先流出,最易形成氢键的 最后流出。
气液色谱固定相
(v)复杂的难分离物质:可选用两种或两 种以上混合固定液。
另外还要求固定液有良好的热稳定 性和化学稳定性;对试样各组分有适当 的溶解能力;在操作温度下有较低蒸气 压,以免流失太快。
气液色谱固定相
固定液的特性 固定液的特性主要是指它 的极性或选择性,用它可描述和区别固定液 的分离特征。目前大都采用相对极性和固定 液特征常数表示。
(i)相对极性:1959年由Rohrschneider提出用相
气相色谱固定相 及色谱柱技术
气相色谱固定相 包括气液色谱固定相和气固色谱固定相。
固体吸附剂 用于制备PLOT柱和气-液-固毛细 管柱。
液体固定相 由载体(担体)和固定液组成。
色谱柱技术( 柱材料、柱制备及柱评价)
气液色谱固定相
气液色谱固定相
载体(担体)和固定液组成气液色谱固定相 载体(担体)
对载体的要求 具有足够大的表面积和良 好的孔穴结构,使固定液与试样的接触面较 大,能均匀地分布成一薄膜,但载体表面积 不宜太大,否则犹如吸附剂,易造成峰拖尾; 表面呈化学惰性,没有吸附性或吸附性很弱, 更不能与被测物起反应;热稳定性好;形状 规则,粒度均匀,具有一定机械强度。
10010(0q1 qx) q1 q2
上右式中下标1,2和X分别表示氧二丙睛,角鲨烷
及被测固定液。由此测得的各种固定液构相对极 性均在0~100之间。一般将其分为五级,每20单 位为一级。相对极性在0~+l之间的叫非极性固 定液,+2级为弱极性固定液,+3级为中等极性, +4~+5为强极性。非极性亦可用“-”表示。下 表列出了一些常用固定液的相对极性数据。

气相色谱色谱柱的选择及分类

气相色谱色谱柱的选择及分类

气相色谱色谱柱的选择及分类气相色谱色谱柱的选择及分类1.1 固定相的选择当面对一个未知物时,先试用现有GC 柱,如果该柱分离不理想,根据你对样品的了解,基本原则是分析物与固定相有相似化学性质时才会相互作用。

这说明对样品越了解,越容易找到合适的固定相。

非极性分子——通常仅由C和H组成并且无偶极矩,直联(正烷)是常见的非极性化合物的例子。

极性分子——主要由C和H组成同时也有其他原子,如:N、O、P、S或卤素。

样品包括有醇类、胺类、硫醇类、酮类、有机卤化物等。

可极化物质——主要由C和H组成同时包含不饱和键。

通常有:炔和芳香族化合物。

如果你的样品是具有相似的化学性质的非极性组分的混合物,比如大多数石油馏分中的烃,你可以试用OV-1毛细管色谱柱,它按沸点顺序分离。

如果你怀疑有芳族化合物,试着用有苯基的SE-52或SE-54柱。

极性或可极化组分样品能够在中极性和/或可极化固定相色谱柱上进行分析,如有苯基或类似基团固定相,比如OV-17或OV-225柱。

如果需要更高极性,可以选用聚乙二醇(P EG)固定相,即通常所说的WAX固定相。

1.2膜厚选择薄膜比厚膜洗脱组分快、峰分离好、温度低。

一般而言,色谱柱的膜厚为0.25到0.5μm。

对于流出达300℃的大多数样品(包括蜡、甘油三脂、甾族化合物等)能够很好的分析。

对于更高的洗脱温度,可以用0.1μm的液膜。

而厚液膜对于低沸点化合物有利,对于流出温度在100℃~200℃之间的物质,用1~1.5μm的液膜效果较好。

超厚膜(3~5μm)用于分析气体、溶剂和可吹扫出来的物质,以增加样品组分与固定相的相互作用。

另一个选择厚膜的原因是当用大口径柱时保持分离度和保留时间。

由于这个原因,大口径柱都只有厚膜。

厚膜的流失较大,温度极限必须随膜厚度增加而下降。

1.3长度选择一般情况,15m柱用于快速筛选简单混合物或分子量极高的化合物。

30m柱是最普遍的柱长。

超长柱(50、60或100m、150m)用于非常复杂的样品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱柱固定相简介
毛细管色谱柱最常用的是聚硅氧烷和聚乙二醇,另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。

1、聚硅氧烷
聚硅氧烷由于其用途广泛、性能稳定性,是目前最常用的固定相。

标准的聚硅氧烷是由许多单个的硅氧烷链接而成。

每个硅原子与两个功能集团相连,最常见的功能集团为甲基和苯基,此外还有氰丙基和三氟丙基。

这些功能集团的类型和数量决定了色谱柱固定相的性质。

最基本的聚硅氧烷是由100%甲基取代的,相应的柱子牌号有:HP-1、BP-1、DB-1、SE-30等。

若有其他取代基取代甲基时,该取代基的数量一般由一个百分数来表示。

例如:5%二苯基-95%二甲基聚硅氧烷表示其包含有5%的苯基集团和95%的甲基集团(“二”是表示每个硅原子包含有两个特定集团)。

相应的柱子牌号有:HP-5、BP-5、DB-5、SE-54等。

如果甲基的百分数没有表征,则表示它们的含量是100%(如50%苯基-甲基聚硅氧烷表示甲基的含量为5 0%)。

相应的柱子牌号有:HP-50+、BPX-200、DB-17等。

2、聚乙二醇
聚乙二醇是另外一类广泛应用的固定相。

有些我们称之为“WAX”或“FFAP”。

聚乙二醇的稳定性、使用温度范围都比聚硅氧烷要差一些。

聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有
氧环境等)的影响。

但由于它的极性比较强,对极性物质有特殊的分离效能,所以仍是我们常用的固定相之一。

为了提高分离效能,还有用pH阳离子改性聚乙二醇固定相。

FFAP柱就是一类用对苯二甲酸改性的聚乙二醇作为固定相的(DB-FFAP)。

这种色谱柱常用于分析分离酸性化合物。

另外,我们也用碱性化合物对聚乙二醇固定相改性用来分析分离碱性化合物(CAM)。

相应的柱子牌号有:HP-Wax、DB-Wax、Carbowax-10,HP-INNOWax、DB-WAXetr、Car bowax-20M,HP-FFAP、DB FFAP、OV-351等。

3、气-固固定相
气-固固定相就是在管壁表面粘合很薄一层的小颗粒物质,通常叫做多孔层开口管(PLOT)柱。

样品是通过在气—固固定相上产生吸附/脱附作用来分离的。

它们常用来分离各种气体及低沸点溶剂。

最为常用的PLOT柱固定相有苯乙烯衍生物、氧化铝和分子筛等。

相应的柱子牌号有:HP PLOT Al2O3“S”、HP PLOT Al2O3“KCl”、GS-Al2O3、CP-Al2O3/KCl、HP PLOT Q、HP PLOT U等。

4、键合和交联固定相为了改善柱子的性能,常采用键合和交联的方式。

交联是将多个聚合物链单体通过共价键进行连接,键合是将其再通过共价键与管壁表面相连。

这样处理的结果使得固定相的热稳定性和溶剂稳定性都有较大的提高。

所以,键合交联固定相色谱柱可以通过溶剂的浸洗,从而去除柱内的污染物。

二、气相色谱柱常用的固定液
气相色谱柱常用的固定液
一、非极性
1、100%Dimethyl polysiloxane,100%聚二甲基硅氧烷,商品名:AC1,OV-101,OV-1,DB-1,SE-30,HP-1,RTX-1,BP-1
二、弱极性
2、5%Phenyl dimethyl polysiloxane, 5%二苯基(95%)二甲基聚硅氧烷,商品名:AC5,SE-52,
3、5% Phenyl 1%vinyl dimethyl polysiloxane,5%二苯基1%乙烯基(94%)二甲基聚硅氧烷,商品名:OV-5,DB-5,SE-54,HP-5,RTX-5,BP-5
注:2、3常无严格区分,通常混称。

三、中等极性
4、50%Phenyl dimethyl polysiloxane, 50%二苯基(50%)二甲基聚硅氧烷,商品名:OV-17,HP-50,RTX-50
5、14%Cyanopropyl phenyl polysiloxane, 14%氰丙基苯基(其中7%氰丙基7%苯基)(86%)二甲基聚硅氧烷,商品名:AC10,OV-1701,DB-1701,RTX-1701
6、50% Cyanopropyl phenyl polysiloxane,50%氰丙基苯基(其中25%氰丙基25%苯基)(50%)二甲基聚硅氧烷,商品名:AC225,OV-225,
BP-225,DB-225,HP-225,RTX-225
四、强极性
7、polyethylene glycol,聚乙二醇,商品名:AC20,PEG20M,HP-INNOWAX(FFAP是其与2-硝基对苯二甲酸的反应产物)
白酒DNP色谱柱:DNP是邻苯二甲酸二壬酯的英文缩写,是一种
应用广泛的固定液,具有中等极性
固定液:AE.10%PEG-20M 最高使用温度。

相关文档
最新文档